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Abstract: In response to the challenges of high-mix low-volume production driven by
personalized customization demands, existing research has predominantly focused on
single-dimensional improvements, with insufficient comprehensive consideration of
dynamic disturbances such as process variations and machine failures derived from
customization requirements. To address this gap, this study develops a multi-objective
mathematical model that simultaneously minimizes total production costs and makespan by
integrating critical dynamic disturbance factors. An improved hybrid algorithm H-IPNSGA-
I combining particle swarm optimization (PSO) and non-dominated sorting genetic
algorithm-II (NSGA-II) is proposed to solve the model. A case study involving an
automotive parts manufacturing enterprise is conducted to validate the proposed
methodology. Comparative experiments and sensitivity analysis demonstrate the superior
performance of the model and algorithm, providing theoretical support for personalized
production scheduling. This research contributes to advancing multi-objective optimization
approaches in customized manufacturing environments with complex uncertainties.

1. Introduction

The manufacturing industry has undergone an iterative transformation of production paradigms,
evolving from Mass Production (MP) and Mass Customization (MC) to Personalized Production (PP)
[1]. Mass Production achieves cost and efficiency optimization through standardization and high-
volume production models but struggles to adapt to consumers’ diversified demands [2]; Mass

Customization relies on modular design and flexible manufacturing systems to provide limited
personalized configurations on the premise of cost control[3] [4]; while Personalized Production takes
deep customer participation and full-custom production as its core, realizing highly customized goals
through technology integration [5] [6]. Currently, Personalized Production has gradually replaced
Mass Customization as the mainstream paradigm, with its core appeal being to balance production
efficiency and cost-effectiveness while meeting unique customization needs[7] [8], which is more
prevalent in the automotive manufacturing industry.

However, traditional job-shop scheduling models are unable to adapt to dynamic demands such as
product specification changes and urgent order insertions in personalized production, and are prone
to inducing problems like unbalanced equipment loads and disrupted logistics routes, ultimately
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leading to reduced production efficiency and rising overall costs [9]. As an extended form of the
classic Job-Shop Scheduling Problem (JSP) [10], the Flexible Job-Shop Scheduling Problem (FJSP)
boasts a core advantage: each operation can be processed on multiple alternative equipments. By
simultaneously optimizing job sequencing, equipment assignment, and dynamic uncertainties, it
achieves the coordinated improvement of production efficiency, on-time delivery rate, and equipment
utilization. Serving as an effective solution to address personalized production, FJSP has become a
research hotspot in both academic and industrial circles.

Existing FJSP research still has notable shortcomings: most studies focus on single-objective or
local optimization, with insufficient consideration of the coordination of multi-objective constraints
[11]; there is insufficient adaptability to scenarios such as dynamic order changes and process
specification adjustments derived from personalized demands; traditional algorithms still have room
for improvement in balancing solution space coverage, local optimization accuracy, and convergence
speed [12]. Based on this, this paper conducts research on the multi-objective integrated flexible job-
shop scheduling problem driven by personalized demands, with the main contributions as follows: 1)
Integrate personalized constraints such as dynamic order changes and process specification
adjustments to establish an integrated "demand-scheduling" multi-objective mathematical model,
which accurately maps actual production scenarios; 2) Design a dual-domain encoding of "equipment
selection - start time", active decoding and constraint repair mechanisms to ensure process
compliance and no equipment conflicts, realizing full coverage of the solution space and feasible
solution guarantee; 3) Optimize personalized genetic operations and algorithm fusion architecture to
balance global search and local optimization capabilities, improving solution adaptability and
efficiency in dynamic personalized scenarios.

2. Literature Review

Research on the Flexible Job-Shop Scheduling Problem (FJSP) mainly focuses on two core
dimensions: modeling optimization and algorithm design, and a relatively systematic research system
has been formed. However, its adaptability to personalized dynamic scenarios still needs further
enhancement.

In terms of modeling, scholars have extended their research from basic problem characterization
to complex scenarios: Chan et al. [13] characterized FJSP as an integrated optimization problem of
operation assignment and job sequencing under resource constraints, clarifying the core status of joint
decision-making; Ozgiiven et al. [14]introduced process route and planning flexibility to construct a

generalized mathematical model; Zhong et al. [12]converted the uncertain problem into a
deterministic equivalent problem through chance-constrained programming for the uncertainty of
processing time; Ge et al. [15] focused on personalized customization scenarios and conducted
research on collaborative scheduling modeling of production and logistics, providing new ideas for
demand-driven optimization. Nevertheless, existing models are still insufficient in depicting dynamic
constraints derived from personalization (such as order changes and process adjustments).

In terms of algorithm research, metaheuristic algorithms are the mainstream solution methods for
FJSP [16]: Genetic Algorithm (GA) and its improved algorithms are the most widely used—Zhang

et al. [17]improved the load balancing and robustness of the algorithm through strategy optimization;
Moslehi et al. [18] combined Particle Swarm Optimization (PSO) with local search to enhance the
solution efficiency of multi-objective problems; Wang et al. [19] developed a multi-objective genetic
algorithm based on immune and entropy principles, effectively realizing the coordinated optimization
among multiple objectives; Mei et al. [20] integrated an adaptive simulated annealing mechanism
into the NSGA-II algorithm to optimize the scheduling performance under low-carbon objectives;
Luo et al. [21]adopted a particle swarm algorithm combining multiple strategies, further improving
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the optimization performance of PSO in scheduling problems. However, traditional algorithms still
need to be improved in balancing solution space coverage and optimization efficiency in dynamic
personalized scenarios.

In summary, existing research has made remarkable progress in FJSP modeling and algorithms,
but there are still shortcomings: first, insufficient consideration of the coordination of personalized
dynamic constraints in multi-objective optimization; second, inadequate adaptability of models to
personalized scenarios such as order changes and process adjustments; third, the adaptability and
optimization efficiency of algorithms in dynamic scenarios need to be improved. Therefore, there is
an urgent need to develop an integrated scheduling model and efficient solution algorithm adapted to
the dynamic characteristics of personalized production, so as to provide technical support for
manufacturing enterprises.

3. Methodology
3.1 Problem Definition

To adapt to the trends of personalized customization and diversified demands in the automotive
industry, and to ensure the adaptability and efficiency of scheduling schemes under the Make-to-
Order (MTO) production mode, this problem can be described as follows: An automotive functional
component supplier undertakes customized production orders, and its production scenario features
two core characteristics: “highly personalized” and “demand uncertainty”. Specifically:The set of
customized workpieces to be processed in the workshop is defined as I = {i|i = 1,2, ...,1}. Each
workpiece i corresponds to a unique customized production order and has exclusive processing
requirements; the workshop is equipped with multiple processing equipment with differentiated
functions, forming an equipment set M = {m|m = 1,2, ..., M} to meet the processing needs of
different operations; each workpiece i needs to complete J; operations following a specific process
route, and the total set of operations for all workpieces is | = {j|j = 1,2, ..., J}. The actual production
scheduling is illustrated in Figure 1.
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Figure 1 Production Scheduling Schematic Diagram

Based on actual production scenarios and academic modeling standards, this study sets the
following assumptions:
(1) The raw material supply is sufficient and meets quality requirements, with no risks of supply
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disruptions or quality defects, ensuring production continuity.

(2) The processing of different workpieces can be assigned processing priorities according to order
urgency; the operations of the same workpiece follow a strict sequential order, and subsequent
operations can only be initiated after the completion of the previous one.

(3) Each operation j can select 1 to 4 suitable pieces of equipment from the equipment set M for
processing, which not only guarantees process continuity but also avoids redundancy of equipment
resources.

(4) A single piece of equipment can only process one operation of one workpiece at a time, and
the processing of the operation cannot be interrupted.

(5) A single workpiece can only undergo one operation on one piece of equipment at a time, with
no parallel processing allowed.

(6) The AGV system has no heterogeneous differences and is sufficient in quantity. During
transportation, only the unit usage cost, transportation distance cost, and load weight cost are
considered, while AGV scheduling conflicts are not taken into account.

3.2 Model Construction and Algorithm Design

Considering the scheduling characteristics of flexible job shops under personalized requirements,
a dual-objective optimization system targeting the minimization of total cost and total makespan is
constructed. The total cost consists of six types of costs, covering the entire process costs of
personalized production. The total makespan is defined as the longest time span from the start of
processing to the final completion of all workpieces, which directly reflects the workshop’s
production efficiency and order response speed, adapting to the rapid delivery requirements of
personalized demands. The definitions and value descriptions of key parameters and decision
variables involved in the model are shown in Table 1.

Table 1 Meanings and Values of Parameters and Variables

Sets
i Set of workpieces, i = 1,2, ..., 1
Ji Set of operations, j = 1,2, ...,J
m  Setof equipments, m = 1,2,..., M
v Setof AGV,v=1,2,...,V
parameters

Actual production quantity of workpiece i: q; € [qF % 0.9,q7 x 1.1], where g7 denotes
the demand forecast quantity
tijm  Processing time of operation j of workpiece i on equipment m: ¢;;,,, € [t{}‘,;? tiim:
c Maximum hourly processing capacity of equipment m
meapm 112.15,18,16,14,10,12,13,14,8,11,9,19,21,23]
Failure probability per unit overloaded piece count of equipment m
[0.48,0.22,0.16,0.80,0.17,0.86,0.88,0.24,0.15,0.90,0.58,0.82,0.87,0.16,0.75]
¢/ Unit fixed cost of equipment m: C;* = 50 yuan per unit-hour
Cagv  Unit operating cost of AGV: 45 yuan per unit-hour
Cmgme Fixed workshop management cost: 100 yuan per hour
C. .. Unit time production cost of operation j of workpiece i: Varies significantly considering
PYU batch size and special operations.
w;  Unit weight of workpiece i (kg/piece): [6,9,12,10,16,15,8,11,13,4]
dmy Straight-line distance between different equipment (m)

138



G Logistics cost per unit weight per unit distance: C; = 0.1 yuan/kg-m
Cr.  Unit demand deviation forecast cost: Cr. = 2 yuan/piece
Number of forecasts per unit standard cycle: N,, = 5
C;  Unithourly delay cost per workpiece: C; = 15 yuan/piece-hour
D; Normal delivery date; D;: Urgent delivery date (requiring 12 to 24 hours in advance)
C,, Unitsingle failure cost of equipment: C,,, = 200 yuan per failure
Sijm  Start Processing Time of operation j of workpiece i on equipment (h)
T;  Total Time for workpiece i to complete all operations (h)
T;orq;  TOtal Production Cycle (Makespan) (h), Tiprqr = maxT;
variables
1,Urgent order requiring order insertioner
i { 0, otherwise
- {1, operation j of workpiece i is processed on machine m
ym 0, otherwise
(1) Fixed Cost (FC): It mainly includes the expenditures of manufacturing equipment, AGVs, and
workshop management costs. Its value depends only on the total number of equipment and the total
production cycle, and is independent of other dynamic factors in the production process. The details

are as follows:
M |4
FC = <Z C]Zn + Z Cgl;gv + Cmgmt) X Teotal (1)
m=1 v=1

M denotes the total number of equipment involved in production operations; Tiora = max(7T;)
represents the total production cycle (i.e., Makespan), which is the longest time from the start of
production to the completion of all tasks. This parameter directly affects the cumulative total of fixed
costs throughout the entire production cycle.

(2) Production Cost (PC): It consists of consumable costs and labor costs incurred during the
processing of different operations for each workpiece. The formula is as follows, where ] = Yt_, J;:

I
PC:Z Cp’ijxtiijinxijm (2)

(3) Internal Workshop Logistics Cost (LC): The AGV transportation cost is directly related to the
load weight and travel distance.

I

Ji-1' M M
LC =(; X Z w; X q; X Z Z Z Ammr X Xijm X Xi(j+1)ms (3)

i=1 j=1 m=1mr=1

(4) Flexible Adjustment Cost (FCost): It refers to the adjustment cost arising from deviations
between actual demand and forecast demand, covering additional costs incurred in links such as
production plan adjustments, inventory strategy changes, and internal logistics and distribution
optimization.

I
FCostszCprxZ|qi—qf| (4)

i=1

(5) Delay Cost (DC): Due to dynamic changes in market demand or customers' urgent demands,
the job shop may face emergencies. DC is used to measure the cost incurred by the failure to deliver
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workpieces on time due to urgent order insertions.
I

DC =C, x E[qi x max(0,T; — (D; - (1 —z) + D} - z))] (5)
i=1
(D; - (1 = z)) + D; - z;)represents the dynamic delivery date of workpiece i, and max (0, T;
—dynamic delivery date) is the actual delay time of workpiece 1, ensuring that only the costs incurred
by delayed deliveries are accounted for.
(6) Equipment Failure Cost (MC) (including maintenance, downtime losses, overload, etc.): It is
the cost caused by insufficient production capacity and one of the key indicators to measure the
rationality of the scheduling scheme in the job shop of automotive enterprises.

M 1 ]
MC = C,, X Z P, X max O,Z Z qi X Xijm — Cmcapm X Tm (6)
m=1 i=1 j=1

-1 Y/ j=1tijm X Xijm denotes the total operating time of equipment m. The function of this

formula is to accurately identify whether the actual total processing volume exceeds the maximum
achievable processing volume. Failure costs will be incurred if it exceeds, otherwise no costs will be
generated.

In summary, this paper constructs a dual-objective optimization model. By simultaneously
optimizing Total Cost (TC) and Makespan, the dynamic balance between production economy and
timeliness can be achieved, adapting to the dual challenges of demand fluctuations and resource
constraints. The formula is as follows:

min{TC, Makespan} (7)
TC =FC+ PC+LC+ FCost+ DC + MC (8)
Constraints:
SiG+nym' = Sijm + tijm X Xijm, Vi,j =1,...,J; = L, m,m' 9)
Sitim = Sijm + tijm X Xijm OT Sijm = Sitjm + it jy X X1 j, Vi # U, j,m (10)
LI < tyjm < X, V0L j,m (11)
Xijm € {0,1}, Sijm = 0,Vi,j,m (12)

Equation (9) represents the precedence constraint of operations. Only when the j-th operation of
workpiece i is indeed processed on equipment m (i.€., X;jjm = 1), t;jm X X;jm equals the actual
processing time. At this point, the start time of the subsequent operation (j + 1) (denoted as S 1ym,)
must be greater than or equal to the “start time + processing time” of the previous operation. If x;;,, =
0 (this equipment does not process the operation), the product term is 0, and the constraint is
automatically satisfied since S;j,, = 0, without affecting the scheduling of subsequent operations.
Equation (10) is the equipment conflict constraint. For the same equipment m, the processing times
of different workpieces cannot overlap, and only two feasible sequences exist: either the j-th
operation of workpiece i is processed first (the start time of the j-th operation of workpiece i’ is
greater than or equal to the completion time of the j-th operation of workpiece i), or the j-th operation
of workpiece i’ is processed first (the start time of the j-th operation of workpiece i is greater than or
equal to the completion time of the j-th operation of workpiece i'). The logical “OR” indicates that
one of the two sequences must be selected, ensuring the equipment processes only one workpiece at
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any given time. Equation (11) is the processing time constraint, which ensures the processing duration
of any operation fluctuates within a reasonable process range to quickly respond to unforeseen
circumstances such as equipment failures. Equation (12) is the variable value constraint. x;,, adopts
a 0-1 value rule to indicate whether the operation is being processed, and S;;,, = 0 ensures the start
time of any operation is non-negative, guaranteeing the rationality in the time dimension.

3.3 Algorithm Design

This paper integrates the advantages of multi-objective solution sets of NSGA-II with the fast
optimization characteristics of PSO to propose the H-MPGA-II algorithm, and its algorithm flow is
shown in Figure 2. The core steps and improvements are as follows:

Parameter
Initialization To adapt to the dual-dimensional
Set initial algorithm parameters, which can decision requirements of "equipment
be adjusted appropriately in subsequent assignment - temporal scheduling", a
steps. Population hierarchical dual-domain encoding
Initialization structure and a decoding logic of
active verification + local repair are
Adopt a constraint-aware initialization l designed.
strategy to avoid a large number of invalid Encoding and |
solutions in the initial population and Decoding
improve the initial quality of the algorithm. l
Construct the fitness function using the Fitness
weighted reciprocal method Calculation
Algorithm
Fusion
Includes  non-dominated  sorting, l
crowding distance calculation, genetic Sooran the number of
operations (selection, crossover, and peration iterations > 400
Termination

mutation adapted to dual-domain
encoding), and the PSO update fusion
mechanism. Output the

optimal solution

[ &—YES

Figure 2 Algorithm Flow

Step 1: Parameter Initialization. Parameter initialization provides prerequisites for subsequent
steps such as population initialization, PSO update, and crossover and mutation.

Step 2: Population Initialization. Based on the process constraints of personalized orders and
equipment processing capabilities, a constraint-aware initialization strategy is adopted to avoid a
large number of invalid solutions in the initial population and improve the initial quality of the
algorithm.

Step 3: Encoding and Decoding

(1) To adapt to the dual-dimensional decision requirements of "equipment assignment - temporal
scheduling" under personalized demands, a hierarchical dual-domain encoding structure is designed.
This encoding method can eftectively avoid the mechanical binding of equipment and time sequence,
and improve the solution space coverage. As shown inFigure 3: The equipment selection domain
indicates whether operation j of workpiece i is processed on equipment m (binary variable).The start
time domain indicates the start time of the corresponding equipment m where the equipment selection
is 1.For example, "a" indicates that operation 1 of workpiece 1 needs to be processed on M3, and the
start time of the equipment is 3.5.
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(2) Decoding is the core link of converting the encoded vector into a feasible scheduling scheme.
Targeting the dynamic constraints under personalized demands, a decoding logic of active verification
+ local repair is designed:Temporal verification: Traverse the start time Sijm of all operations, and
verify whether S;(j 1ym’ 2 Sijm + tijm X Xijm 1s satisfied. If not, correct Sij, t0 Siir1ym’
.Equipment conflict verification: Count the processing task time sequence of each piece of equipment.
If there is a conflict where the same equipment processes multiple operations simultaneously,
prioritize operations with higher priority, and shift the start time of conflicting operations to the
completion time of the previous operation.

0 0 1 .. O 0 1 0|.. 0] ..[..|1 0 0 .. 1 35 55 78 4.2 6.6
I g'—/ ;'—/
Operation 1 of Workpiece 1 Operation 2 of Workpiece 1 Operation J of Workpiece | only a
requires the use of requires the use of requires the use of Equipment 1
Equipment 3 Equipment 2 and Equipment M

Figure 3 Encoding Mechanism

Step 4: Fitness Calculation. The larger the value, the better the individual, and the higher the
chance of becoming a parent individual. Considering that enterprises may attach different levels of
importance to the same objective in different periods, the weighted reciprocal method is adopted to
construct the fitness function. Among them, w; and w, can be adjusted according to enterprise needs,
enabling flexible changes in different priorities:

1

Fit; =
" wy-TC; + w, - Makespan;

(13)

Step 5: Algorithm Fusion. The "individual optimal - global optimal" update mechanism of PSO is
integrated into the genetic operations of NSGA-II to improve the algorithm's convergence speed and
local optimization ability :

(1) Non-dominated SortingIndividuals in the population are divided into different front levels. The
dominance relationship between individuals is determined through pairwise comparison of their
objective function values: if individual X is not worse than individual Y in all objectives and better
than Y in at least one objective, then X dominates Y. By sequentially selecting non-dominated
individuals layer by layer, a Pareto front distribution from Level 1 to subsequent levels is formed,
which significantly improves computational efficiency (the maximum number of runs is reduced from
MN3to MN?).

(2) Crowding Distance CalculationFor each objective dimension, the distance difference between
adjacent individuals is calculated and normalized. Finally, the sum of distance differences across all
dimensions is taken as the crowding distance value of the individual, as shown in Equations (14) and
(15). Among them, &,,(i)denotes the distance difference of individual i in the m-th objective
dimension, and I(i) is the crowding distance value. Through crowding distance sorting, individuals
with a more uniform distribution are prioritized for retention, which effectively avoids excessive
aggregation of the solution set in local areas and enhances the global search ability of the population.

fnli+1) = f(i—1)
maxfp () — minf, )"’

8, (0) = EF (14)

M
1G) = Z 5. (D) (15)
m=1

(3) Genetic Operations: To adapt to the characteristics of dual-domain encoding, improvements to

142



genetic operations are required.

1) Selection: The higher the fitness value, the greater the probability of an individual being selected.
The roulette wheel selection strategy makes it easier to select high-quality individuals as parent
individuals, as shown in Equation (15). Among them, Y.N_, F it is the total fitness value of the
population, and P; is the selection probability of the i-th individual. First, calculate the Fiti and P;
values of each individual in the population, then generate a random numberi € [Yi2% Py, Y5 _1 Pel,
the i-th individual is selected as a parent individual. This process is repeated N times until N parent
individuals are obtained.

2) Crossover: To avoid infeasible solutions, a dual-domain hierarchical crossover strategy is
adopted. For the equipment selection domain: Single-point crossover is used. If all bits of an operation
become 0 after crossover, randomly set one equipment bit to 1 to ensure at least one piece of
equipment is selected; For the start time domain: Arithmetic crossover is used. The formula for
calculating the continuous values at the corresponding positions of two parent individuals is shown
in Equation (16). o takes a random value between 0 and 1 to improve population diversity. If the
offspring time value is less than 0, it is forced to 0. The specific operation is shown in Figure 4.

3) Mutation:Targeting the dynamics of personalized demands, an adaptive mutation strategy is
adopted to improve population diversity, with specific operations shown in Figure 5. For the
equipment selection domain: Randomly select a mutation bit and flip its 0-1 value. If there is no
suitable equipment for the operation after flipping, re-randomly select a feasible piece of equipment;
In the start time domain, a random perturbation strategy is implemented: a random number r within
the interval [0, 1] is generated for each continuous value. If r < P,,, perform perturbation according
t0 Sijm = Sijm + At, where At € [0,1]h. If S, < 0, set S, = 0.

ijm ijm
Fit;
YN Fity

0 .
Sij{nfsprmg = * SiP}%‘entl +(1—a)x Slf}%entz (17)

FP, (16)

Crossover Point Single-Point Crossover

10021 f0 |1 |1[0]. 1(1({0|0/1([1 |0

o

1(0|2|0 011 i I 0 B 0 s

o

Parentl

‘ Offspringl
—>

o

1/1(0(0|2L (1[0 11012 (1|0|2f1]|0]..

1101 (1|0|1|1[0].. 1j0({1(0|01 1

Offspring2

PP N < S

Parent2

Arithmetic Crossover ~ a =0.6171 Results are rounded to two decimal places
Parenti 13 2 4 16 6 Offspringl 994 277 591 1753 945

Ee——)>

Parent2 5 4 9 20 15 Offspring2 806 323 709 1847 1155

Figure 4 Crossover Operation

Parentt 1 1 0 0 0 0O 0 1 0 0 1 Offspringl 35 115 66 121 80 23 11 19 47 95 12
| | |
05 +0.8 +0.5
s ! |
Parent2 1 1 0 1|0 o0 1 1 o0 0.0 Offspring2 35 [110) 66 121 88 23 11 19 47 [90 12
Randomly flip the Equipment Selection Domain Randomly flip the Equipment Selection Domain

Figure 5 Mutation Operation
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(4) Integration of PSO Update Mechanism: After genetic operations, the velocity-position update
logic of PSO is introduced to optimize individuals. Specifically, velocity update and position update
are performed on the coding vector of each individual in the population in accordance with PSO rules,
as shown in Equations (18) and (19):

(18)
(19)

Vier =W Vi + ¢ 11 - (Ppest — Xi) + 2 12 - (Gpest — Xi)
Xi+1 = Xi + Via

Step 6: Termination Condition.

Determine whether the number of algorithm runs reaches the maximum number of iterations G, ..
If it is reached, output the optimal solution; otherwise, jump to Step 4 and rerun until the maximum
number of iterations is achieved.

4. Case Study
4.1 Data Description

To verify the effectiveness of the proposed algorithm model in practical production scenarios,
Enterprise Y is selected as the research case. Enterprise Y is a high-quality auto parts supplier in the
industry, which has long undertaken diversified parts demand orders from multiple automobile
manufacturers. Its production scheduling scenario is both complex and representative, providing a
practical application background for algorithm verification.The research object is the core production
workshop of the enterprise. This workshop is equipped with 15 types of processing equipment,
including lathes, milling equipments, grinding equipments, boring equipments, CNC equipment tools,
EDM equipments, and coordinate measuring equipments (CMMs), which can complete various
operations such as turning, shearing, drawing, wire cutting, milling, drilling, argon welding, flanging,
mold clamping, as well as inspection, packaging and storage. It is a typical flexible job shop
configuration with dual characteristics of operation flexibility and equipment flexibility. Partial
production information is shown in Table 2.

Table 2 Data of the FJSP Instance for Enterprise Y

Workpiece | Quantity | Due EOSiU%]:rlwt Processing Time Interval of Each Equipment
No.i % DateD; | 1 Ap4 tijm € [ETR, emax]
123 [0.37, 0.44, 0.39]-[0.43, 0.50, 0.44]
6,7 [0.98, 0.91]-[1.24, 1.18]
8,9 [0.53, 0.59]-[0.66, 0.73]
job1 250 10 4 [0.45]-[0.53]
101113 [0.20, 0.21, 0.205]-[0.235, 0.24, 0.23]
11,12 [0.46, 0.41]-[0.58, 0.51]
13,14,15 [0.26, 0.24, 0.25]-[0.315, 0.28, 0.275]
1234 [0.42, 0.41, 0.43, 0.44]-[0.48, 0.47, 0.51, 0.48]
6,7,8 [0.34, 0.38, 0.36]-[0.43, 0.50, 0.44]
9 [0.59]-[0.78]
job2 500 48 5 [0.87][1.15]
10,11 [0.21, 0.22]-[0.26, 0.25]
12 [0.52]-[0.64]
13,14 [0.26, 0.25]-[0.33, 0.31]
234 [0.50, 0.56, 0.54]-[0.59, 0.67, 0.64]
job3 600 55 6.7.8.9 [0.51, 055, 0.58, 0.60]-[0.63, 0.68, 0.72, 0.72]
8,0 [0.71, 0.65]-[0.91, 0.81]
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12 [1.05, 1.13]-[1.32, 1.45]
10,11,12 [0.21, 0.22, 0.215]-[0.255, 0.25, 0.245]
11,12 [0.62, 0.72]-[0.80, 0.92]
13,14,15 [0.32, 0.35, 0.34]-[0.40, 0.43, 0.42]
2345 [0.54, 0.61, 0.49, 0.56]-[0.64, 0.68, 0.59, 0.61]
6,7 [0.44, 0.49]-[0.54, 0.61]
8,9 [0.68, 0.76]-[0.85, 0.96]
job4 700 48 45 [0.84, 0.89]-[1.06, 1.13]
10.11 [0.17, 0.175]-[0.20, 0.195]
12 [0.62]-[0.80]
13,14 [0.29, 0.30]-[0.365, 0.35]
123 [0.80, 0.80, 0.80]-[1.00, 0.99, 1.00]
6,78 [0.67, 0.71, 0.69]-[0.83, 0.89, 0.86]
9 [0.91]-[1.24]
jobs 1900 48 45 [0.69, 0.72]-[0.85, 0.85]
10,11,12 [0.18, 0.185, 0.19]-[0.21, 0.205, 0.21]
11,12 [1.41, 1.53]-[1.81, 1.98]
13,14,15 [2.30, 2.48, 2.55]-[3.04, 3.32, 3.25]
123 [0.72, 0.81, 0.76]-[0.90, 1.01, 0.94]
6,7 [0.60, 0.66]- [0.75, 0.84]
8,9 [0.39, 0.45]-[0.47, 0.55]
job6 1800 72 45 [0.43, 0.44]-[0.51, 0.51]
10,11 [0.24, 0.25]-[0.30, 0.28]
11,12 [1.40, 1.46]-[1.80, 1.90]
13,14 [0.90, 0.94]-[1.26, 1.30]
1234 [1.10, 1.13, 1.33, 1.20]-[1.40, 1.43, 1.71, 1.35]
6,7, [0.41, 0.47, 0.42]-[0.49, 0.57, 0.52]
9 [0.35]-[0.50]
job7 300 24 5 [0.21]-[0.25]
10,11,12 [0.95, 1.03, 1.07]-[1.22, 1.33, 1.33]
11,12 [0.98, 1.22]-[1.24, 1.58]
13,14,15 [1.10, 1.16, 1.20]-[1.53, 1.46, 1.43]
2,34 [0.69, 0.78, 0.71]-[0.85, 0.97, 0.89]
6,78 [0.51, 0.56]-[0.63, 0.70]
8,9 [0.41, 0.43]- [0.51, 0.50]
jobs 600 24 5 [0.25]-[0.29]
10,11 [0.28, 0.29]-[0.36, 0.34]
11,12 [1.58, 1.61]-[2.06, 2.09]
13,14,15 [1.11, 1.17, 1.19]-[1.54, 1.55, 1.63]
2,34 [0.75, 0.79, 0.73]-[0.93, 0.98, 0.91]
6,78 [0.58, 0.60, 0.53]- [0.72, 0.76, 0.65]
8,9 [0.52, 0.54]-[0.64, 0.64]
job9 650 48 1,2 [1.33, 1.75]-[1.71, 2.28]
10,11 [0.22, 0.23]-[0.26, 0.25]
11,12 [1.70, 1.67]-[2.22, 2.17]
13,14 [1.30, 1.72]-[1.83, 2.40]
12 [0.53, 0.56]-[0.63, 0.68]
6,7 [0.56, 0.62]-[0.69, 0.77]
8,9 0.185, 0.20]-[0.215, 0.235]
job10 200 24 45 [0.034, 0.038]-[0.042, 0.046]
10,11,12 [0.185, 0.19, 0.195]-[0.215, 0.21, 0.21]
11,12 [0.40, 0.42]-[0.50, 0.49]
13,14,15 [0.25, 0.26, 0.27]-[0.31, 0.30, 0.30]
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Data Description

(1) Production Quantity: Due to the impact of personalized demands, actual orders are mostly
small-batch, making large-scale production difficult. Therefore, the job shop needs to adjust resources
to achieve economical production.

(2) Due Date: Since customers have different demand urgencies for workpieces, there is no linear
relationship between the due date and demand volume. In actual production, it is necessary to
prioritize satisfying workpieces with shorter due dates to reduce delay costs.

(3) Optional Equipment: Constrained by factors such as equipment production capacity limits,
process route dependence, and mold changeover time, some operations can be processed on multiple
pieces of equipment (up to 4 units), while others have only one optional piece of equipment available.

(4) Processing Time: Considering factors such as equipment failure rates and equipment
performance, the processing time of the same operation varies on different equipment. To reduce
production conflicts, the processing duration of any operation is allowed to fluctuate within a
reasonable process range, so as to quickly respond to emergencies such as equipment failures.

4.2 Algorithm Experiments

To verify the practical effectiveness of the proposed hybrid algorithm H-MPGA-II in flexible job
shop scheduling driven by personalized demands, this experiment takes the standard MOPSO
algorithm and standard NSGA-II algorithm as benchmark algorithms, and conducts tests around the
core objectives. The experiment designs test instances based on the actual production scenario data
of Enterprise Y, which is fully consistent with the problem description and model assumptions
mentioned earlier.The experimental environment is configured as follows: Intel (R) Core (TM) i7-
8565U CPU @ 1.80GHz (1.99 GHz), 32GB RAM, Dell Windows 10 system. The algorithms are
implemented in MATLAB 2023b. All algorithms are run independently 10 times, and then the mean
and standard deviation are calculated to eliminate the impact of random errors on the results and
ensure the reliability of the outcomes.

4.2.1 Performance Comparison

Combined with the research content of this paper and the parameter configuration experience of
previous studies [22], the same parameters are set: population size N=200, crossover probability Pc
=0.85, mutation probability Pm=0.5, PSO inertia weight w=0.5, learning factors c1=2.05, c2=2. The
algorithms are run 10 times under different iteration numbers, and the results are expressed as mean
+ standard deviation (core results + fluctuation range), as shown in Table 3 and Table 4.

Table 3 Comparison of Total Cost Solution Results

Number of Iterations TC(CNY)Mean + Standard Deviation
MOPSO NSGA-II H-MPGA-II
100 1076598.26+2450.32 1054869.85+1890.63 1046458.38+1560.82
200 1054502.81+£1980.56 1051955.04£1650.38 1041268.18+1320.65
300 1051684.29+1720.41 1051034.23+1420.52 1038455.80+1150.39
400 1048533.32+1560.78 1049028.83+£1280.45 1022822.47+980.56
Table 4 Comparison of Makespan Solution Results
. Makespan(h)Mean + Standard Deviation

Number of Iterations NMOPSO NSGAI TMPG AL
100 10.98+0.32 10.73£0.26 10.35+0.21
200 10.64+£0.28 10.460.23 10.33+0.17
300 10.39+0.25 10.43+0.20 9.41+0.14
400 10.31+£0.21 10.33+0.18 9.25+0.15
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As can be seen from the table data, H-IPNSGA-II demonstrates significant performance
advantages at different iterative stages, and its standard deviation is generally smaller than that of the
comparison algorithms, indicating better stability:

(1) Total Cost Control Performance: At 400 iterations, the average Total Cost (TC) of H-IPNSGA-
II reduces by 2.45% and 2.5% compared with MOPSO and NSGA-II, respectively. The core reason
lies in its accurate adaptation to the coupling relationship of multiple costs—through the hybrid search
strategy combining PSO and NSGA-II, it synchronously optimizes equipment assignment and
processing scheduling, which not only reduces the failure costs caused by equipment overload, but
also cuts down the flexibility adjustment costs brought by demand fluctuations.

(2) Makespan Optimization Effect: Similarly, the average Makespan of H-IPNSGA-II shortens by
10.3% and 10.4% in contrast to the comparison algorithms, respectively. The "equipment selection-
start time" dual-domain encoding design in this paper avoids the mechanical binding between
equipment and tasks in traditional encoding methods, and can more flexibly adapt to the customized
process routes of different workpieces, thus reducing the operation waiting time and equipment idle
time. It is particularly suitable for the order characteristics of multi-variety and small-batch
production in personalized manufacturing.

(3) Iterative Optimization Stability: The performance improvement of H-IPNSGA-II shows a
continuous and stable trend. With the increase of iteration times, its standard deviation continues to
decrease, approaching the optimal solution gradually with smaller fluctuations. In contrast, the
standard MOPSO and NSGA-II algorithms experience optimization stagnation after 200 iterations,
where the reduction amplitudes of Makespan and TC are less than 1%, and the standard deviation
declines slowly, making it difficult to break through the performance bottleneck further. This also
verifies the advantage of the H-MPGA-II hybrid strategy in avoiding premature convergence.

4.2.2 Convergence Comparison

Convergence is a key indicator for measuring the rapid optimization capability of algorithms in
dynamic demand scenarios, and the convergence curve reflects the speed and accuracy of algorithms
approaching the Pareto optimal solution. Figure 6 and Figure 7 show the convergence curves of the
three algorithms in the dimensions of Makespan and total cost, respectively, intuitively presenting the
differences in optimization efficiency at different iterative stages.

Comparison of Makespan Convergence Curves of Various «10%  Comparison of Total Cost Convergence Curves of Various Algorithms
T T T T T T T T T T T T

1.09

T T T ; ; :
—— 0PSO ——loPso
- = NSGA-II Lo — = NSGA-II

13.5 4 H-TPNSGA-TT || S H-IPNSGA-TT

_______________________________

I I I I I I I I I I I I L L I I I I
20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200
Number of Iterations Number of Iterations

Figure 6 Makespan Convergence Curve Figure 7 Total Cost Convergence Curve

As shown in the figures, the H-IPNSGA-II algorithm exhibits a much faster early-stage
convergence speed than the comparison algorithms, indicating that this algorithm can quickly respond
to dynamic demands such as urgent order insertion, thus reducing the time consumed for adjusting
scheduling schemes. In addition, the H-IPNSGA-II algorithm does not suffer from premature
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convergence, and its final convergence value is superior to those of the comparison algorithms. This
demonstrates that it can still maintain the accurate exploration of the optimal solution in the later
stage of the search process instead of premature stagnation, and thus can effectively meet the
sophisticated requirements of multi-objective optimization in personalized production.

In summary, under the same parameter settings, the algorithm proposed in this paper demonstrates
superior multi-objective optimization performance, faster convergence speed and stronger stability in
the practical case. The optimal scheduling Gantt chart of this algorithm is shown in Figure 8.

Gantt Chart of the Optimal Scheduling Scheme
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Figure 8 Optimal Scheduling Gantt Chart for the Enterprise Y Instance
4.3 Model Experiments

4.3.1 Result Analysis

The H-IPNSGA-II algorithm is applied to solve the model, and the obtained Pareto front solution
set covers scheduling schemes with different objective priorities. Three typical solutions are selected
for detailed analysis, as shown in Table 5. Enterprises can flexibly select suitable scheduling schemes
according to their own strategic objectives.

Table 5 Scheduling Schemes with Different Priorities

scheme | TC(CNY) | Makespan(h) ( CI;CY) ( C’;CY) ( C%CY) FCost(CNY) ( CI;\ICY) MC(CNY)
! 1024822.47 9.83 11876.35(1.16%) | 498235.12(48.62%) | S00916.85(48.88%) | 6239.80(0.61%) | 4567.12(0.44%) (?)?176%/3)
2 1132749.17 913 13842.51(122%) | 551237.64(48.66%) | 495874.65(43.78%) | 693023(0.61%) | 62345.78(5.50%) | 2518.36(0.22%)
3 1098721.33 10.04 12534.68(1.14%) | 529457.32(48.20%) | 499768.24(45.58%) | 6628.08(0.60%) 4(1832;0/‘0‘)5 2209.45(0.20%)

Scheme 1 is Cost-Oriented: Its core advantage lies in significantly reducing delay costs and
equipment failure costs through optimized resource allocation. It is suitable for regular production
scenarios with accurate demand forecasting and stable orders, where enterprises can achieve
economies of scale relying on long-term contracts and stable supply chains.

Scheme 2 is Efficiency-Prioritized: It features the highest total cost yet the shortest production
cycle, thus demonstrating significant advantages in scenarios involving urgent order insertion and
stringent customer due dates. This scheme maximizes production efficiency by increasing investment
in delay costs and equipment maintenance, making it ideal for responding to sudden changes in
market demand.

Scheme 3 is Balanced Type: It achieves a trade-off between cost and efficiency in terms of total
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cost and manufacturing cycle. The proportion of each cost item is relatively balanced, making it
applicable to scenarios with moderate demand fluctuations where both operational economy and
response speed need to be considered. It provides enterprises with a robust compromise decision
option.

Through the multi-dimensional comparison of the Pareto solution set, enterprises can flexibly
select suitable scheduling strategies according to order characteristics, market priorities and resource
constraints, so as to achieve dynamic balance between personalized demands and production
resources.

4.3.2 Sensitivity Analysis

To verify the robustness of the model in uncertain environments, this section focuses on two key
parameters—demand fluctuation amplitude and delay cost—to explore the influence law of parameter
changes on total cost (TC) and production cycle (Makespan), providing a quantitative basis for
enterprise decision-making.

(1) Impact of Demand Fluctuation AmplitudeTaking the average TC and Makespan under the
condition of +£5% demand fluctuation amplitude as the baseline, the change ratio of the results under
other demand fluctuation amplitudes relative to the baseline value is quantified. The simulation
results are shown in Table 6.

Table 6 Simulation Results of Demand Fluctuation

Fluctuation Amplitude | Average TC (CNY) | Average Makespan (h) Change Rate (vs £5%)
+5% 1050593.81 9.38 0%
+10% 1058562.80 9.61 TC+0.76%, Makespan+2.45%
+15% 1126848.19 10.35 TC+7.26%, Makespan+10.34%
+20% 1193848.19 11.23 TC+13.64%, Makespan+19.72%

There is a nonlinear positive correlation between demand fluctuation and scheduling objectives.
When the fluctuation amplitude is < £10%, the total cost (TC) and Makespan increase gently (with
the change rates both below 3%). The equipment and logistics resources are not saturated, and the
fluctuations can be absorbed through dynamic AGV path optimization and adaptive batch adjustment.
Exceeding this threshold will lead to equipment overloading, frequent adjustments to production
plans, intensified AGV congestion, and a sharp surge in failure and waiting costs. This is consistent
with the resource-constrained bottleneck effect of flexible job shops, verifying the model’s sensitive
response characteristic to fluctuation amplitude.

(2) Impact of Delay CostsAs a key factor affecting enterprise scheduling decisions, changes in
delay costs exert an important impact on production scheduling results. Simulation experiments were
conducted with different incremental gradients of unit delay cost, as detailed in Table 7.

Table 7 Simulation Results of Delay Cost

Unit Delay Cost (CNY per Average Delay Time (h) Average TC Delay Cost (Proportion)
piece-h) (CNY)
10 2.3 1053219.45 8250.06(0.78%)
15 1.2 1184842.47 11239.21(0.95%)
20 0.7 1168527.82 23521.58(2.01%)
25 0.2 1205630.81 37469.32(3.11%)

It can be seen that 15 CNY per piece per hour is the optimal threshold for delay costs. When the
delay cost is lower than this value, moderate delays can reduce the risk of equipment overload
operation; when it is equal to this value, multi-objective balance can be achieved through operation
sequencing optimization; when it is higher than this value, it may be necessary to implement
mandatory cycle shortening to offset the substantial delay costs with a small amount of failure costs.
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In summary, there is an obvious interaction effect between the two parameters, and the optimal
threshold of delay cost needs to be dynamically adapted in combination with order delivery
requirements: if the allowable order delay is < 2.5 h, a threshold of 10 CNY per piece per hour can
minimize the total cost (TC); if the delivery requirement is stringent (allowable delay < 1.5 h), a
threshold of 15-20 CNY per piece per hour is more suitable, where appropriate increase in delay cost
can avoid the sharp surge of failure cost; if near-zero delay is required (allowable delay < 0.5 h), a
threshold of 25 CNY per piece per hour can meet the delivery requirement, but additional standby
equipment needs to be configured to balance the cost. Overall, dynamic resource adaptation that
balances demands and costs is required in actual production.

5. Conclusion

This paper focuses on the personalized demand-driven production scenario with multi-variety and
small-batch characteristics. Aiming at the core problems of insufficient adaptation between
scheduling schemes and dynamic demands, as well as the difficulty in coordinating multi-objective
optimization and full-process cost control in this scenario, a dual-objective integrated scheduling
model for flexible job shops is constructed to minimize the total cost and makespan, which
comprehensively covers full-process cost elements including production, logistics, and delay costs.
The proposed H-IPNSGA-II algorithm organically integrates the fast optimization characteristics of
PSO and the multi-objective solution distribution advantages of NSGA-II, providing enterprises with
flexibly adaptable Pareto optimal decision-making schemes, and effectively supporting the needs of
resource allocation and dynamic response in personalized production.
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