
AI-Driven Reverse Engineering of Biomimetic Structures

via GNN-GAN Synergy

Baixin Pan

The University of Hong Kong, Hong Kong, China

Keywords: GNN-GAN; Biomimetic Structures; Inverse Design; Molecular Generation;

Graph Neural Networks; Generative Adversarial Networks; Wasserstein GAN

Abstract: This article explores a novel hybrid model that combines a Graph Neural Network

(GNN) with a Generative Adversarial Network (GAN) to address the challenge of

generating novel biomimetic graphs with desired properties. The central hypothesis is that

this synergistic framework can learn the structural grammar of biomimetic systems and the

mapping between structure and function. We demonstrate how a GNN-based property loss

can be used to guide the generator during training, discuss optimal architectural design

choices, and outline the integration of a GNN-based property predictor into a conditional

GAN framework. In addition, we propose a comprehensive multi-metric evaluation

framework, present strategies to mitigate training instability and mode collapse, and address

effective graph-based representations of biomimetic structures. This research aims to move

beyond traditional forward design and enable efficient inverse design for applications in

materials science, drug discovery, and tissue engineering.

1. Introduction: From Forward Screening to Generative Inverse Design

The quest for novel materials and chemical compounds is central to technological advancement

across diverse fields, from medicine to energy. However, this process has traditionally been a

formidable challenge, akin to searching for a needle in a virtually infinite haystack. Conventional

discovery relies on a paradigm known as forward design, where candidate materials are synthesized

or computationally simulated one by one and then screened for desired properties [1]. This approach

is intrinsically inefficient and has significant limitations.

1.1. The High-Dimensional Challenge of Molecular and Material Discovery

Traditional methods for discovering new materials and drugs are characterized by a laborious,

linear process of trial-and-error. This is particularly evident in computational chemistry, where high-

fidelity simulations, such as those based on Density Functional Theory (DFT), are used to determine

the properties of a structure [2]. While highly accurate, these calculations are computationally

expensive, making it infeasible to screen the vast design space of organic molecules and polymers for

new materials. This resource-intensive, one-by-one examination of materials in chemical space

severely limits the pace of discovery [3]. With databases like GDB-17 listing 166.4 billion organic

molecules with up to 17 heavy atoms and others with billions of synthesizable compounds, the scale

Journal of Artificial Intelligence Practice (2025)
Clausius Scientific Press, Canada

DOI: 10.23977/jaip.2025.080405
ISSN 2371-8412 Vol. 8 Num. 4

32

of these chemical spaces is astounding [4]. Navigating such a vast, high-dimensional landscape with

traditional methods is simply impractical [5].

In response to this bottleneck, the field has increasingly shifted towards the paradigm of inverse

design. Instead of generating a structure and then predicting its properties (forward design), inverse

design aims to directly generate a material or molecule that satisfies a predefined set of properties or

functional constraints. This fundamental shift transforms the problem from an exhaustive search to a

guided, intelligent creation process. The goal is to efficiently identify promising candidates in the

design space, bypassing the need for tedious, large-scale screening and accelerating the entire

discovery pipeline. The utility of this approach is highlighted by the development of models that can,

for example, generate novel materials with high magnetic density and low supply-chain risk, or

polymer electrolytes with high ionic conductivity, directly from a set of desired properties [6].

1.2. Graph-Based Representations for Biomimetic Structures

The effectiveness of any inverse design model is critically dependent on how it represents the

underlying data. Biomimetic structures, ranging from small molecules to complex material

microstructures and biological networks, are fundamentally relational and structural in nature.

Capturing this structure accurately is a prerequisite for a model to learn and generalize.

Early attempts at using deep learning for molecular and material discovery relied on one-

dimensional string or fixed-length vector representations. The Simplified Molecular Input Line Entry

System (SMILES) encodes molecules as strings, and while compact, it suffers from several

disadvantages. First, SMILES strings do not inherently contain information about atom-to-atom

interactions, leading to a loss of crucial topological data [7]. Second, a single molecule can have

multiple valid SMILES representations, creating an issue of order ambiguity that the model must

learn to overcome. This forces sequential models like Recurrent Neural Networks (RNNs) to expend

capacity learning syntactic rules and order invariance rather than focusing on chemical semantics [8].

Similarly, molecular fingerprint methods like Extended-Connectivity Fingerprints (ECFP) rely on

feature engineering, where hand-crafted features are compressed into a fixed-dimensional vector. This

approach is simple but can produce sparse results for small molecules and is subject to human bias in

feature selection [9].

The limitations of these traditional methods have established a foundational principle in

biomimetic AI: the causal link between the richness of data representation and the performance of a

model. The loss of crucial topological information in one-dimensional or vector-based representations

directly results in suboptimal feature learning and, consequently, degraded performance in both

property prediction and generation tasks. To overcome this, a more expressive representation is

needed.

The natural solution is to represent biomimetic structures as graphs, a data structure that explicitly

captures irregular, non-Euclidean relationships. In this graph-based paradigm, atoms, voxels, or other

structural components become nodes, while chemical bonds or spatial relationships become edges [9].

This approach allows for a dense and rich encoding of the full topology, capturing both local

relationships (e.g., neighboring atoms) and global structures (e.g., how atoms are connected

throughout the molecule). For example, in material science, a digitized microstructure can be

represented as a labeled, weighted, undirected graph, where each pixel or voxel is a vertex and edges

encode physical distances or transport characteristics [10]. This representation provides a flexible and

powerful way to capture a wide variety of morphologies and their associated spatially varying

properties, enabling the use of efficient graph algorithms to characterize the material.

For an even more nuanced understanding, data representation can be enhanced to incorporate

higher-order chemical semantics. This involves moving beyond basic atom-bond graphs to include

33

features like atomic numbers, bond lengths, angles, and dihedral angles. More sophisticated models,

such as Motif-Molecular Graph Neural Networks (MM-GNNs), introduce the concept of "motif

graphs," where key functional groups or rings are treated as new nodes [11]. The presence of a hydroxyl

group, for instance, implies higher water solubility due to its hydrogen bonding capacity. This

hierarchical representation allows the model to capture different levels of chemical information, from

the atomic to the semantic, which significantly boosts its expressive power and provides a more

comprehensive and interpretable molecular representation. This rich graph-based foundation is a

fundamental requirement for the success of any advanced model seeking to navigate the chemical

space intelligently.

2. Model Architecture and Training

This section outlines the core components and training strategies for the proposed GNN-GAN

hybrid model.

2.1. The GNN Component: Architecting for Property Prediction

Graph Neural Networks (GNNs) are a class of deep learning models specifically designed to

operate on graph-structured data. Their ability to learn effective, high-level feature representations

directly from graph topology has made them an indispensable tool for modeling biomimetic structures

and their properties. The GNN component in our proposed synergistic framework is not merely a

standalone property predictor; it is a critical component that provides the intelligence and feedback

necessary to guide the generative process.

The primary advantage of GNNs lies in their ability to bypass the need for manual feature

engineering. By propagating information across a graph, GNNs can learn a rich, dense representation

that captures both local and global structural information. This automatic feature extraction process

significantly reduces human influence and the associated costs, allowing the model to uncover

intricate patterns and relationships that might be missed by traditional methods.

This capability has led to remarkable success in property prediction across materials science and

chemistry. In drug discovery, GNNs are used to predict crucial properties of potential drug molecules,

such as ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties [12]. In

materials science, GNNs have been trained on vast datasets to predict properties for new, hypothetical

materials, a process known as general material screening. Case studies demonstrate their use in

predicting methane adsorption volumes in metal-organic frameworks (MOFs), phase stability of

materials, and magnetostriction of polycrystalline systems. GNNs have also been used to accelerate

expensive simulations by predicting outcomes of DFT calculations, such as relaxed atomic positions,

strain tensor, and formation energy, providing greater insight into a system without the need for

extensive computational resources. The versatility of GNNs is further showcased by their application

on different scales, from modeling atoms in a unit cell to representing individual grains and their

interactions as nodes and edges.

Within the GNN family, several architectures have emerged as mainstream technologies, each with

distinct strengths and applications [13].

Graph Convolutional Networks (GCNs)

A GCN is a convolutional approach that aggregates information from neighboring nodes using a

permutation-invariant function, such as a sum or mean. The core idea is to update a node's

representation by combining its own features with a weighted average of its neighbors' features. The

mathematical formulation for a GCN layer can be expressed as:

𝐻(𝑙+1) = 𝜎 (𝐷̃−
1
2𝐴̃𝐷̃−

1
2𝐻(𝑙)𝑊(𝑙))

34

Where A is the adjacency matrix with self-loops, D is the degree matrix, H(l) is the node

representation at layer l, W(l) is the learnable weight matrix, and σ is the activation function [14]. A

key limitation of GCNs is their transductive nature, meaning they require the entire graph structure

(including test data) to be present during training. This makes them less suitable for dynamic graphs

where nodes or edges are frequently added or for generalizing to unseen nodes [15].

Graph Attention Networks (GATs)

GATs introduce an attention mechanism into the GCN framework. This addresses a limitation of

GCNs, where all neighbors are treated with equal importance. In a GAT, the model dynamically learns

to weigh the importance of different neighboring nodes during message passing. The layer's output

for a node i is defined as:

ℎ𝑖
(𝑙+1)

= 𝜎 (∑ 𝛼𝑖𝑗
(𝑙)𝑊(𝑙)ℎ𝑗

(𝑙)

𝑗∈𝑁(𝑖)

)

Where aij
(l) is the attention weight between nodes i and j. This attention mechanism allows GATs

to more effectively capture complex relationships and varying relationship strengths in a graph,

making them particularly powerful for tasks like node classification and link prediction.

GraphSAGE

This architecture is designed to be inductive, making it highly suitable for large-scale, dynamic

graphs and for generalizing to new, unseen nodes or subgraphs. Instead of using the full adjacency

matrix, GraphSAGE optimizes aggregation by sampling a fixed number of neighboring nodes for

each node. The aggregation function is performed within these local neighborhoods, making the

model more scalable and generalizable to graphs it hasn't seen before.

While these three form the basis of mainstream GNNs, more specialized architectures are crucial

for biomimetic applications. Equivariant GNNs (EGNNs), for instance, are models that inherently

respect the symmetry of a physical system without being reliant on a particular lattice. This makes

them ideal for predicting outcomes of DFT calculations for structures of interest, where symmetry is

a fundamental property. Furthermore, multi-view GNNs (MV-GNN) use a shared self-attentive

readout component to process a graph from multiple perspectives, resulting in more accurate

predictions and an interpretable architecture that aligns with prior domain knowledge [16]. Finally,

hierarchical and motif-aware GNNs capture different levels of chemical semantic information,

integrating features from both individual atoms and higher-order structural motifs like rings or

functional groups.

A critical aspect of the proposed GNN-GAN synergy is that the GNN's role is not limited to a

simple, offline predictor. Hybrid models, such as those combining GNNs with VAEs or GANs for

conditional generation, reveals a more sophisticated purpose. A GNN can be integrated directly into

the GAN's feedback loop, acting as an intelligent component that provides a differentiable signal to

the generator. This GNN-based discriminator or reward network can be trained to predict a specific

property of a graph. By using this predictor's output as feedback, the adversarial training process is

guided away from generating invalid or undesirable structures and steered towards those that are more

likely to have the target properties. This transforms the GNN-GAN framework into a powerful,

property-guided inverse design tool, where the GNN component provides the domain-specific

intelligence that makes the generation process purposeful and efficient.

As summarized in Table 1: Comparison of Graph Neural Network Architectures for Biomimetic

Applications, each of these architectures offers distinct advantages and disadvantages, making the

choice of GNN critical for the specific application. The table highlights how GAT and GraphSAGE's

inductive capabilities make them more suitable for the generative nature of this research compared to

the transductive limitations of GCNs.

35

Table 1: Comparison of Graph Neural Network Architectures for Biomimetic Applications

Architecture Core

Mechanism

Inductive/

Transductive

Handling of

Neighbor

Importance

Scalability Suitability for

Biomimetic

Applications

GCN Aggregates

information

from neighbors

via a

convolutional

filter.

Transductive Uniformly

averages or

sums features

of neighboring

nodes.

Poor, requires the

full graph at

training.

Limited to static,

small-to-medium

graphs where all

nodes are known.

GAT Uses an

attention

mechanism to

assign dynamic

weights to

neighbors.

Inductive/

Transductive

(Masked

Attention)

Dynamically

learns weights

for each

neighbor based

on the attention

mechanism.

Better than GCN,

but can be

computationally

intensive on large

graphs due to

attention

calculation.

Effective for

capturing

complex,

heterogeneous

relationships

within molecular

graphs.

GraphSAGE Aggregates

features by

sampling a

fixed number

of neighboring

nodes.

Inductive Aggregation

functions

(mean, sum,

max-pooling)

are applied to

sampled

neighbors.

High, designed for

large, dynamic

graphs.

Ideal for large-

scale material

datasets and for

generalizing to

new, unseen

molecules or

microstructures.

To apply GNNs to biomimetic systems, it is essential to first translate these complex structures

into a machine-readable graph format. Our approach represents these systems as attributed graphs, a

method that is particularly adept at capturing both the topological and chemical information of

molecular and material microstructures. In this representation, individual components such as atoms

or material grains are treated as nodes, while their interactions, like covalent bonds or phase interfaces,

are represented as edges. This framework allows us to directly embed key characteristics into the

graph, with node features (x) encoding properties like atomic number or phase type, and edge

attributes (edge_attr) capturing bond types or interface properties. As illustrated in Figure 1, a three-

dimensional biomimetic ring structure is transformed into a simplified yet information-rich graph.

The corresponding graph representation, shown in Figure 2, details how this structure's components

are formalized as a set of nodes and their interconnections, complete with labeled edge types. This

approach provides a flexible and comprehensive method for preparing biomimetic data for both the

GNN property predictor and the GAN framework.

Figure 1. "Panel A – Biomimetic Structure (3D ring)

36

The diagram is a 3D scatter plot with a grid background, depicting a biomimetic structure in a

ring-like formation. The axes are labeled with coordinates in angstroms (Å), where the x-axis ranges

from -1.00 to 1.00, the y-axis from -0.75 to 0.75, and the z-axis from 0 to 3. The plot contains five

distinct data points connected by colored lines: purple, brown, red, green, blue, and orange. These

lines form a path that starts at a high z-value (around 3) and descends, creating a ring-like structure

in three-dimensional space. The points are marked with cross symbols, and the lines illustrate the

progression of the structure across the coordinates.

Figure 2: Panel B – Graph Representation (nodes: x, edges: edge_index & types)

The diagram illustrating a graph with six nodes and their connections. The nodes are labeled with

coordinates: x[0] = [6, 0.12], x[1] = [6, 0.11], x[2] = [8, 0.2], x[3] = [6, 0.09], x[4] = [6, 0.13], and

x[5] = [7, 0.11]. These nodes are connected by colored edges: green (between x[2] and x[1]), blue

(between x[1] and x[0]), brown (between x[0] and x[3]), red (between x[3] and x[4]), and purple

(between x[4] and x[5]), forming a hexagonal structure. The edge_index is given as [[0, 1, 2, 3, 4, 5],

[1, 2, 3, 4, 5, 0]], and the edge attributes (edge_attr) are listed as ['single', 'double', 'single', 'single',

'double', 'single'], indicating the type of each connection.

2.2. The GAN Component: Architecting for Structure Generation

2.2.1 Application and challenges in the reverse design of biobionic structures

Generative Adversarial Networks (GANs) represent a powerful class of generative models that

have revolutionized data generation. They operate on an adversarial principle, where two neural

networks are trained in a competitive dynamic, leading to the synthesis of highly realistic data. The

application of GANs to the discrete and combinatorial domain of graph generation, particularly for

biomimetic structures, presents a unique set of challenges that must be addressed through specialized

architectures and training strategies. The foundational concept of a GAN is an adversarial minimax

game between two competing components: a generator (G) and a discriminator (D).

The Generator (𝑮)

This network learns to create synthetic data samples from a random noise vector. Its objective is

to produce outputs that are so realistic they can successfully deceive the discriminator.

The Discriminator (𝑫)

This network is trained to distinguish between real data samples from the training dataset and the

fake samples produced by the generator.

This "thieves and cops" analogy describes a dynamic where as the generator improves its ability

to create convincing forgeries, the discriminator must sharpen its skills to detect them, and vice versa.

This adversarial competition continues until the generator produces data that the discriminator can no

longer reliably distinguish from real data, resulting in high-quality synthetic outputs [17].

While the standard GAN framework focuses on unconditional generation, the goal of inverse

design is to generate structures with a desired set of properties. This is achieved through the use of

37

Conditional GANs (cGANs), an extension of the original model where auxiliary information, such as

class labels or specific property values, is provided as input to both the generator and discriminator.

This conditioning allows for fine-grained control over the generated output, steering the generation

process towards a specific outcome, such as generating a molecule with a particular solubility or a

material with a target conductivity [18].

Applying the GAN framework to the domain of graph generation is not straightforward. Unlike

images or other continuous data types, graphs are inherently discrete, composed of a finite set of

nodes and a combinatorial set of edges. This discrete nature poses a fundamental problem for the

standard backpropagation-based training process.

The Non-Differentiability Problem

The gradients from the discriminator, which are crucial for updating the generator's parameters,

cannot be directly backpropagated through a discrete output. This necessitates the use of specialized

techniques, such as Policy Gradient algorithms from reinforcement learning, to handle the discrete

outputs and guide the generator's learning. The generator must output the parameters of a distribution

over discrete values, allowing for a path wise gradient estimator to be used for backpropagation.

Mode Collapse

This is perhaps the most significant training challenge in GANs, where the generator becomes

fixated on producing a very narrow set of outputs that consistently fool the discriminator, thereby

ignoring the rich diversity of the training data. Mode collapse can be likened to a rock-paper-scissors

game where the generator gets stuck in a cycle of producing only "rock" until the discriminator learns

to counter it, at which point the generator moves to producing only "paper". This failure mode leads

to a lack of diversity and novelty in the generated samples, which is a severe limitation for a

biomimetic inverse design system that must explore a vast chemical space. Mode collapse is a distinct

problem from overfitting or memorization, where the model simply reproduces training data; in a

collapsed state, the model has failed to capture large parts of the data distribution [19].

Training Instability

The non-convex nature of the GAN objective function can lead to unstable, oscillatory training

dynamics, making it difficult to determine when the model has converged [20]. The losses for the

generator and discriminator may oscillate indefinitely, and the network may fail to find a stable

equilibrium. The optimization process is a delicate balance, and if the discriminator becomes too

powerful or the gradients become too large, the generator may receive confusing or vanishing signals,

leading to training stalls [21].

2.2.2. Key Graph GAN Architectures

Despite these challenges, researchers have developed specialized GAN architectures for graph

generation. One of the most notable is MolGAN, a seminal implicit generative model for small

molecular graphs that sidesteps the need for expensive graph matching procedures or node-ordering

heuristics. The MolGAN architecture comprises a generator, a discriminator, and a reward network.

Generator (𝐆)

This network takes a latent vector from a prior distribution and generates the graph's adjacency

matrix and node features in a single, non-sequential step for computational efficiency.

Discriminator (𝐃)

This is a GNN-based network that learns to distinguish between real and generated graphs. It is

designed to be permutation-invariant, meaning its performance is not affected by the specific ordering

of the nodes.

Reward Network (𝑹̂)

This network is trained to predict a specific chemical property of a molecule (e.g., synthesizability)

and provides a non-differentiable reward signal to the generator. The generator is then trained via

38

reinforcement learning to maximize this predicted reward, effectively steering the generation toward

molecules with the desired properties.

While MolGAN was a pioneering model that achieved a high rate of valid compound generation,

it has significant limitations, particularly when applied to the goal of generating complex biomimetic

structures. The original MolGAN is effective only for small molecules with a maximum of around

nine heavy atoms. When attempting to generate larger structures, the model tends to produce

disconnected graphs, rendering them chemically invalid. This is a critical flaw for drug discovery and

material design, where large, complex molecules are often of interest. Subsequent work, such as L-

MolGAN, has attempted to address this by introducing a graph expansion mechanism that penalizes

the generation of disconnected graphs, but this remains an active area of research.

2.3. The GNN-GAN Synergy: A Hybrid Architecture for Guided Generation

To overcome the limitations of early graph generative models and achieve the goal of property-

guided inverse design, a powerful, synergistic framework is required. This section outlines a hybrid

architecture that combines the strengths of GNNs and GANs, where the GNN provides domain-

specific intelligence to guide and constrain the GAN's generative process.

The fundamental premise of this framework is that a GNN, trained to predict the properties of a

structure, can be directly integrated into a GAN's adversarial loop. The GNN effectively provides a

"soft" constraint or reward, steering the generator towards a desirable region of the chemical space

rather than a single point [22]. This symbiotic relationship enables the generation of novel structures

that not only resemble real-world data but also explicitly satisfy a predefined set of properties. This

approach moves beyond simple adversarial training to a more purposeful, conditional generative

process.

The proposed hybrid model is an extension of the conditional GAN framework, where the

discriminator's role is expanded beyond a simple binary classifier. The architecture would consist of

three main components: a Generator, a GNN-based Discriminator, and an optional GNN-based

Reward Network.

Generator (𝑮)

Creativity/Imagination (Generates Novel Ideas)

This network is responsible for creating the new biomimetic structures. It would take two inputs:

a random noise vector and a conditional vector representing the desired property (e.g., solubility,

toxicity score, synthesizability). The output of the generator would be the graph's adjacency matrix

and a matrix of node features, representing the full topology and composition of the generated

structure. The generator could be implemented as a GNN-based architecture or a multi-layer

perceptron (MLP). The design must be permutation-invariant to ensure that the generated output is

not dependent on a specific node ordering, which is a crucial challenge in graph generation.

Discriminator (𝑫)

Critical Thinking (Evaluates Quality/Judgement)

The discriminator would be a GNN, allowing it to naturally process and evaluate the graph-

structured data. Its function would be twofold. First, it would perform the traditional GAN task of

distinguishing between real graphs from the training set and fake graphs from the generator. Second,

and more importantly, it would evaluate the generated graph against the desired properties specified

in the conditional input. In a property-guided GAN, the discriminator might have two output heads:

one for the "real vs. fake" classification and a second one to predict the value of the target property.

This dual-head design allows the discriminator to provide a more nuanced feedback signal to the

generator, guiding it toward creating structures that not only look realistic but also possess the desired

properties. A model like CONDGEN, for example, leverages a GCN discriminator within a

39

VAEGAN-like framework, where the discriminator learns a loss function that is both discriminative

and permutation-invariant.

GNN-Based Reward Network (𝑹̂)

Relational Reasoning / Structural Analysis (Rewards Based on Connections / Structure)

For properties that are difficult or impossible to express as a differentiable loss function (e.g.,

synthesizability score, drug-likeness), a separate reward network is a powerful alternative. This

network, also a GNN, would be trained offline to predict the property score of any given graph. The

generator would then be trained using a reinforcement learning objective to maximize the reward

signal from this network. This approach, pioneered by MolGAN, allows the system to optimize for

complex, non-differentiable metrics, effectively performing inverse design with non-traditional

constraints.

2.4. Visualizing GNN-GAN Performance: The Learning Curve

A GNN–GAN architecture, particularly when using a reward network, is not just a static system

but a dynamic, self-optimizing process. To understand this evolution, it is crucial to visualize the

model's performance over time. As the Generator receives feedback from the Discriminator and, most

importantly, the non-differentiable rewards from the GNN-Based Reward Network, its ability to

produce high-quality, property-optimized structures improves. This progress can be effectively

captured through a learning curve plot. Figure 3 illustrates the model's learning trajectory across key

metrics over a series of training epochs. This plot provides tangible evidence of the system's ability

to learn and improve.

Figure 3: Simulated GNN-GAN Learning Curve (MolGAN Training Dynamics: Adversarial Loss

and SAscore Reward)

The diagram is a line graph depicting the training progress of a generative adversarial network

(GAN) over 100 training epochs. The x-axis represents the number of training epochs, ranging from

0 to 100, while the y-axis on the left side shows the adversarial loss (ranging from 0 to 100), and the

40

y-axis on the right side indicates the average synthetic accessibility score (ranging from 0 to 100).

The graph includes multiple lines:

 A blue line labeled "Generator Loss" starts near 0 and gradually decreases, stabilizing around a

low value after approximately 20 epochs.

 A light blue line labeled "Discriminator Loss" also begins near 0, slightly decreases initially, and

then remains relatively flat with minor fluctuations.

 A green line labeled "Average SAscore" starts near 0, rises steeply after about 20 epochs, and

continues to increase steadily, reaching close to 100 by the 100th epoch, indicating significant

improvement in synthetic accessibility over time.

This visualization suggests that as training progresses, the generator improves its performance

(reflected by the decreasing loss), while the synthetic accessibility score of the generated outputs

increases, highlighting the effectiveness of the training process in optimizing for this metric.

2.5. Advanced Training & Optimization for Stability

The successful implementation of a GNN-GAN framework for biomimetic structures hinges on

addressing the inherent instability and challenges of GAN training. The adversarial process, described

as a minimax game, is a competition that, if left unconstrained, can lead to a delicate and often

unmanageable dynamic. The most effective solutions do not simply replace the objective function but

introduce carefully designed constraints to stabilize this game, ensuring that the generator receives a

usable, informative gradient signal throughout training.

The primary challenges of GAN training are mode collapse and instability[23]. The original GAN

loss function, based on Jensen-Shannon (JS) and Kullback-Leibler (KL) divergences, is a major

contributor to these problems. These divergence metrics provide poor gradients when the distributions

of real and fake data have non-overlapping supports, which is common in the early stages of training

when the generator's outputs are clearly distinguishable from the real data. In this scenario, the

discriminator can easily find a perfect decision boundary, and the gradients for the generator become

constant or zero, halting the learning process.

Wasserstein GANs (WGANs) were a significant advancement in addressing these issues. WGANs

replace the JS divergence with the Earth Mover's distance, also known as the Wasserstein distance.

Unlike JS divergence, the Wasserstein distance is a continuous and differentiable metric everywhere,

even when the distributions have non-overlapping supports [23]. This provides a much more stable and

informative gradient for the generator, leading to better convergence and significantly reduced mode

collapse. The WGAN framework allows the discriminator (or "critical thinking" in WGAN

terminology) to be trained to optimality without the risk of vanishing gradients, ensuring a strong and

consistent signal for the generator to learn from [24].

While WGANs greatly improved training stability, they initially relied on a technique called

weight clipping to enforce a crucial Lipschitz constraint on the discriminator function. Weight

clipping, however, was shown to be problematic, often leading to poor performance and rank

degeneracy [25]. This led to the development of more sophisticated regularization techniques.

WGAN with Gradient Penalty (WGAN-GP)

A core innovation in stabilizing WGAN training is the use of a gradient penalty term. Instead of

weight clipping, WGAN-GP enforces the Lipschitz constraint by adding a regularization term to the

discriminator's loss function that penalizes gradients with a norm greater than one. This penalty term

is typically defined as:

λ Ex̂ ∼ Px̂
 

where λ is a hyperparameter and x̂ is a sample from a distribution between the real and generated

41

data. This approach prevents exploding gradients and promotes a more stable and converging training

process, significantly improving performance and reducing the risk of mode collapse [26].

Spectral Normalization (SN-GAN)

An alternative or complementary regularization technique is spectral normalization, which was

proposed to stabilize GAN training by controlling the Lipschitz constant of the discriminator. Spectral

normalization constrains the spectral norm (the largest singular value) of the weight matrices in the

discriminator network. This prevents the discriminator from becoming "too powerful" and, by

extension, helps to mitigate mode collapse. Research indicates that spectral normalization, while a

significant step forward, can still suffer from mode collapse in some cases, and more robust methods

like spectral regularization have been proposed as a potential improvement.
The training process for a GNN-GAN is therefore not just about minimizing a loss function; it is

a delicate game of imposing constraints to maintain a stable, productive competition between the

generator and discriminator. The use of WGAN with gradient penalties or spectral normalization

provides the necessary theoretical and practical tools to ensure the generator receives a usable signal,

preventing the adversarial game from devolving into an unproductive cycle of collapse and

overcorrection. For properties that are non-differentiable, a reinforcement learning objective, where

the generator is trained to maximize a reward from a separate GNN-based reward network, can be

used to navigate the discrete chemical space effectively.

As outlined in Table 2: Challenges, Causes, and State-of-the-Art Solutions, these advanced

optimization techniques directly combat key issues like mode collapse and training instability. The

table also addresses the unique challenge of generating discrete data, noting that policy gradient

methods adapted from reinforcement learning can be used to handle the non-differentiable nature of

discrete graph outputs.

Table 2: Challenges, Causes, and State-of-the-Art Solutions in Training Generative Adversarial

Networks (GANs)

Challenge Cause in Traditional GANs State-of-the-Art Solutions & Mechanism

Mode Collapse The generator exploits weaknesses in

the discriminator by focusing on a few

successful outputs, ignoring the full

data distribution.

WGAN-GP: Provides a more stable

gradient with the Wasserstein distance,

incentivizing the generator to cover the

entire data distribution. Spectral

Normalization: Prevents the

discriminator from becoming too

powerful, which can lead to the generator

exploiting simple weaknesses. Minibatch

Discrimination: Encourages diversity by

allowing the discriminator to evaluate

entire batches of samples.

Training Instability Non-overlapping distributions of real

and fake data lead to vanishing or

constant gradients. The non-convex

objective function causes oscillatory

behavior.

WGAN-GP: The Wasserstein distance is

continuous and differentiable everywhere,

providing a useful gradient signal

regardless of distribution overlap.

Spectral Normalization: Bounding the

Lipschitz constant of the discriminator

ensures a controlled gradient flow,

preventing it from exploding.

Discrete Data Gradients cannot be backpropagated

through discrete outputs like nodes and

edges.

Policy Gradient Methods: Adapts

reinforcement learning techniques, where

the generator outputs a distribution over

discrete values, allowing for gradient

estimation.

42

3. Evaluation and Validation

Evaluating the success of a generative model is a multifaceted and critical challenge, particularly

in the context of biomimetic inverse design. There is no single metric that can capture all aspects of

graph quality. Therefore, a credible assessment requires a multi-metric framework that rigorously

validates the generated structures across several key dimensions: validity, diversity, distributional

similarity, and chemical plausibility. The lack of a standardized evaluation process is a major obstacle

to measuring progress in the field, making a comprehensive and well-justified evaluation strategy a

cornerstone of any serious research effort.

3.1. Validity and Chemical Plausibility

The most fundamental criterion for a molecular generative model is to produce chemically valid

structures. This means that the generated graphs must correspond to real molecules with correct

valences, plausible bond configurations, and connectivity. A common failure mode, as seen with early

MolGANs, is the generation of disconnected graphs when attempting to create larger molecules. This

is a basic form of invalidity that renders the outputs useless. The percentage of chemically valid

molecules is a prerequisite for any further analysis and provides a baseline measure of a model's

foundational competence [27].

3.2. Diversity and Novelty

A successful generative model must not only produce valid outputs but also a diverse range of

them. A model suffering from mode collapse will have low diversity and uniqueness, generating a

limited set of repetitive outputs[28]. This is a severe limitation for inverse design, which aims to

explore the vast, untapped chemical space. To measure this, a multi-pronged approach is necessary.

1) Uniqueness

This metric, often expressed as a percentage, measures the ratio of unique valid molecules to the

total number of valid molecules generated. A low uniqueness score is a direct indicator of mode

collapse.

2) Novelty

This metric assesses the model's ability to generate new structures that were not present in the

training set. A low novelty score may indicate that the model is simply memorizing and reproducing

the training data, a form of overfitting.

3) Intra-List Diversity

Concepts from recommender systems can be adapted to measure diversity by calculating the

average pairwise distance (e.g., cosine distance) between generated structures within a sample batch.

A high score here indicates that the generated outputs are varied and not all clustered around a single

point in the feature space.

3.3. Distributional Similarity Metrics

To quantitatively compare the overall distributions of real and generated graphs, specialized

metrics are required. These metrics go beyond comparing individual properties to assess whether the

generated outputs statistically resemble the training data.

Maximum Mean Discrepancy (MMD)

This is a kernel-based, nonparametric metric that quantifies the distance between two probability

distributions. In the context of graph generation, MMD measures how similar the distribution of

generated graphs is to the distribution of real graphs. A lower MMD score indicates that the generated

43

graphs are statistically closer to the real ones [29]. The MMD has been the predominant metric for

evaluating graph generative models, but its efficacy can depend heavily on the choice of graph

featurization and can be computationally expensive [30].

Fréchet ChemNet Distance (FCD)

This metric is a specialized adaptation of the Fréchet Inception Distance (FID), a de facto standard

for evaluating image generative models. FCD is specifically designed for molecules and captures

validity, diversity, and chemical/biological meaningfulness in a single score. It works by using the

penultimate layer of a deep neural network (e.g., a ChemblNet model trained to predict drug activities)

to embed both real and generated molecules into a high-level feature space. The FCD then computes

the Fréchet distance between the Gaussian distributions of these two sets of embeddings. This metric

provides a more holistic and chemically-aware measure of quality than simpler metrics.

3.4. Qualitative Assessment and Domain Expert Review

Despite the importance of quantitative metrics, no single score can fully validate a model's outputs,

particularly for high-stakes applications like drug discovery. Quantitative analysis must be

complemented by qualitative assessment. This includes visual inspection of the generated structures

to confirm their plausibility and interpretability, as well as plotting key graph properties in bar charts

to compare the distributions of generated and real data [31]. Ultimately, the final validation often rests

with domain experts who can confirm chemical plausibility and interpret the results in a meaningful

context. The development of models with self-attention mechanisms has enabled a degree of

interpretability, where the model's reasoning can be visualized to align with prior knowledge, thereby

increasing trust in its predictions. The challenge of evaluation remains a critical, ongoing problem in

the field, and a credible research effort must be supported by a robust, multi-metric evaluation strategy

to provide a reliable and comprehensive assessment of a model's performance.

These quantitative metrics provide a comprehensive way to assess the model's performance. As

detailed in Table 3: Evaluation Metrics for Generative Models, each metric addresses a different

aspect of quality, from the fundamental validity of the outputs to their novelty and statistical

resemblance to the real data.

Table 3: Evaluation Metrics for Generative Models in Graph Generation

Metric What It Measures Ideal Score Why It Matters

Validity The percentage of generated

graphs that are chemically

plausible.

100% A prerequisite for any further

analysis. A low score indicates

fundamental model failure.

Uniqueness The ratio of unique generated

structures to the total number of

valid structures.

High A low score is a direct indicator

of mode collapse. High

uniqueness is essential for

exploring chemical space.

Novelty The percentage of generated

structures not present in the

training data.

High A low score indicates overfitting

or memorization. Novelty is a

key goal of inverse design.

Maximum Mean

Discrepancy

(MMD)

A distance metric between the

feature distributions of real and

generated graphs.

Low Assesses whether the generated

graphs statistically resemble the

real data in a feature-rich way.

Fréchet ChemNet

Distance (FCD)

A holistic metric that compares

the distributions of real and

generated molecules in a

chemically-aware feature space.

Low Captures validity, diversity, and

chemical meaningfulness in a

single score, aligning better with

human perception and domain

knowledge [32]

44

4. Discussion and Future Outlook

The development of an AI-driven inverse design framework is a strategic endeavor that requires a

clear-eyed view of the competitive landscape, an understanding of scalability challenges, and a

roadmap for future research. While the GNN-GAN synergy is a powerful and viable approach, it is

not the only one, and its limitations must be considered in the context of emerging paradigms.

4.1. The Competitive Landscape: GNN-GAN vs. GNN-Diffusion Models

Recent advancements have introduced a compelling alternative: GNN-Diffusion models.

Diffusion-based generative models work by reversing a stochastic process of gradually corrupting

data with noise until it becomes a random distribution. The model is then trained to learn the reverse

process, which allows it to generate novel data from noise.

Diffusion models offer several advantages over GANs, particularly in the context of biomimetic

inverse design [33]. They are generally known for more stable training dynamics and superior sample

diversity, as they do not suffer from the same mode collapse issues that plague GANs. Diffusion

models have been shown to generate stable, diverse, and novel materials that are more than twice as

likely to be novel and stable compared to prior generative models. A key strength is their ability to be

guided by properties, with models leveraging a time-dependent property classifier to steer the

diffusion process towards desired outcomes. The MatterGen model, for example, uses a diffusion

process to refine atom types, coordinates, and the periodic lattice of a crystalline structure, and can

be fine-tuned to steer generation towards a broad range of property constraints with only a small

labeled dataset. This shifts the distribution of generated materials toward extreme values, surpassing

the properties of the original training data.

The existence of these powerful, property-guided diffusion models fundamentally reshapes the

strategic landscape. A research team cannot simply proceed with a GNN-GAN without addressing

this competition. The strategic implication is that a comprehensive research plan must include a

comparative analysis of the two approaches, either positioning the GNN-GAN as a strong, viable

alternative for certain applications (e.g., where speed is a priority) or as a necessary stepping stone

toward a more powerful GNN-Diffusion framework.

4.2. Scalability Challenges and Solutions

A major bottleneck for all generative graph models, including MolGAN, is scalability. Current

architectures are often limited to small graphs and fail to scale to the thousands or millions of nodes

found in real-world networks or large molecules. The computational complexity of some models,

such as

𝑂(𝑁3𝑇)

for DYMOND or the linear increase in node count for TAGGEN, makes them impractical for long

time horizons or large graphs [34].

Future research must focus on architectures and training strategies that can handle large-scale

graphs efficiently. This includes:

Sampling-based GNNs

Architectures like GraphSAGE, which use a sampling-based approach to aggregate features from

a fixed number of neighbors, are inherently more scalable and inductive, making them suitable for

large-scale graphs with millions of nodes.

Efficient Graph Generative Models

New models, such as TIGGER, are being developed with linear complexity.

45

𝑂(𝑁𝑀)

That is independent of the time horizon, demonstrating superior fidelity and scalability for large

graphs [34]. Similarly, models like EDGE, which use a discrete diffusion process that leverages graph

sparsity, have shown much greater computational efficiency.

Generative Transformer Architectures

A new class of models, such as the Generative Graph Pattern Machine (G²PM), explores pathways

beyond traditional message passing. By representing graphs as sequences of substructures, these

transformer-based models can scale to significantly larger model sizes (e.g., up to 60M parameters),

offering a pathway towards graph foundation models [35].

4.3. A Roadmap for Future Research

The ultimate goal for the field is to move from creating domain-specific models to building

universal generative frameworks. This roadmap for future research includes:

Foundational Models

The long-term vision is to create "graph foundation models" that can be pre-trained on diverse,

large-scale datasets and then fine-tuned for a variety of domains and properties, much like large

language models are used for different NLP tasks. This would enhance the creativity and diversity of

the generated content and offer a flexible platform for innovation.

Physics-Informed and Multi-Fidelity Models

To ensure physical plausibility and efficient training, future work can integrate domain knowledge

directly into the model. This includes using physics-informed neural networks (PINNs) or multiscale

GNNs that can leverage multi-fidelity data (e.g., combining expensive DFT calculations with cheaper

approximations). This approach would ensure that the generated structures are not only plausible but

also conform to the underlying physical laws of the system.
Bridging Text and Graph

A powerful new direction is the development of models that can generate graph structures from

natural language prompts, or "Text-to-Graph" capabilities. This would integrate the extensive world

knowledge from large language models and offer a new level of fine-grained, human-in-the-loop

control over the generated graphs, transforming the way biomimetic inverse design is performed [36].

5. Conclusions

This research plan establishes a comprehensive framework for the design and implementation of

a GNN-GAN hybrid model for biomimetic inverse design. By leveraging the GNN's ability to

automatically learn rich, graph-based feature representations and integrating it into a conditional

GAN's adversarial loop, the model can be guided to generate novel structures with targeted properties.

This synergistic approach addresses the limitations of traditional forward design and discrete

generative models, paving the way for a more efficient and purposeful discovery process. The

proposed methodology, including advanced training techniques to ensure stability and a robust multi-

metric evaluation strategy, provides a clear path forward for advancing the field of generative AI in

materials science, chemistry, and beyond.

References

[1] Hoogeboom, E.; Satorras, V. G.; Vignac, C.; Welling, M., 2022. Equivariant diffusion for molecule generation in 3D.

In Proceedings of the International Conference on Machine Learning (ICML), Baltimore, MD, USA, 17–23 July 2022;

pp. 8867–8887.

[2] Merchant, A.; Batzner, S.; Schoenholz, S. S.; Aykol, M.; Montoya, J. H.; Cubuk, E. D., 2023. Scaling deep learning

46

for materials discovery. Nature, 624, 80–85.

[3] Jin, W.; Barzilay, R.; Jaakkola, T., 2018. Junction tree variational autoencoder for molecular graph generation. In

Proceedings of the International Conference on Machine Learning (ICML), Stockholm, Sweden, 10–15 July 2018; pp.

2323–2332.

[4] Fink, T.; Reymond, J.-L., 2007. Virtual exploration of the chemical universe up to 17 atoms: The GDB-17 database.

J. Chem. Inf. Model., 47, 342–353.

[5] De Cao, N.; Kipf, T., 2018. MolGAN: An implicit generative model for small molecular graphs. arXiv Prepr.,

arXiv:1805.11973.

[6] Zeni, C.; Bietti, A.; Burns, K.; Hu, N.; Ligett, K.; Swersky, K., 2024. MatterGen: A generative model for inorganic

materials design. arXiv Prepr., arXiv:2312.03687, submitted.

[7] Wieder, O.; Kohlbacher, S.; Kuenemann, M.; Garon, A.; Ducrot, P.; Seidel, T.; Langer, T., 2020. A compact review of

molecular property prediction with graph neural networks. Drug Discov. Today Technol., 37, 1–12.

[8] Li, Y.; Zhang, L.; Liu, Z., 2018. Multi-objective de novo drug design with conditional graph generative model. J.

Cheminform., 10, 33.

[9] Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Sun, M., 2020. Graph neural networks: A review of methods

and applications. AI Open, 1, 57–81.

[10] Court, C. J.; Cole, J. M., 2020. Auto-generated materials database: Linking microstructure to properties with graph

neural networks. npj Comput. Mater., 6, 1–11.

[11] Yan, C.; Zhao, S.; Wang, Y., 2020. Motif-based graph neural networks for molecular property prediction. arXiv Prepr.,

arXiv:2010.04713, submitted.

[12] Karamad, M.; Magar, R.; Shi, Y.; Siahrostami, S.; Gates, I. D.; Barati Farimani, A., 2020. Orbital graph

convolutional neural network for material property prediction. Phys. Rev. Mater., 4, 093801.

[13] Kipf, T. N.; Welling, M., 2017. Semi-supervised classification with graph convolutional networks. In Proceedings of

the International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.

[14] Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y., 2018. Graph attention networks. In

Proceedings of the International Conference on Learning Representations (ICLR), Vancouver, Canada, 30 April–3 May

2018.

[15] Hamilton, W. L.; Ying, R.; Leskovec, J., 2017. Inductive representation learning on large graphs. In Advances in

Neural Information Processing Systems (NeurIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 1024–1034.

[16] Han, J.; Rong, Y.; Xu, T.; Huang, W., 2022. Multi-view graph neural networks for molecular property prediction.

arXiv Prepr., arXiv:2205.13671.

[17] Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Bengio, Y., 2014. Generative

adversarial nets. In Advances in Neural Information Processing Systems (NeurIPS), Montreal, Canada, 8–13 December

2014; pp. 2672–2680.

[18] Mirza, M.; Osindero, S., 2014. Conditional generative adversarial nets. arXiv Prepr., arXiv:1411.1784.

[19] Saxena, D.; Cao, J.; Snoek, J., 2021. On the challenges of generative modeling for molecule generation. arXiv Prepr.,

arXiv:2102.13557.

[20] Saxena, D.; Cao, J., 2021. Generative modeling of molecular graphs: Challenges and opportunities. Chem. Sci., 12,

11669–11681.

[21] Arjovsky, M.; Bottou, L., 2017. Towards principled methods for training generative adversarial networks. In

Proceedings of the International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.

[22] Jin, W.; Barzilay, R.; Jaakkola, T., 2020. Conditional generation of molecules from disentangled representations. In

Proceedings of the International Conference on Machine Learning (ICML), Vienna, Austria, 10–15 July 2020; pp. 8867–

8887.

[23] Arjovsky, M.; Chintala, S.; Bottou, L., 2017. Wasserstein generative adversarial networks. In Proceedings of the

International Conference on Machine Learning (ICML), Sydney, Australia, 6–11 August 2017; pp. 214–223.

[24] Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A., 2017. Improved training of Wasserstein GANs.

In Advances in Neural Information Processing Systems (NeurIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 5767–

5777.

[25] Miyato, T.; Kataoka, T.; Koyama, M.; Yoshida, Y., 2018. Spectral normalization for generative adversarial networks.

In Proceedings of the International Conference on Learning Representations (ICLR), Vancouver, Canada, 30 April–3 May

2018.

[26] Wei, X.; Gong, B.; Liu, Z.; Lu, W.; Wang, L., 2018. Improving the improved training of Wasserstein GANs: A

consistency term and its dual effect. In Proceedings of the International Conference on Learning Representations (ICLR),

Vancouver, Canada, 30 April–3 May 2018.

[27] Guo, X.; Zhao, L., 2020. A systematic survey on deep generative models for graph generation. arXiv Prepr.,

arXiv:2007.13673.

[28] Thanh-Tung, H.; Tran, T., 2020. Catastrophic forgetting and mode collapse in GANs. In Proceedings of the

47

International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8.

[29] Gretton, A.; Borgwardt, K. M.; Rasch, M. J.; Schölkopf, B.; Smola, A., 2012. A kernel two-sample test. J. Mach.

Learn. Res., 13, 723–773.

[30] Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S., 2019. How powerful are graph neural networks? In Proceedings of the

International Conference on Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019.

[31] You, J.; Liu, B.; Ying, R.; Pande, V.; Leskovec, J., 2018. Graph convolutional policy network for goal-directed

molecular graph generation. In Advances in Neural Information Processing Systems (NeurIPS), Montreal, Canada, 3–8

December 2018; pp. 6410–6421.

[32] Preuer, K.; Renz, P.; Unterthiner, T.; Hochreiter, S.; Klambauer, G., 2018. Fréchet ChemNet Distance: A metric for

generative models for molecules. arXiv Prepr., arXiv:1802.09544.

[33] Vignac, C.; Krawczuk, I.; Siraudin, A.; Wang, B.; Adams, R. P.; Welling, M., 2023. DiGress: Discrete denoising

diffusion for graph generation. In Proceedings of the International Conference on Learning Representations (ICLR),

Kigali, Rwanda, 1–5 May 2023.

[34] Martinkus, K.; Roth, P.; Jaggi, M., 2023. TIGGER: Scalable generative modelling for temporal interaction graphs.

arXiv Prepr., arXiv:2307.01364.

[35] Gutteridge, B.; Dong, X.; Bronstein, M.; Di Battista, G., 2024. G²PM: A graph pattern machine for large-scale

graph generation. arXiv Prepr., arXiv:2402.14966.

[36] Edwards, C.; Lai, T.; Oei, K.; Zhuo, H. H.; Zhang, Y.; Alon, U., 2024. Text-to-graph generation: Methods and

challenges. arXiv Prepr., arXiv:2408.00957.

48

