AI-Driven Reverse Engineering of Biomimetic Structures via GNN-GAN Synergy
DOI: 10.23977/jaip.2025.080405 | Downloads: 4 | Views: 58
Author(s)
Baixin Pan 1
Affiliation(s)
1 The University of Hong Kong, Hong Kong, China
Corresponding Author
Baixin PanABSTRACT
This article explores a novel hybrid model that combines a Graph Neural Network (GNN) with a Generative Adversarial Network (GAN) to address the challenge of generating novel biomimetic graphs with desired properties. The central hypothesis is that this synergistic framework can learn the structural grammar of biomimetic systems and the mapping between structure and function. We demonstrate how a GNN-based property loss can be used to guide the generator during training, discuss optimal architectural design choices, and outline the integration of a GNN-based property predictor into a conditional GAN framework. In addition, we propose a comprehensive multi-metric evaluation framework, present strategies to mitigate training instability and mode collapse, and address effective graph-based representations of biomimetic structures. This research aims to move beyond traditional forward design and enable efficient inverse design for applications in materials science, drug discovery, and tissue engineering.
KEYWORDS
GNN-GAN; Biomimetic Structures; Inverse Design; Molecular Generation; Graph Neural Networks; Generative Adversarial Networks; Wasserstein GANCITE THIS PAPER
Baixin Pan, AI-Driven Reverse Engineering of Biomimetic Structures via GNN-GAN Synergy. Journal of Artificial Intelligence Practice (2025) Vol. 8: 32-48. DOI: http://dx.doi.org/10.23977/jaip.2025.080405.
REFERENCES
[1] Hoogeboom, E.; Satorras, V. G.; Vignac, C.; Welling, M., 2022. Equivariant diffusion for molecule generation in 3D. In Proceedings of the International Conference on Machine Learning (ICML), Baltimore, MD, USA, 17–23 July 2022; pp. 8867–8887.
[2] Merchant, A.; Batzner, S.; Schoenholz, S. S.; Aykol, M.; Montoya, J. H.; Cubuk, E. D., 2023. Scaling deep learning for materials discovery. Nature, 624, 80–85.
[3] Jin, W.; Barzilay, R.; Jaakkola, T., 2018. Junction tree variational autoencoder for molecular graph generation. In Proceedings of the International Conference on Machine Learning (ICML), Stockholm, Sweden, 10–15 July 2018; pp. 2323–2332.
[4] Fink, T.; Reymond, J.-L., 2007. Virtual exploration of the chemical universe up to 17 atoms: The GDB-17 database. J. Chem. Inf. Model., 47, 342–353.
[5] De Cao, N.; Kipf, T., 2018. MolGAN: An implicit generative model for small molecular graphs. arXiv Prepr., arXiv:1805.11973.
[6] Zeni, C.; Bietti, A.; Burns, K.; Hu, N.; Ligett, K.; Swersky, K., 2024. MatterGen: A generative model for inorganic materials design. arXiv Prepr., arXiv:2312.03687, submitted.
[7] Wieder, O.; Kohlbacher, S.; Kuenemann, M.; Garon, A.; Ducrot, P.; Seidel, T.; Langer, T., 2020. A compact review of molecular property prediction with graph neural networks. Drug Discov. Today Technol., 37, 1–12.
[8] Li, Y.; Zhang, L.; Liu, Z., 2018. Multi-objective de novo drug design with conditional graph generative model. J. Cheminform., 10, 33.
[9] Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Sun, M., 2020. Graph neural networks: A review of methods and applications. AI Open, 1, 57–81.
[10] Court, C. J.; Cole, J. M., 2020. Auto-generated materials database: Linking microstructure to properties with graph neural networks. npj Comput. Mater., 6, 1–11.
[11] Yan, C.; Zhao, S.; Wang, Y., 2020. Motif-based graph neural networks for molecular property prediction. arXiv Prepr., arXiv:2010.04713, submitted.
[12] Karamad, M.; Magar, R.; Shi, Y.; Siahrostami, S.; Gates, I. D.; Barati Farimani, A., 2020. Orbital graph convolutional neural network for material property prediction. Phys. Rev. Mater., 4, 093801.
[13] Kipf, T. N.; Welling, M., 2017. Semi-supervised classification with graph convolutional networks. In Proceedings of the International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.
[14] Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y., 2018. Graph attention networks. In Proceedings of the International Conference on Learning Representations (ICLR), Vancouver, Canada, 30 April–3 May 2018.
[15] Hamilton, W. L.; Ying, R.; Leskovec, J., 2017. Inductive representation learning on large graphs. In Advances in Neural Information Processing Systems (NeurIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 1024–1034.
[16] Han, J.; Rong, Y.; Xu, T.; Huang, W., 2022. Multi-view graph neural networks for molecular property prediction. arXiv Prepr., arXiv:2205.13671.
[17] Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Bengio, Y., 2014. Generative adversarial nets. In Advances in Neural Information Processing Systems (NeurIPS), Montreal, Canada, 8–13 December 2014; pp. 2672–2680.
[18] Mirza, M.; Osindero, S., 2014. Conditional generative adversarial nets. arXiv Prepr., arXiv:1411.1784.
[19] Saxena, D.; Cao, J.; Snoek, J., 2021. On the challenges of generative modeling for molecule generation. arXiv Prepr., arXiv:2102.13557.
[20] Saxena, D.; Cao, J., 2021. Generative modeling of molecular graphs: Challenges and opportunities. Chem. Sci., 12, 11669–11681.
[21] Arjovsky, M.; Bottou, L., 2017. Towards principled methods for training generative adversarial networks. In Proceedings of the International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.
[22] Jin, W.; Barzilay, R.; Jaakkola, T., 2020. Conditional generation of molecules from disentangled representations. In Proceedings of the International Conference on Machine Learning (ICML), Vienna, Austria, 10–15 July 2020; pp. 8867–8887.
[23] Arjovsky, M.; Chintala, S.; Bottou, L., 2017. Wasserstein generative adversarial networks. In Proceedings of the International Conference on Machine Learning (ICML), Sydney, Australia, 6–11 August 2017; pp. 214–223.
[24] Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A., 2017. Improved training of Wasserstein GANs. In Advances in Neural Information Processing Systems (NeurIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 5767–5777.
[25] Miyato, T.; Kataoka, T.; Koyama, M.; Yoshida, Y., 2018. Spectral normalization for generative adversarial networks. In Proceedings of the International Conference on Learning Representations (ICLR), Vancouver, Canada, 30 April–3 May 2018.
[26] Wei, X.; Gong, B.; Liu, Z.; Lu, W.; Wang, L., 2018. Improving the improved training of Wasserstein GANs: A consistency term and its dual effect. In Proceedings of the International Conference on Learning Representations (ICLR), Vancouver, Canada, 30 April–3 May 2018.
[27] Guo, X.; Zhao, L., 2020. A systematic survey on deep generative models for graph generation. arXiv Prepr., arXiv:2007.13673.
[28] Thanh-Tung, H.; Tran, T., 2020. Catastrophic forgetting and mode collapse in GANs. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8.
[29] Gretton, A.; Borgwardt, K. M.; Rasch, M. J.; Schölkopf, B.; Smola, A., 2012. A kernel two-sample test. J. Mach. Learn. Res., 13, 723–773.
[30] Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S., 2019. How powerful are graph neural networks? In Proceedings of the International Conference on Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019.
[31] You, J.; Liu, B.; Ying, R.; Pande, V.; Leskovec, J., 2018. Graph convolutional policy network for goal-directed molecular graph generation. In Advances in Neural Information Processing Systems (NeurIPS), Montreal, Canada, 3–8 December 2018; pp. 6410–6421.
[32] Preuer, K.; Renz, P.; Unterthiner, T.; Hochreiter, S.; Klambauer, G., 2018. Fréchet ChemNet Distance: A metric for generative models for molecules. arXiv Prepr., arXiv:1802.09544.
[33] Vignac, C.; Krawczuk, I.; Siraudin, A.; Wang, B.; Adams, R. P.; Welling, M., 2023. DiGress: Discrete denoising diffusion for graph generation. In Proceedings of the International Conference on Learning Representations (ICLR), Kigali, Rwanda, 1–5 May 2023.
[34] Martinkus, K.; Roth, P.; Jaggi, M., 2023. TIGGER: Scalable generative modelling for temporal interaction graphs. arXiv Prepr., arXiv:2307.01364.
[35] Gutteridge, B.; Dong, X.; Bronstein, M.; Di Battista, G., 2024. G²PM: A graph pattern machine for large-scale graph generation. arXiv Prepr., arXiv:2402.14966.
[36] Edwards, C.; Lai, T.; Oei, K.; Zhuo, H. H.; Zhang, Y.; Alon, U., 2024. Text-to-graph generation: Methods and challenges. arXiv Prepr., arXiv:2408.00957.
| Downloads: | 16776 |
|---|---|
| Visits: | 594781 |
Sponsors, Associates, and Links
-
Power Systems Computation
-
Internet of Things (IoT) and Engineering Applications
-
Computing, Performance and Communication Systems
-
Advances in Computer, Signals and Systems
-
Journal of Network Computing and Applications
-
Journal of Web Systems and Applications
-
Journal of Electrotechnology, Electrical Engineering and Management
-
Journal of Wireless Sensors and Sensor Networks
-
Journal of Image Processing Theory and Applications
-
Mobile Computing and Networking
-
Vehicle Power and Propulsion
-
Frontiers in Computer Vision and Pattern Recognition
-
Knowledge Discovery and Data Mining Letters
-
Big Data Analysis and Cloud Computing
-
Electrical Insulation and Dielectrics
-
Crypto and Information Security
-
Journal of Neural Information Processing
-
Collaborative and Social Computing
-
International Journal of Network and Communication Technology
-
File and Storage Technologies
-
Frontiers in Genetic and Evolutionary Computation
-
Optical Network Design and Modeling
-
Journal of Virtual Reality and Artificial Intelligence
-
Natural Language Processing and Speech Recognition
-
Journal of High-Voltage
-
Programming Languages and Operating Systems
-
Visual Communications and Image Processing
-
Journal of Systems Analysis and Integration
-
Knowledge Representation and Automated Reasoning
-
Review of Information Display Techniques
-
Data and Knowledge Engineering
-
Journal of Database Systems
-
Journal of Cluster and Grid Computing
-
Cloud and Service-Oriented Computing
-
Journal of Networking, Architecture and Storage
-
Journal of Software Engineering and Metrics
-
Visualization Techniques
-
Journal of Parallel and Distributed Processing
-
Journal of Modeling, Analysis and Simulation
-
Journal of Privacy, Trust and Security
-
Journal of Cognitive Informatics and Cognitive Computing
-
Lecture Notes on Wireless Networks and Communications
-
International Journal of Computer and Communications Security
-
Journal of Multimedia Techniques
-
Automation and Machine Learning
-
Computational Linguistics Letters
-
Journal of Computer Architecture and Design
-
Journal of Ubiquitous and Future Networks

Download as PDF