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Abstract: This study aims to build models based on the spread of dengue fever to predict 

its epidemic trends in different regions. Dengue fever is a mosquito-borne disease. Climate 

change, such as temperature and precipitation, is closely related to its spread, which is a 

major concern for public health in recent years. Taking the cities of San Juan and Iquitos 

as examples, this study uses machine learning to predict the trend. The model development 

tried methods such as random forest regression, KNN, XGBoost, LSTM, and support vector 

regression. The XGBoost performed best for San Juan while SVR excelled for Iquitos 

1. Introduction 

Dengue fever is a mosquito-borne disease that has posed a serious threat to global public health in 

recent years. Studies have shown that prediction models based on machine learning can improve the 

efficiency of public health prevention and control and provide a reference for the accuracy of different 

methods in predicting infectious diseases. 

1.1 Background Information 

Traditional methods for predicting dengue fever rely mostly on statistical models and time series 

models - autoregressive moving averages and Markov chains - however, such methods often assume 

a linear relationship between variables and are mainly based on basic meteorological data to analyze 

and fail to reveal the complex nonlinear dynamics of dengue fever transmission. Although it has 

certain effects, due to the spatiotemporal dynamic characteristics of dengue fever such as spatial 

spread and seasonal fluctuations, it is often slow to respond and difficult to deal with, hindering the 

accuracy of predictions and bringing disadvantages to public health decision-making. 

In recent years, prediction models based on machine learning have been gradually used in dengue 

fever epidemiological research. Machine learning can capture the relationships between multiple 

factors through complex nonlinear mapping and integrate multi-source data such as meteorology, 

environment and socio-economics to significantly improve prediction accuracy. Among them, 

models such as support vector machines and long short-term memory networks perform well in 

dengue fever prediction. However, machine learning problems also include the over-fitting problem 

of the model, which fails to capture the general laws of the data, and the black-box training process 

that is difficult to control. 
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This study aims to use multi-source data fusion and feature engineering to build an efficient dengue 

fever prediction model to overcome the limitations of traditional methods and more accurately 

characterize the nonlinear relationship and spatiotemporal dynamic changes of dengue fever spread. 

This innovative method not only provides timely epidemic warning information, but also provides 

important support for public health emergency response and risk assessment. 

1.2 Hypothesis 

Newly explored machine learning models with advanced feature engineering perform better than 

traditional statistical and machine learning models, which will be more accurate for dengue prediction, 

even more when combined with consistent dengue seasonality data features. 

2. Literature Review 

The driving role of climate variables on dengue epidemic dynamics is a core theme of related 

research. Lowe et al.[1], based on a generalized linear mixed model (GLMM) study in southeastern 

Brazil, found that seasonal climate variables such as temperature and precipitation can significantly 

enhance the spatial and temporal resolution capabilities of dengue prediction models. In addition, 

studies have shown that large climate patterns such as El Niño have a non-negligible indirect impact 

on epidemic dynamics. In Guangzhou, China, Xu et al.[2] further demonstrated the time-lag effects of 

precipitation and temperature on mosquito vector density and virus transmission rate, thus revealing 

the intrinsic link between climate driving and seasonal outbreaks of dengue fever. 

Traditional statistical models have shown some advantages in capturing the association between 

climate variables and the number of dengue cases. Hii et al.[3] analyzed the lagged effects of 

temperature and precipitation based on Poisson regression and successfully predicted the 16-week 

forward trend of the dengue fever epidemic in Singapore. Similarly, Gharbi et al.[4] achieved 3-month 

advance epidemic prediction in the Guadeloupe region through the SARIMA model. However, this 

type of method assumes that the relationship between variables is linear, and the predictive ability of 

the model relies on a relatively simple feature set, making it difficult to effectively handle high-

dimensional data and nonlinear interactive features. 

With the expansion of data scale and improvement of computing power, the application of machine 

learning methods in dengue fever prediction has gradually attracted attention. A systematic review 

by Leung et al.[5] pointed out that machine learning algorithms such as support vector machines (SVM) 

and long short-term memory networks (LSTM) have significant advantages in capturing the dynamic 

characteristics of time series. In addition, ensemble learning models (such as XGBoost) outperform 

traditional methods in variable selection and prediction accuracy. Recent comparative studies have 

further validated these findings. Chen and Moraga[7] conducted a comprehensive assessment of 

dengue forecasting methods in Rio de Janeiro, comparing statistical models with machine learning 

techniques and demonstrating the superior performance of advanced algorithms. Deep learning 

approaches have shown particular promise in various regional contexts. Bui et al.[9] developed deep 

learning models for dengue forecasting based on climate data in Vietnam, while Phan et al.[8] 

leveraged climate data with advanced machine learning approaches in Ba Ria Vung Tau Province. 

Furthermore, Moreira et al.[10] demonstrated that novel feature selection approaches combined with 

meteorological variables can significantly improve dengue forecasting accuracy in Bangladesh. 

In summary, the combination of climate-driven variables with statistical and machine learning 

methods provides theoretical support and technical tools for dengue fever prediction. Based on the 

above literature, this study will further explore efficient machine learning models through multi-

source data fusion and optimization of feature engineering to overcome the limitations of traditional 

methods and improve the model's adaptability to nonlinear characteristics and regional dynamics. 
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3. Experiment Methodology 

3.1 Data Overview and Preprocessing 

The dataset used in this study contains weekly environmental variables and the corresponding 

number of dengue cases in San Juan, Puerto Rico and Iquitos, Peru, while the test set provides 

environmental variables in the same time period for predicting the number of future cases. These data 

have a long time span and can capture seasonal and interannual changes, providing rich time series 

information for research and are provided by the Centers for Disease Control and Prevention and the 

National Oceanic and Atmospheric Administration, which are highly authoritative in the fields of 

environment and epidemiology. The dataset covers a variety of climate-related variables, such as 

environmental variables such as temperature, precipitation, and vegetation index, with a long time 

range and is recorded weekly with a high resolution. The reason for choosing these data is that the 

spread of dengue is closely related to climate change, and environmental variable data can well reflect 

this relationship. Additionally, the dataset focuses on high-incidence dengue regions and the research 

results are of practical significance. High-quality data consistent with scientific literature and expert 

consensus provide a strong basis for supporting model development and improving prediction 

accuracy. 

The San Juan dataset spans from April 1990 to June 2008 (n=936 weeks), while the Iquitos dataset 

covers from July 2000 to June 2010 (n=520 weeks). Each dataset includes weekly dengue case counts 

and 20 environmental variables. 

The data was first cleaned and missing values were filled by statistical methods. Then, the range 

of environmental variables in the training set was trimmed based on the maximum and minimum 

values of the test set to ensure the consistency of feature ranges. In addition, lagged variables were 

introduced through feature engineering to capture time dependencies, and all environmental variables 

were standardized to improve the training efficiency and performance of the model. Finally, outliers 

were processed to remove noise data that may affect model performance, ensuring the structured, 

consistent and high-quality data, laying a solid foundation for subsequent modeling work. 

The dataset was split into training (70%) and testing (30%) sets using temporal ordering to preserve 

time series structure. Cross-validation was performed using 5-fold time series split for 

hyperparameter tuning. 

3.2 Exploratory Data Analysis 

After first drawing a line chart of the time series number of cases in the two cities of San Juan and 

Iquitos, the time series changing characteristics of dengue fever cases in the two cities are clearly 

presented (see Figure 1). The number of cases in San Juan fluctuates significantly and shows strong 

seasonal changes, especially at the end of each year and the beginning of the year, when the number 

of cases often reaches a significant peak. This trend may be influenced by local climate characteristics, 

such as seasonal changes in temperature and precipitation. However, the number of cases in Iquitos 

changes relatively steadily and lacks a significant seasonal high incidence pattern, indicating that the 

spread of dengue fever may be affected by stable climate conditions or dominated by different 

transmission mechanisms. 
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Figure 1. Time Series Plot of Dengue Cases over Time for San Juan and Iquitos 

The Pearson correlation coefficient between the numerical features and the target variable total 

cases was further calculated, revealing the linear relationship between different climate variables and 

the number of cases (Figure 2). Humidity-related features, such as 

analysis_specific_humidity_g_per_kg and reanalysis_dew_point_temp_k, show a strong positive 

correlation with the number of cases, indicating that humid climate conditions may provide an ideal 

environment for mosquito reproduction and virus transmission. The correlation of NDVI-related 

features (such as ndvi_ne and ndvi_nw) is relatively weak, which may imply that the impact of 

vegetation cover on dengue fever transmission is indirect or limited to specific conditions. 

 

Figure 2. Correlation Matrix Heatmap of Climate Variables with Dengue Cases 

3.3 Feature Engineering 

In order to effectively capture the dynamic characteristics of time series and the potential impact 

of climate factors on the spread of dengue fever, this study conducted in-depth modeling and 

screening of multi-dimensional data through refined feature engineering strategies. The introduction 

of lag features, the construction of seasonal variables, and the normalization of numerical features 

not only greatly improve the model's ability to capture time dependence and seasonal fluctuations, 

but also further optimize feature selection through correlation analysis to ensure that features have 
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dimensional validity and model generalization ability. 

The design of time lag features constructs 1-, 2-, and 4-week lag features based on variables such 

as the total number of cases, precipitation, relative humidity, and average temperature. These features 

bring past variable values into the current prediction time point through a translation operation along 

the time axis, thereby capturing the changing trends in cases caused by fluctuations in environmental 

conditions. In order to avoid the impact of missing values caused by lag operations, a linear 

interpolation method was used to fill the generated data. Experimental verification shows that after 

introducing the lagging feature, the model's ability to capture the surge and sudden drop in cases is 

significantly enhanced, especially the prediction accuracy for cyclical peaks and troughs is 

significantly improved. 

In terms of constructing seasonal variables, seasonal division based on weekly series (weekofyear) 

provides key period information for the model. In the San Juan data, based on the time characteristics 

of dengue fever transmission, each year is divided into three major stages: slowing season, trough 

season, and climbing season, and the corresponding seasonal indicator variables are generated 

through binarization. This processing eliminates temporal inconsistencies in data across years by 

dynamically adjusting for week-day offsets. In the Iquitos data, it is further refined into the four 

seasons of autumn, winter, spring, and summer, and corresponding seasonal binary variables are 

generated. These seasonal features effectively capture the seasonal fluctuations in dengue 

transmission, manifesting as significant improvements in cyclical predictions in model validation. 

In order to reduce the interference of different dimensions and scales in the data on model training, 

all numerical features are normalized. Specifically, MinMaxScaler is used to compress the feature 

values to the [0, 1] interval, thus ensuring the equal weight between features and optimizing the 

convergence speed of the gradient descent algorithm. The normalized data not only improves the 

performance of the activation function in the deep learning model, but also significantly reduces the 

convergence fluctuations caused by numerical imbalance during the training process. 

By analyzing the heat map (Figure 2), it was found that certain climate variables are significantly 

correlated with the total number of cases, indicating that they have an important impact on the spread 

of dengue fever. For example, the correlation coefficient between relative humidity 

(reanalysis_relative_humidity_percent), showing the important role of humidity conditions in 

mosquito survival and virus replication. In addition, the vegetation index in the northeast (ndvi_ne) 

and southwest (ndvi_sw) regions showed positive correlations, indicating that vegetation coverage 

has an important impact on mosquito habitat conditions. To avoid multicollinearity problems between 

features, for variable pairs with a correlation coefficient higher than 0.9, only the features with more 

representative information expression are retained. For example, 

reanalysis_relative_humidity_percent was selected among the humidity variables, and 

station_avg_temp_c among the temperature variables to maximize the computational efficiency and 

prediction performance of the model. 

Table 1 summarizes the definitions of core features and their potential contribution to dengue case 

prediction. 

Table 1: Definition of core features and their potential impact 

Feature Name Definition Potential Impact 

Lagging characteristics of the total 

number of cases 

Lag the total number of cases by 1 

week, 2 weeks, and 4 weeks 

Capture the dynamic trend of short-

term cases to effectively respond to 

surges or sudden drops 

5



Precipitation lag characteristics 
Weekly precipitation totals lagged 

by 1 week, 2 weeks, and 4 weeks 

Simulate changes in humidity and 

water accumulation conditions to 

reveal the dengue fever 

transmission environment 

Relative humidity lag 

characteristics 

Relative humidity lagged by 1 

week, 2 weeks, and 4 weeks 

Provide dynamic change 

information on mosquito habitats 

Temperature lag characteristics 
Temperature averages lagged by 1 

week, 2 weeks, and 4 weeks 

Capture the cyclical impact of 

climate conditions on virus 

transmission 

Seasonal binary features 
Seasonal indicator variables based 

on time periods 

Provide periodic background 

information on the spread of dengue 

fever 

Vegetation Index (NDVI) 
Regional quantitative index of 

vegetation coverage level 

Indirectly reflect the environmental 

characteristics of mosquito habitats 

3.4 Model Implementation 

In the data modeling process, a variety of machine learning and deep learning models are used, 

from traditional linear models to complex nonlinear models, covering the tree-based enhanced 

gradient boosting model XGBoost, linear regression/random forest, kernel-based support vector 

machine methods, as well as deep learning models such as multi-layer perceptron, autoencoder, 

convolutional neural network, long short-term memory network, and gated recurrent unit, as 

summarized in Table 2. 

Table 2. Summary of Models and Key Characteristics 

Model Type Optimization Strategies Key Characteristics 

XGBoost max_depth, eta, subsample Efficient, nonlinear modeling 

Random Forest n_estimators, max_depth Stable, interpretable 

SVR Kernel type, C, epsilon Handles complex nonlinearity 

KNN n_neighbors, distance metric Sensitive to neighbors 

MLP Hidden layers, Dropout High-dimensional modeling 

Autoencoder encoding_dim, learning rate Dimensionality reduction 

CNN num_filters, pooling Extracts local features 

LSTM / GRU Hidden units, Dropout Captures long dependencies 

In terms of selecting and optimizing the tree model, XGBoost was optimized using a systematic 

grid search on core hyperparameters, including maximum depth, learning rate, subsampling ratio, and 

feature column sampling ratio. Under each set of parameter configurations, the performance of the 

model on the training set and validation set was evaluated through multiple cross-validations, and the 

parameter combination that performed best on the validation set was finally selected. Multiple 

evaluation indicators, such as mean absolute error (MAE) and coefficient of determination (R²), were 

used to verify the generalization ability of the model. 

Random Forest was optimized by adjusting key parameters such as number of trees, maximum 
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depth, minimum number of sample splits, minimum number of leaf node samples, and feature 

sampling ratio. Support Vector Regression (SVR) was tuned through core parameters, including 

kernel function type, penalty coefficient, and slack variable. The K-nearest Neighbor model was 

optimized by adjusting number of neighbors, distance measures, weighting strategies, and search 

algorithms. 

Neural network architectures were optimized systematically. For Multi-Layer Perceptrons (MLP), 

key hyperparameters such as number of hidden layers, number of neurons in each layer, Dropout ratio, 

and learning rate were tuned. Autoencoders were explored for feature dimensionality reduction by 

adjusting dimensionality of the latent representation and learning rate. Convolutional Neural 

Networks (CNN) were tuned for number of convolution kernels, size of the convolution kernel, and 

pooling strategies. Long Short-Term Memory networks (LSTM) and Gated Recurrent Units (GRU) 

were optimized for number of hidden units, number of network layers, Dropout ratio, and learning 

rate. 

Hyperparameter optimization was conducted using grid search with the following ranges: 

 XGBoost: learning_rate [0.01, 0.1, 0.3], max_depth [3, 5, 7], n_estimators [50, 100, 200] 

 SVR: C [0.1, 1, 10], gamma [0.001, 0.01, 0.1] 

 Random Forest: n_estimators [50, 100, 200], max_depth [10, 20, 30] 

3.5 Evaluation Metrics 

First, the mean absolute error (MAE) was used to evaluate the average deviation between the 

predicted value and the true value, reflecting the overall level of model prediction accuracy. Second, 

the coefficient of determination (R²) was used to measure the model's ability to explain the variance 

of the target variable, reflecting the model's fitting effect from a global perspective. In addition, three-

dimensional residual graph was drawn, using time, the number of true cases, and the residuals as 

dimensions to intuitively display the possible systematic errors and time-related trends in the model's 

predictions, providing reliable support for the comprehensive evaluation of the model's performance. 

4. Results and Evaluation 

In Table 3, the MAE and R² performance data of each model for the two regions of San Juan and 

Iquitos are summarized to provide an overall perspective for subsequent analysis. 

Table 3. Summary of model performance in San Juan and Iquitos 

Region Model MAE R² 

San Juan 

XGBoost 22.8427 0.3077 

MLP 23.1595 0.2713 

LSTM 23.3562 0.1860 

SVR 23.5607 0.0655 

Random Forest 23.5708 0.2637 

GRU 24.3646 0.1843 

CNN 24.4719 0.1626 

Autoencoder 24.9328 0.1653 

Linear 25.4742 0.1475 
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KNN 27.2869 0.0471 

Iquitos 

SVR 6.0932 0.1278 

LSTM 6.1573 0.1334 

CNN 6.2873 0.0222 

Autoencoder 6.3586 0.0420 

Linear 6.4101 0.0424 

XGBoost 6.4403 0.0833 

GRU 6.5201 0.1458 

MLP 6.5770 0.1151 

Random Forest 6.7002 0.0748 

KNN 6.7243 0.0317 

4.1 Model Performance Evaluation 

In the dengue fever prediction in San Juan, the performance comparison of different machine 

learning models is shown in Figure 3. The XGBoost model performed best, with a mean absolute 

error (MAE) of 22.84 and a coefficient of determination (R²) of 0.3077, indicating that the model can 

better capture the nonlinear relationship of the data. In contrast, the MLP model performed second, 

with a MAE of 23.16 and an R² of 0.2713, demonstrating its ability to model high-dimensional 

features. The MAEs of LSTM and GRU were 23.36 and 24.36, respectively, but their R² values were 

low, only 0.1860 and 0.1843, indicating that they failed to fully exploit the time series features when 

processing San Juan data. The KNN model has the worst performance, with a MAE of 27.29 and an 

R² of only 0.0471, and it is difficult to handle high-dimensional feature data. This shows that tree-

based models (such as XGBoost) and neural network models perform better than traditional linear 

and KNN models on the San Juan dataset. 

 

Figure 3. Comparison of MAE and R² of various models in San Juan 

For the Iquitos region, the performance of different models is shown in Figure 4. The SVR model 

has a MAE of 6.09 and an R² of 0.1278, showing its adaptability to small samples and nonlinear 

problems. The LSTM has a MAE of 6.16 and an R² of 0.1334, which is better than other deep learning 

models. The performance of CNN and MLP is relatively poor, with MAEs of 6.29 and 6.58, and R² 
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of 0.0222 and 0.1151, respectively. KNN still performs the worst, with a MAE of 6.72 and an R² of 

only 0.0317. The results show that for the Iquitos region, the performance of the deep learning model 

is slightly inferior to that of the SVR, while the performance of the tree model is average. 

 

Figure 4. Comparison of MAE and R² of various models in Iquitos 

4.2 Time-series Prediction Results 

The time series prediction and actual comparison of San Juan and Iquitos are shown in Figure 5. 

As can be seen from the figure, in the time series prediction of San Juan, the XGBoost model has a 

certain ability to capture the peak, but the prediction of extreme values is slightly biased, especially 

when the number of cases surges, there is an underestimation phenomenon. For Iquitos, the SVR 

models can track seasonal changes well, but the performance is unstable in the stage with low case 

numbers, which may be disturbed by noise data. 

 

Figure 5. Comparison of time series prediction and actual values in San Juan and Iquitos 
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4.3 Residual Plot Analysis 

In the 3D residual diagram of San Juan (shown in Figure 6), it can be observed that the distribution 

of the residuals shows certain regularity. In areas with low case numbers, the model's prediction errors 

are relatively small and evenly distributed. However, as the number of actual cases increases, the 

volatility of the prediction residuals increases significantly. Especially during the peak period of the 

epidemic, the model has obvious underestimation, and the residual values show negative values. This 

shows that although the XGBoost model has a certain ability to fit the overall data in the San Juan 

region, its prediction performance under extreme values and rapid growth trends still needs to be 

improved. 

 

Figure 6. 3D Residual Plot for San Juan 

In the 3D residual plot of Iquitos (shown in Figure 7), the distribution characteristics of the 

residuals are different from San Juan. Overall, the residuals are more scattered in the low-case number 

stage, which may be caused by the interference of noisy data; while in the medium- and above-case 

number stage, the fluctuation range of the residuals is reduced, and the model can better capture the 

Trends in actual cases. However, the residuals of individual extreme points are still large, indicating 

that the SVR model is not robust enough when dealing with a small number of outliers. 

By comparisons, the following conclusions can be drawn: First, the two selected models have 

certain advantages in capturing the overall trend, but there are obvious shortcomings in dealing with 

extreme values and rapid changes; secondly, different Differences in regional data characteristics 

have a significant impact on the prediction performance of the model. For San Juan, the model needs 

to be further optimized to reduce underestimation during the peak period; for Iquitos, reducing noise 

interference in the low case number stage will be the key to improving model performance. 
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Figure 7. 3D Residual Plot for Iquitos 

5. Discussion 

Dengue fever cases in the San Juan area show seasonal fluctuation characteristics, and its infection 

peak is closely related to hot and humid climate conditions. The spread of dengue fever in Iquitos is 

relatively stable, with weaker seasonal fluctuations in the number of cases and more dependent on 

the long-term stability of specific environmental variables. 

The performance of the models shows obvious regional differences. Among them, the advantages 

of XGBoost on the San Juan dataset are mainly reflected in its high efficiency in modeling nonlinear 

relationships and its ability to automatically assign feature importance weights. Although overfitting 

has been minimized by adjusting hyperparameters such as max_depth and eta, its deviation in extreme 

value prediction exposes the natural limitations of the gradient boosting algorithm for long-tail 

distribution responses. This deviation may be due to the fact that the uniform distribution weight 

allocation of the overall error fails to explicitly distinguish the influence of outliers during the 

optimization of the objective function. In addition, although the feature subsampling strategy 

effectively improves the generalization ability, its ability to capture complex interactions between 

dynamic features is still insufficient. 

The relatively low R² values observed across all models (maximum 0.31 for San Juan and 0.13 for 

Iquitos) reflect the inherent complexity and stochasticity of dengue transmission dynamics. Several 

factors contribute to this limitation. First, dengue transmission involves intricate human-vector-virus 

interactions that extend beyond climatic variables, including human mobility patterns, vector control 

interventions, population immunity, and socioeconomic factors not captured in this dataset. Second, 

weekly case reporting may introduce noise through underreporting and diagnostic delays. Third, the 

lag between climatic conditions and disease manifestation creates temporal uncertainty. Despite these 

limitations, the models achieve practical utility for outbreak detection, as evidenced by consistently 

low MAE values. Similar R² ranges (0.15-0.35) have been reported in comparable studies[6][1], 

suggesting these values are within expected performance bounds for climate-driven dengue 
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prediction. 

In the Iquitos dataset, SVR performs well because its kernelization strategy can better cope with 

the uncertainty of small sample distribution, especially under the joint optimization of C and epsilon, 

the fitting of stationary time series reaches the local optimum. However, the limited improvement of 

its R² index exposes the insufficient global fitting ability of support vector regression in high-

dimensional feature nesting, especially under the non-balanced feature weight distribution, it is 

difficult to unify the response to low-dimensional noise and high-frequency oscillation. In addition, 

the linear growth of SVR in computational complexity makes it show obvious disadvantages in large-

scale feature matrices, limiting its scalability. 

Deep learning models (such as LSTM and GRU) fail to fully reflect the advantages of time series 

in San Juan data, indicating that they have deep structural optimization problems in capturing non-

stationary dynamic features. Although the regularization strategy based on Dropout and BatchNorm 

is adopted, the insufficient capture of temporal dependency caused by gradient vanishing during 

training is not completely solved. In addition, the standardization of feature input (MinMaxScaler) 

may have a non-negligible interference on the relative weights of high-dimensional features while 

alleviating the problem of imbalanced input dimensions, weakening the fitting ability of neural 

networks in specific local areas. 

Feature engineering for the San Juan and Iquitos data shows that the generation of lagged features 

(e.g., 1 week, 2 weeks, 4 weeks) and seasonal feature binarization can significantly improve model 

performance. However, the fixed setting of the time window length may lead to the loss of high-

frequency signals, and the lack of dynamic window adjustment further limits the flexibility of the 

model at different time scales. In particular, in the Iquitos dataset, due to the weak linear correlation 

between features, the seasonal feature binarization based on fixed partitions may fail to capture the 

potential interactions of local complex infectious dynamics. 

When predicting extreme values, all models show a clear tendency to underestimate. This 

underestimation is not only due to the scarcity of extreme value samples in the training set, but also 

reflects that the existing models fail to fully reflect the weight distribution mechanism of high-risk 

events when optimizing the objective function. In certain cases, the introduction of objective 

functions based on quantile regression or uncertainty quantification may have a significant impact on 

the performance improvement of extreme value prediction. In addition, multimodal data fusion (such 

as the introduction of socioeconomic and epidemiological data) and the optimization of dynamic 

feature embedding strategies may significantly enhance the overall stability and local responsiveness 

of the model. 

6. Conclusion 

An in-depth exploration of the capabilities of deep learning models, support vector regression, and 

XGBoost in predicting the number of dengue cases, and a detailed evaluation of their prediction 

accuracy. The study found that the XGBoost model showed the best performance on the San Juan 

dataset, while support vector regression was more suitable for the Iquitos dataset. This reflects the 

difference in adaptability of different models to different data characteristics, and also reminds us The 

specific circumstances of the data should be fully considered when selecting a model. It is gratifying 

that feature engineering technology can significantly improve the prediction ability of the model. By 

introducing techniques such as seasonal binarization and lag features, the seasonal patterns and time 

dependence of dengue fever incidence are effectively captured, thereby improving the prediction 

accuracy of the model. However, there are still shortcomings in predicting extreme values, which 

shows that there is still room for improvement in existing models when dealing with abnormal 

situations such as epidemic outbreaks. 

12



Future research should be devoted to constructing more sophisticated feature engineering 

strategies that dynamically adjust the length of the time window to adapt to dynamic changes in the 

epidemic, and incorporate variables such as socioeconomic demographics to improve the model's 

ability to capture complex factors. Researchers can also try to explore combining the advantages of 

different models to build a more powerful and stable prediction system. This study provides a 

valuable reference for using machine learning technology to predict dengue fever epidemics and lays 

the foundation for building a more accurate prediction model. These models will help more 

effectively monitor, predict and control dengue outbreaks, thereby contributing to improving public 

health. 
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