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Abstract: In response to the challenges of high-mix low-volume production driven by 

personalized customization demands, existing research has predominantly focused on 

single-dimensional improvements, with insufficient comprehensive consideration of 

dynamic disturbances such as process variations and machine failures derived from 

customization requirements. To address this gap, this study develops a multi-objective 

mathematical model that simultaneously minimizes total production costs and makespan by 

integrating critical dynamic disturbance factors. An improved hybrid algorithm H-IPNSGA-

II combining particle swarm optimization (PSO) and non-dominated sorting genetic 

algorithm-II (NSGA-II) is proposed to solve the model. A case study involving an 

automotive parts manufacturing enterprise is conducted to validate the proposed 

methodology. Comparative experiments and sensitivity analysis demonstrate the superior 

performance of the model and algorithm, providing theoretical support for personalized 

production scheduling. This research contributes to advancing multi-objective optimization 

approaches in customized manufacturing environments with complex uncertainties. 

1. Introduction 

The manufacturing industry has undergone an iterative transformation of production paradigms, 

evolving from Mass Production (MP) and Mass Customization (MC) to Personalized Production (PP) 

[1]. Mass Production achieves cost and efficiency optimization through standardization and high-

volume production models but struggles to adapt to consumers’ diversified demands [2]; Mass 

Customization relies on modular design and flexible manufacturing systems to provide limited 

personalized configurations on the premise of cost control[3] [4]; while Personalized Production takes 

deep customer participation and full-custom production as its core, realizing highly customized goals 

through technology integration [5] [6]. Currently, Personalized Production has gradually replaced 

Mass Customization as the mainstream paradigm, with its core appeal being to balance production 

efficiency and cost-effectiveness while meeting unique customization needs[7] [8], which is more 

prevalent in the automotive manufacturing industry. 

However, traditional job-shop scheduling models are unable to adapt to dynamic demands such as 

product specification changes and urgent order insertions in personalized production, and are prone 

to inducing problems like unbalanced equipment loads and disrupted logistics routes, ultimately 
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leading to reduced production efficiency and rising overall costs [9]. As an extended form of the 

classic Job-Shop Scheduling Problem (JSP) [10], the Flexible Job-Shop Scheduling Problem (FJSP) 

boasts a core advantage: each operation can be processed on multiple alternative equipments. By 

simultaneously optimizing job sequencing, equipment assignment, and dynamic uncertainties, it 

achieves the coordinated improvement of production efficiency, on-time delivery rate, and equipment 

utilization. Serving as an effective solution to address personalized production, FJSP has become a 

research hotspot in both academic and industrial circles. 

Existing FJSP research still has notable shortcomings: most studies focus on single-objective or 

local optimization, with insufficient consideration of the coordination of multi-objective constraints 

[11]; there is insufficient adaptability to scenarios such as dynamic order changes and process 

specification adjustments derived from personalized demands; traditional algorithms still have room 

for improvement in balancing solution space coverage, local optimization accuracy, and convergence 

speed [12]. Based on this, this paper conducts research on the multi-objective integrated flexible job-

shop scheduling problem driven by personalized demands, with the main contributions as follows: 1) 

Integrate personalized constraints such as dynamic order changes and process specification 

adjustments to establish an integrated "demand-scheduling" multi-objective mathematical model, 

which accurately maps actual production scenarios; 2) Design a dual-domain encoding of "equipment 

selection - start time", active decoding and constraint repair mechanisms to ensure process 

compliance and no equipment conflicts, realizing full coverage of the solution space and feasible 

solution guarantee; 3) Optimize personalized genetic operations and algorithm fusion architecture to 

balance global search and local optimization capabilities, improving solution adaptability and 

efficiency in dynamic personalized scenarios. 

2. Literature Review 

Research on the Flexible Job-Shop Scheduling Problem (FJSP) mainly focuses on two core 

dimensions: modeling optimization and algorithm design, and a relatively systematic research system 

has been formed. However, its adaptability to personalized dynamic scenarios still needs further 

enhancement. 

In terms of modeling, scholars have extended their research from basic problem characterization 

to complex scenarios: Chan et al. [13] characterized FJSP as an integrated optimization problem of 

operation assignment and job sequencing under resource constraints, clarifying the core status of joint 

decision-making; Özgüven et al. [14]introduced process route and planning flexibility to construct a 

generalized mathematical model; Zhong et al. [12]converted the uncertain problem into a 

deterministic equivalent problem through chance-constrained programming for the uncertainty of 

processing time; Ge et al. [15] focused on personalized customization scenarios and conducted 

research on collaborative scheduling modeling of production and logistics, providing new ideas for 

demand-driven optimization. Nevertheless, existing models are still insufficient in depicting dynamic 

constraints derived from personalization (such as order changes and process adjustments). 

In terms of algorithm research, metaheuristic algorithms are the mainstream solution methods for 

FJSP [16]: Genetic Algorithm (GA) and its improved algorithms are the most widely used—Zhang 

et al. [17]improved the load balancing and robustness of the algorithm through strategy optimization; 

Moslehi et al. [18] combined Particle Swarm Optimization (PSO) with local search to enhance the 

solution efficiency of multi-objective problems; Wang et al. [19] developed a multi-objective genetic 

algorithm based on immune and entropy principles, effectively realizing the coordinated optimization 

among multiple objectives; Mei et al. [20] integrated an adaptive simulated annealing mechanism 

into the NSGA-II algorithm to optimize the scheduling performance under low-carbon objectives; 

Luo et al. [21]adopted a particle swarm algorithm combining multiple strategies, further improving 
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the optimization performance of PSO in scheduling problems. However, traditional algorithms still 

need to be improved in balancing solution space coverage and optimization efficiency in dynamic 

personalized scenarios. 

In summary, existing research has made remarkable progress in FJSP modeling and algorithms, 

but there are still shortcomings: first, insufficient consideration of the coordination of personalized 

dynamic constraints in multi-objective optimization; second, inadequate adaptability of models to 

personalized scenarios such as order changes and process adjustments; third, the adaptability and 

optimization efficiency of algorithms in dynamic scenarios need to be improved. Therefore, there is 

an urgent need to develop an integrated scheduling model and efficient solution algorithm adapted to 

the dynamic characteristics of personalized production, so as to provide technical support for 

manufacturing enterprises.  

3. Methodology 

3.1 Problem Definition 

To adapt to the trends of personalized customization and diversified demands in the automotive 

industry, and to ensure the adaptability and efficiency of scheduling schemes under the Make-to-

Order (MTO) production mode, this problem can be described as follows: An automotive functional 

component supplier undertakes customized production orders, and its production scenario features 

two core characteristics: “highly personalized” and “demand uncertainty”. Specifically:The set of 

customized workpieces to be processed in the workshop is defined as 𝐼 = {𝑖|𝑖 = 1,2, … , 𝐼} . Each 

workpiece 𝑖  corresponds to a unique customized production order and has exclusive processing 

requirements; the workshop is equipped with multiple processing equipment with differentiated 

functions, forming an equipment set 𝑀 = {𝑚|𝑚 = 1,2, … , 𝑀}  to meet the processing needs of 

different operations; each workpiece 𝑖 needs to complete 𝐽𝑖 operations following a specific process 

route, and the total set of operations for all workpieces is 𝐽 = {𝑗|𝑗 = 1,2, … , 𝐽}. The actual production 

scheduling is illustrated in Figure 1. 

Supplier

Transportation

Delivery Vehicle-1

Demander-1

Demander-2

Demander-n

需求收集

大模型解析

智能调度

优化输出

需求收集

大模型解析

智能调度

优化输出

需求收集

大模型解析

智能调度

优化输出

需求收集

大模型解析

优化输出

Highly 

personalized

Demand 

uncertainty

Manufacturing 

Workshop

Delivery Vehicle-n

Warehouse-1

Warehouse-2

Warehouse-n

Demander-1

Demander-2

Demander-n
 

Figure 1 Production Scheduling Schematic Diagram 

Based on actual production scenarios and academic modeling standards, this study sets the 

following assumptions: 

(1) The raw material supply is sufficient and meets quality requirements, with no risks of supply 
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disruptions or quality defects, ensuring production continuity. 

(2) The processing of different workpieces can be assigned processing priorities according to order 

urgency; the operations of the same workpiece follow a strict sequential order, and subsequent 

operations can only be initiated after the completion of the previous one. 

(3) Each operation 𝑗 can select 1 to 4 suitable pieces of equipment from the equipment set M for 

processing, which not only guarantees process continuity but also avoids redundancy of equipment 

resources. 

(4) A single piece of equipment can only process one operation of one workpiece at a time, and 

the processing of the operation cannot be interrupted. 

(5) A single workpiece can only undergo one operation on one piece of equipment at a time, with 

no parallel processing allowed. 

(6) The AGV system has no heterogeneous differences and is sufficient in quantity. During 

transportation, only the unit usage cost, transportation distance cost, and load weight cost are 

considered, while AGV scheduling conflicts are not taken into account. 

3.2 Model Construction and Algorithm Design 

Considering the scheduling characteristics of flexible job shops under personalized requirements, 

a dual-objective optimization system targeting the minimization of total cost and total makespan is 

constructed. The total cost consists of six types of costs, covering the entire process costs of 

personalized production. The total makespan is defined as the longest time span from the start of 

processing to the final completion of all workpieces, which directly reflects the workshop’s 

production efficiency and order response speed, adapting to the rapid delivery requirements of 

personalized demands. The definitions and value descriptions of key parameters and decision 

variables involved in the model are shown in Table 1. 

Table 1 Meanings and Values of Parameters and Variables 

Sets 

𝑖 Set of workpieces, 𝑖 = 1,2, … , 𝐼 

𝑗 Set of operations, 𝑗 = 1,2, … , 𝐽 

𝑚 Set of equipments, 𝑚 = 1,2, … , 𝑀 

 𝑣 Set of AGV, 𝑣 = 1,2, … , 𝑉 

parameters  

𝑞𝑖 
Actual production quantity of workpiece 𝑖: 𝑞𝑖 ∈ [𝑞𝑖

𝑝
× 0.9, 𝑞𝑖

𝑝
× 1.1], where 𝑞𝑖

𝑝
 denotes 

the demand forecast quantity 

𝑡𝑖𝑗𝑚 Processing time of operation 𝑗 of workpiece 𝑖 on equipment 𝑚: 𝑡𝑖𝑗𝑚 ∈ [𝑡𝑖𝑗𝑚
min, 𝑡𝑖𝑗𝑚

max] 

𝐶𝑚𝑐𝑎𝑝,𝑚 
Maximum hourly processing capacity of equipment 𝑚 : 
[12,15,18,16,14,10,12,13,14,8,11,9,19,21,23] 

𝑃𝑚 
Failure probability per unit overloaded piece count of equipment 𝑚 : 
[0.48,0.22,0.16,0.80,0.17,0.86,0.88,0.24,0.15,0.90,0.58,0.82,0.87,0.16,0.75] 

𝐶𝑓
𝑚 Unit fixed cost of equipment 𝑚: 𝐶𝑓

𝑚 = 50 yuan per unit-hour 

𝐶𝑎𝑔𝑣
𝑣  Unit operating cost of AGV: 45 yuan per unit-hour 

𝐶𝑚𝑔𝑚𝑡 Fixed workshop management cost: 100 yuan per hour 

𝐶𝑝,𝑖𝑗 Unit time production cost of operation 𝑗 of workpiece 𝑖: Varies significantly considering 

batch size and special operations. 

𝑤𝑖 Unit weight of workpiece 𝑖 (kg/piece): [6,9,12,10,16,15,8,11,13,4] 
𝑑𝑚𝑚′ Straight-line distance between different equipment (m) 
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𝐶𝑙 Logistics cost per unit weight per unit distance: 𝐶𝑙 = 0.1 yuan/kg⋅m 

𝐶𝑓𝑐 Unit demand deviation forecast cost: 𝐶𝑓𝑐 = 2 yuan/piece 

𝑁𝑝 Number of forecasts per unit standard cycle: 𝑁𝑝 = 5 

𝐶𝑑 Unit hourly delay cost per workpiece: 𝐶𝑑 = 15 yuan/piece-hour 

𝐷𝑖 Normal delivery date; 𝐷𝑖
′: Urgent delivery date (requiring 12 to 24 hours in advance) 

𝐶𝑚 Unit single failure cost of equipment: 𝐶𝑚 = 200 yuan per failure 

𝑆𝑖𝑗𝑚 Start Processing Time of operation 𝑗 of workpiece 𝑖 on equipment (h) 

𝑇𝑖 Total Time for workpiece i to complete all operations (h) 

𝑇𝑡𝑜𝑡𝑎𝑙 Total Production Cycle (Makespan) (h), 𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑚𝑎𝑥𝑇𝑖 

variables  

𝑧𝑖 {
1, 𝑈𝑟𝑔𝑒𝑛𝑡 𝑜𝑟𝑑𝑒𝑟 𝑟𝑒𝑞𝑢𝑖𝑟𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑒𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑥𝑖𝑗𝑚 {
1, 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑗 𝑜𝑓 𝑤𝑜𝑟𝑘𝑝𝑖𝑒𝑐𝑒 𝑖 𝑖𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑚

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(1) Fixed Cost (FC): It mainly includes the expenditures of manufacturing equipment, AGVs, and 

workshop management costs. Its value depends only on the total number of equipment and the total 

production cycle, and is independent of other dynamic factors in the production process. The details 

are as follows: 

𝐹𝐶 = ( ∑ 𝐶𝑓
𝑚

𝑀

𝑚=1

+ ∑ 𝐶𝑎𝑔𝑣
𝑣

𝑉

𝑣=1

+ 𝐶𝑚𝑔𝑚𝑡) × 𝑇𝑡𝑜𝑡𝑎𝑙 (1) 

𝑀  denotes the total number of equipment involved in production operations; 𝑇total = max(𝑇𝑖) 

represents the total production cycle (i.e., Makespan), which is the longest time from the start of 

production to the completion of all tasks. This parameter directly affects the cumulative total of fixed 

costs throughout the entire production cycle. 

(2) Production Cost (PC): It consists of consumable costs and labor costs incurred during the 

processing of different operations for each workpiece. The formula is as follows, where 𝐽 = ∑ 𝐽𝑖
𝑙
𝑖=1 : 

𝑃𝐶 = ∑ ∑ ∑ 𝐶𝑝,𝑖𝑗

𝑀

𝑚=1

𝐽

𝑗=1

𝐼

𝑖=1

× 𝑡𝑖𝑗𝑚 × 𝑞𝑖 × 𝑥𝑖𝑗𝑚 (2) 

(3) Internal Workshop Logistics Cost (LC): The AGV transportation cost is directly related to the 

load weight and travel distance. 

𝐿𝐶 = 𝐶𝑙 × ∑ [𝑤𝑖 × 𝑞𝑖 × ∑ ∑ ∑ 𝑑𝑚𝑚′

𝑀

𝑚′=1

𝑀

𝑚=1

𝐽𝑖−1

𝑗=1

× 𝑥𝑖𝑗𝑚 × 𝑥𝑖(𝑗+1)𝑚′]

𝐼

𝑖=1

(3) 

(4) Flexible Adjustment Cost (FCost): It refers to the adjustment cost arising from deviations 

between actual demand and forecast demand, covering additional costs incurred in links such as 

production plan adjustments, inventory strategy changes, and internal logistics and distribution 

optimization. 

𝐹𝐶𝑜𝑠𝑡 = 𝐶𝑓𝑐 × 𝑁𝑝 × ∑|𝑞𝑖 − 𝑞𝑖
𝑝

|

𝐼

𝑖=1

(4) 

(5) Delay Cost (DC): Due to dynamic changes in market demand or customers' urgent demands, 

the job shop may face emergencies. DC is used to measure the cost incurred by the failure to deliver 
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workpieces on time due to urgent order insertions. 

𝐷𝐶 = 𝐶𝑑 × ∑[𝑞𝑖 × max(0, 𝑇𝑖 − (𝐷𝑖 ⋅ (1 − 𝑧𝑖) + 𝐷𝑖
′ ⋅ 𝑧𝑖))]

𝐼

𝑖=1

(5) 

(𝐷𝑖 ⋅ (1 − 𝑧𝑖) + 𝐷𝑖
′ ⋅ 𝑧𝑖) represents the dynamic delivery date of workpiece i, and 𝑚𝑎𝑥  (0, 𝑇𝑖

−dynamic delivery date) is the actual delay time of workpiece i, ensuring that only the costs incurred 

by delayed deliveries are accounted for. 

(6) Equipment Failure Cost (MC) (including maintenance, downtime losses, overload, etc.): It is 

the cost caused by insufficient production capacity and one of the key indicators to measure the 

rationality of the scheduling scheme in the job shop of automotive enterprises.  

𝑀𝐶 = 𝐶𝑚 × ∑ [𝑃𝑚 × 𝑚𝑎𝑥 (0, ∑ ∑ 𝑞𝑖

𝐽

𝑗=1

𝐼

𝑖=1

× 𝑥𝑖𝑗𝑚 − 𝐶𝑚𝑐𝑎𝑝,𝑚 × 𝑇𝑚)]

𝑀

𝑚=1

(6) 

𝑇𝑚 = ∑ ∑ 𝑡𝑖𝑗𝑚
𝐽
𝑗=1

𝐼
𝑖=1 × 𝑥𝑖𝑗𝑚 denotes the total operating time of equipment m. The function of this 

formula is to accurately identify whether the actual total processing volume exceeds the maximum 

achievable processing volume. Failure costs will be incurred if it exceeds, otherwise no costs will be 

generated. 

In summary, this paper constructs a dual-objective optimization model. By simultaneously 

optimizing Total Cost (TC) and Makespan, the dynamic balance between production economy and 

timeliness can be achieved, adapting to the dual challenges of demand fluctuations and resource 

constraints. The formula is as follows: 

𝑚𝑖𝑛{𝑇𝐶, 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛}  (7) 

𝑇𝐶 = 𝐹𝐶 + 𝑃𝐶 + 𝐿𝐶 + 𝐹𝐶𝑜𝑠𝑡 + 𝐷𝐶 + 𝑀𝐶 (8) 

Constraints:  

𝑆𝑖(𝑗+1)𝑚′ ≥ 𝑆𝑖𝑗𝑚 + 𝑡𝑖𝑗𝑚 × 𝑥𝑖𝑗𝑚, ∀𝑖, 𝑗 = 1, . . . , 𝐽𝑖 − 1, 𝑚, 𝑚′ (9) 

𝑆𝑖′𝑗𝑚 ≥ 𝑆𝑖𝑗𝑚 + 𝑡𝑖𝑗𝑚 × 𝑥𝑖𝑗𝑚  𝑜𝑟  𝑆𝑖𝑗𝑚 ≥ 𝑆𝑖′𝑗𝑚 + 𝑡𝑖′𝑗𝑚 × 𝑥𝑖′𝑗𝑚, ∀𝑖 ≠ 𝑖′, 𝑗, 𝑚 (10) 

𝑡𝑖𝑗𝑚
𝑚𝑖𝑛 ≤ 𝑡𝑖𝑗𝑚 ≤ 𝑡𝑖𝑗𝑚

𝑚𝑎𝑥, ∀𝑖, 𝑗, 𝑚 (11) 

𝑥𝑖𝑗𝑚 ∈ {0,1}, 𝑆𝑖𝑗𝑚 ≥ 0, ∀𝑖, 𝑗, 𝑚 (12) 

Equation (9) represents the precedence constraint of operations. Only when the 𝑗-th operation of 

workpiece 𝑖  is indeed processed on equipment 𝑚  (i.e., 𝑥𝑖𝑗𝑚 = 1 ), 𝑡𝑖𝑗𝑚 × 𝑥𝑖𝑗𝑚  equals the actual 

processing time. At this point, the start time of the subsequent operation (𝑗 + 1) (denoted as 𝑆(𝑗+1)𝑚𝑖
) 

must be greater than or equal to the “start time + processing time” of the previous operation. If 𝑥𝑖𝑗𝑚 =

0  (this equipment does not process the operation), the product term is 0, and the constraint is 

automatically satisfied since 𝑆𝑖𝑗𝑚 ≥ 0, without affecting the scheduling of subsequent operations. 

Equation (10) is the equipment conflict constraint. For the same equipment m, the processing times 

of different workpieces cannot overlap, and only two feasible sequences exist: either the 𝑗 -th 

operation of workpiece 𝑖  is processed first (the start time of the 𝑗 -th operation of workpiece 𝑖′  is 

greater than or equal to the completion time of the 𝑗-th operation of workpiece 𝑖), or the 𝑗-th operation 

of workpiece 𝑖′ is processed first (the start time of the 𝑗-th operation of workpiece 𝑖 is greater than or 

equal to the completion time of the 𝑗-th operation of workpiece 𝑖′). The logical “OR” indicates that 

one of the two sequences must be selected, ensuring the equipment processes only one workpiece at 
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any given time. Equation (11) is the processing time constraint, which ensures the processing duration 

of any operation fluctuates within a reasonable process range to quickly respond to unforeseen 

circumstances such as equipment failures. Equation (12) is the variable value constraint. 𝑥𝑖𝑗𝑚 adopts 

a 0-1 value rule to indicate whether the operation is being processed, and 𝑆𝑖𝑗𝑚 ≥ 0 ensures the start 

time of any operation is non-negative, guaranteeing the rationality in the time dimension. 

3.3 Algorithm Design 

This paper integrates the advantages of multi-objective solution sets of NSGA-II with the fast 

optimization characteristics of PSO to propose the H-MPGA-II algorithm, and its algorithm flow is 

shown in Figure 2. The core steps and improvements are as follows: 
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Figure 2 Algorithm Flow 

Step 1: Parameter Initialization. Parameter initialization provides prerequisites for subsequent 

steps such as population initialization, PSO update, and crossover and mutation. 

Step 2: Population Initialization. Based on the process constraints of personalized orders and 

equipment processing capabilities, a constraint-aware initialization strategy   is adopted to avoid a 

large number of invalid solutions in the initial population and improve the initial quality of the 

algorithm. 

Step 3: Encoding and Decoding 

(1) To adapt to the dual-dimensional decision requirements of "equipment assignment - temporal 

scheduling" under personalized demands, a hierarchical dual-domain encoding structure is designed. 

This encoding method can effectively avoid the mechanical binding of equipment and time sequence, 

and improve the solution space coverage. As shown inFigure 3: The equipment selection domain 

indicates whether operation 𝑗 of workpiece 𝑖 is processed on equipment m (binary variable).The start 

time domain indicates the start time of the corresponding equipment m where the equipment selection 

is 1.For example, "a" indicates that operation 1 of workpiece 1 needs to be processed on M3, and the 

start time of the equipment is 3.5. 
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(2) Decoding is the core link of converting the encoded vector into a feasible scheduling scheme. 

Targeting the dynamic constraints under personalized demands, a decoding logic of active verification 

+ local repair is designed:Temporal verification: Traverse the start time Sijm of all operations, and 

verify whether 𝑆𝑖(𝑗+1)𝑚′ ≥ 𝑆𝑖𝑗𝑚 + 𝑡𝑖𝑗𝑚 × 𝑥𝑖𝑗𝑚 is satisfied. If not, correct 𝑆𝑖𝑗𝑚  to 𝑆𝑖(𝑗+1)𝑚′

.Equipment conflict verification: Count the processing task time sequence of each piece of equipment. 

If there is a conflict where the same equipment processes multiple operations simultaneously, 

prioritize operations with higher priority, and shift the start time of conflicting operations to the 

completion time of the previous operation. 

0 1 ... 0 0 1 0 0 0 1 ... 1 0 0 ... 1

Operation 1 of Workpiece 1 

requires the use of 

Equipment 3

Operation J of Workpiece I only 

requires the use of Equipment 1 

and Equipment M

0 3.5 5.5 7.8 4.2... ...

Operation 2 of Workpiece 1 

requires the use of 

Equipment 2

6.6 ... ...

a

 

Figure 3 Encoding Mechanism 

Step 4: Fitness Calculation. The larger the value, the better the individual, and the higher the 

chance of becoming a parent individual. Considering that enterprises may attach different levels of 

importance to the same objective in different periods, the weighted reciprocal method is adopted to 

construct the fitness function. Among them, 𝜔1 and 𝜔2 can be adjusted according to enterprise needs, 

enabling flexible changes in different priorities: 

𝐹𝑖𝑡𝑖 =
1

𝜔1 ⋅ 𝑇𝐶𝑖 + 𝜔2 ⋅ 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑖

(13) 

Step 5: Algorithm Fusion. The "individual optimal - global optimal" update mechanism of PSO is 

integrated into the genetic operations of NSGA-II to improve the algorithm's convergence speed and 

local optimization ability : 

(1) Non-dominated SortingIndividuals in the population are divided into different front levels. The 

dominance relationship between individuals is determined through pairwise comparison of their 

objective function values: if individual X is not worse than individual Y in all objectives and better 

than Y in at least one objective, then X dominates Y. By sequentially selecting non-dominated 

individuals layer by layer, a Pareto front distribution from Level 1 to subsequent levels is formed, 

which significantly improves computational efficiency (the maximum number of runs is reduced from 

𝑀𝑁3to 𝑀𝑁2). 

(2) Crowding Distance CalculationFor each objective dimension, the distance difference between 

adjacent individuals is calculated and normalized. Finally, the sum of distance differences across all 

dimensions is taken as the crowding distance value of the individual, as shown in Equations (14) and 

(15). Among them, 𝛿𝑚(𝑖) denotes the distance difference of individual i in the m-th objective 

dimension, and 𝐼(𝑖) is the crowding distance value. Through crowding distance sorting, individuals 

with a more uniform distribution are prioritized for retention, which effectively avoids excessive 

aggregation of the solution set in local areas and enhances the global search ability of the population. 

𝛿𝑚(𝑖) =
𝑓𝑚(𝑖 + 1) − 𝑓𝑚(𝑖 − 1)

𝑚𝑎𝑥
 

𝑓𝑚(𝑗) − 𝑚𝑖𝑛
 

𝑓𝑚(𝑗)
, 𝑗 ∈ 𝐹 (14) 

𝐼(𝑖) = ∑ 𝛿𝑚

𝑀

𝑚=1

(𝑖) (15) 

(3) Genetic Operations: To adapt to the characteristics of dual-domain encoding, improvements to 
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genetic operations are required. 

1) Selection: The higher the fitness value, the greater the probability of an individual being selected. 

The roulette wheel selection strategy makes it easier to select high-quality individuals as parent 

individuals, as shown in Equation (15). Among them, ∑ 𝐹𝑁
𝑘=1 𝑖𝑡𝑘  is the total fitness value of the 

population, and 𝑃𝑖 is the selection probability of the 𝑖-th individual. First, calculate the Fiti and 𝑃𝑖 

values of each individual in the population, then generate a random number𝑖 ∈ [∑ 𝑃𝑘
𝑖−1
𝑘=1 , ∑ 𝑃𝑘

𝑖
𝑘=1 ], 

the 𝑖-th individual is selected as a parent individual. This process is repeated N times until N parent 

individuals are obtained. 

2) Crossover: To avoid infeasible solutions, a dual-domain hierarchical crossover strategy is 

adopted. For the equipment selection domain: Single-point crossover is used. If all bits of an operation 

become 0 after crossover, randomly set one equipment bit to 1 to ensure at least one piece of 

equipment is selected; For the start time domain: Arithmetic crossover is used. The formula for 

calculating the continuous values at the corresponding positions of two parent individuals is shown 

in Equation (16). α takes a random value between 0 and 1 to improve population diversity. If the 

offspring time value is less than 0, it is forced to 0. The specific operation is shown in Figure 4. 

3) Mutation:Targeting the dynamics of personalized demands, an adaptive mutation strategy is 

adopted to improve population diversity, with specific operations shown in Figure 5. For the 

equipment selection domain: Randomly select a mutation bit and flip its 0-1 value. If there is no 

suitable equipment for the operation after flipping, re-randomly select a feasible piece of equipment; 

In the start time domain, a random perturbation strategy is implemented: a random number r within 

the interval [0, 1] is generated for each continuous value. If  𝑟 < 𝑃𝑚, perform perturbation according 

to 𝑆𝑖𝑗𝑚
′ = 𝑆𝑖𝑗𝑚 + 𝛥𝑡, where 𝛥𝑡 ∈ [0,1]h. If 𝑆𝑖𝑗𝑚

′ ≤ 0, set 𝑆𝑖𝑗𝑚
′ = 0. 

𝐹𝑃𝑖 =
𝐹𝑖𝑡𝑖

∑ 𝐹𝑁
𝑘=1 𝑖𝑡𝑘

(16) 

𝑆𝑖𝑗𝑚
𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔

= 𝛼 ∗ 𝑆𝑖𝑗𝑚
𝑃𝑎𝑟𝑒𝑛𝑡1 + (1 − 𝛼) ∗ 𝑆𝑖𝑗𝑚

𝑃𝑎𝑟𝑒𝑛𝑡2 (17) 

0 1 1 0 1 1 0 ... 0 1 1 0 0 1 1 01

0 1 1 0 1 1 0 ... 0 1 0 1 0 0 1 1

Crossover Point

1

Parent1

Parent2

0 1 1 0 1 1 0 ... 0 1 0 1 0 0 1 11

0 1 1 0 1 1 0 ... 0 1 1 0 0 1 1 01

Offspring1

Offspring2

Single-Point Crossover

2 4 16 613

0 1 1 03.0

Parent1

Parent2 11.0 6.6 12.1 8.83.5 4 9 20 155

Arithmetic Crossover      α=0.6171   Results are rounded to two decimal places

2.77 5.91 17.53 9.459.94

0 1 1 03.0

Offspring1

Offspring2 11.0 6.6 12.1 8.83.5 3.23 7.09 18.47 11.558.06

 

Figure 4 Crossover Operation 

1 0 0 0 0 0 1 0 0 11

0 1 1 0 1 1 0 ... 0 13.0

Parent1

Parent2 11.0 6.6 12.1 8.8 2.3 1.1 1.9 4.7 9.0 123.5

11.5 6.6 12.1 8.0 2.3 1.1 1.9 4.7 9.5 123.5

0 1 1 0 1 1 0 ... 0 13.0

Offspring1

Offspring2 11.0 6.6 12.1 8.8 2.3 1.1 1.9 4.7 9.0 123.5

-0.5 +0.8 +0.5

1 0 1 0 0 1 1 0 0 01

Randomly flip the Equipment Selection Domain Randomly flip the Equipment Selection Domain  

Figure 5 Mutation Operation 
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(4) Integration of PSO Update Mechanism: After genetic operations, the velocity-position update 

logic of PSO is introduced to optimize individuals. Specifically, velocity update and position update 

are performed on the coding vector of each individual in the population in accordance with PSO rules, 

as shown in Equations (18) and (19): 

𝑉𝑘+1 = 𝑤 ⋅ 𝑉𝑘 + 𝑐1 ⋅ 𝑟1 ⋅ (𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑘) + 𝑐2 ⋅ 𝑟2 ⋅ (𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑘) (18) 

𝑋𝑘+1 = 𝑋𝑘 + 𝑉𝑘+1 (19) 

Step 6: Termination Condition. 

Determine whether the number of algorithm runs reaches the maximum number of iterations 𝐺max. 

If it is reached, output the optimal solution; otherwise, jump to Step 4 and rerun until the maximum 

number of iterations is achieved. 

4. Case Study 

4.1 Data Description 

To verify the effectiveness of the proposed algorithm model in practical production scenarios, 

Enterprise Y is selected as the research case. Enterprise Y is a high-quality auto parts supplier in the 

industry, which has long undertaken diversified parts demand orders from multiple automobile 

manufacturers. Its production scheduling scenario is both complex and representative, providing a 

practical application background for algorithm verification.The research object is the core production 

workshop of the enterprise. This workshop is equipped with 15 types of processing equipment, 

including lathes, milling equipments, grinding equipments, boring equipments, CNC equipment tools, 

EDM equipments, and coordinate measuring equipments (CMMs), which can complete various 

operations such as turning, shearing, drawing, wire cutting, milling, drilling, argon welding, flanging, 

mold clamping, as well as inspection, packaging and storage. It is a typical flexible job shop 

configuration with dual characteristics of operation flexibility and equipment flexibility. Partial 

production information is shown in Table 2. 

Table 2 Data of the FJSP Instance for Enterprise Y 

Workpiece 

No.𝑖 
Quantity 

𝑞𝑖 

Due 

Date𝐷𝑖 

Optional 

Equipment 

𝑀 

Processing Time Interval of Each Equipment 

𝑡𝑖𝑗𝑚 ∈ [𝑡𝑖𝑗𝑚
min, 𝑡𝑖𝑗𝑚

max] 

job1 250 10 

1,2,3 [0.37, 0.44, 0.39]-[0.43, 0.50, 0.44] 

6,7 [0.98, 0.91]-[1.24, 1.18] 

8,9 [0.53, 0.59]-[0.66, 0.73] 

4 [0.45]-[0.53] 

10,11,13 [0.20, 0.21, 0.205]-[0.235, 0.24, 0.23] 

11,12 [0.46, 0.41]-[0.58, 0.51] 

13,14,15 [0.26, 0.24, 0.25]-[0.315, 0.28, 0.275] 

job2 500 48 

1,2,3,4 [0.42, 0.41, 0.43, 0.44]-[0.48, 0.47, 0.51, 0.48] 

6,7,8 [0.34, 0.38, 0.36]-[0.43, 0.50, 0.44] 

9 [0.59]-[0.78] 

5 [0.87]-[1.15] 

10,11 [0.21, 0.22]-[0.26, 0.25] 

12 [0.52]-[0.64] 

13,14 [0.26, 0.25]-[0.33, 0.31] 

job3 600 55 

2,3,4 [0.50, 0.56, 0.54]-[0.59, 0.67, 0.64] 

6,7,8,9 [0.51, 0.55, 0.58, 0.60]-[0.63, 0.68, 0.72, 0.72] 

8,9 [0.71, 0.65]-[0.91, 0.81] 
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1,2 [1.05, 1.13]-[1.32, 1.45] 

10,11,12 [0.21, 0.22, 0.215]-[0.255, 0.25, 0.245] 

11,12 [0.62, 0.72]-[0.80, 0.92] 

13,14,15 [0.32, 0.35, 0.34]-[0.40, 0.43, 0.42] 

job4 700 48 

2,3,4,5 [0.54, 0.61, 0.49, 0.56]-[0.64, 0.68, 0.59, 0.61] 

6,7 [0.44, 0.49]-[0.54, 0.61] 

8,9 [0.68, 0.76]-[0.85, 0.96] 

4,5 [0.84, 0.89]-[1.06, 1.13] 

10.11  [0.17, 0.175]-[0.20, 0.195] 

12 [0.62]-[0.80] 

13,14 [0.29, 0.30]-[0.365, 0.35] 

job5 1900 48 

1,2,3 [0.80, 0.80, 0.80]-[1.00, 0.99, 1.00] 

6,7,8 [0.67, 0.71, 0.69]-[0.83, 0.89, 0.86] 

9 [0.91]-[1.24] 

4,5 [0.69, 0.72]-[0.85, 0.85] 

10,11,12 [0.18, 0.185, 0.19]-[0.21, 0.205, 0.21] 

11,12 [1.41, 1.53]-[1.81, 1.98] 

13,14,15 [2.30, 2.48, 2.55]-[3.04, 3.32, 3.25] 

job6 1800 72 

1,2,3 [0.72, 0.81, 0.76]-[0.90, 1.01, 0.94] 

6,7 [0.60, 0.66]- [0.75, 0.84] 

8,9 [0.39, 0.45]-[0.47, 0.55] 

4,5 [0.43, 0.44]-[0.51, 0.51] 

10,11 [0.24, 0.25]-[0.30, 0.28] 

11,12 [1.40, 1.46]-[1.80, 1.90] 

13,14 [0.90, 0.94]-[1.26, 1.30] 

job7 300 24 

1,2,3,4  [1.10, 1.13, 1.33, 1.20]-[1.40, 1.43, 1.71, 1.35] 

6,7,8 [0.41, 0.47, 0.42]-[0.49, 0.57, 0.52] 

9 [0.35]-[0.50] 

5 [0.21]-[0.25] 

10,11,12 [0.95, 1.03, 1.07]-[1.22, 1.33, 1.33] 

11,12 [0.98, 1.22]-[1.24, 1.58] 

13,14,15 [1.10, 1.16, 1.20]-[1.53, 1.46, 1.43] 

job8 600 24 

2,3,4 [0.69, 0.78, 0.71]-[0.85, 0.97, 0.89] 

6,7,8 [0.51, 0.56]-[0.63, 0.70] 

8,9 [0.41, 0.43]- [0.51, 0.50] 

5 [0.25]-[0.29] 

10,11 [0.28, 0.29]-[0.36, 0.34] 

11,12 [1.58, 1.61]-[2.06, 2.09] 

13,14,15 [1.11, 1.17, 1.19]-[1.54, 1.55, 1.63] 

job9 650 48 

2,3,4 [0.75, 0.79, 0.73]-[0.93, 0.98, 0.91] 

6,7,8 [0.58, 0.60, 0.53]- [0.72, 0.76, 0.65] 

8,9 [0.52, 0.54]-[0.64, 0.64] 

1,2 [1.33, 1.75]-[1.71, 2.28] 

10,11 [0.22, 0.23]-[0.26, 0.25] 

11,12 [1.70, 1.67]-[2.22, 2.17] 

13,14 [1.30, 1.72]-[1.83, 2.40] 

job10 200 24 

1,2 [0.53, 0.56]-[0.63, 0.68] 

6,7 [0.56, 0.62]-[0.69, 0.77] 

8,9 0.185, 0.20]-[0.215, 0.235] 

4,5 [0.034, 0.038]-[0.042, 0.046] 

10,11,12 [0.185, 0.19, 0.195]-[0.215, 0.21, 0.21] 

11,12 [0.40, 0.42]-[0.50, 0.49] 

13,14,15 [0.25, 0.26, 0.27]-[0.31, 0.30, 0.30] 
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Data Description 

(1) Production Quantity: Due to the impact of personalized demands, actual orders are mostly 

small-batch, making large-scale production difficult. Therefore, the job shop needs to adjust resources 

to achieve economical production. 

(2) Due Date: Since customers have different demand urgencies for workpieces, there is no linear 

relationship between the due date and demand volume. In actual production, it is necessary to 

prioritize satisfying workpieces with shorter due dates to reduce delay costs. 

(3) Optional Equipment: Constrained by factors such as equipment production capacity limits, 

process route dependence, and mold changeover time, some operations can be processed on multiple 

pieces of equipment (up to 4 units), while others have only one optional piece of equipment available. 

(4) Processing Time: Considering factors such as equipment failure rates and equipment 

performance, the processing time of the same operation varies on different equipment. To reduce 

production conflicts, the processing duration of any operation is allowed to fluctuate within a 

reasonable process range, so as to quickly respond to emergencies such as equipment failures. 

4.2 Algorithm Experiments 

To verify the practical effectiveness of the proposed hybrid algorithm H-MPGA-II in flexible job 

shop scheduling driven by personalized demands, this experiment takes the standard MOPSO 

algorithm and standard NSGA-II algorithm as benchmark algorithms, and conducts tests around the 

core objectives. The experiment designs test instances based on the actual production scenario data 

of Enterprise Y, which is fully consistent with the problem description and model assumptions 

mentioned earlier.The experimental environment is configured as follows: Intel (R) Core (TM) i7-

8565U CPU @ 1.80GHz (1.99 GHz), 32GB RAM, Dell Windows 10 system. The algorithms are 

implemented in MATLAB 2023b. All algorithms are run independently 10 times, and then the mean 

and standard deviation are calculated to eliminate the impact of random errors on the results and 

ensure the reliability of the outcomes. 

4.2.1 Performance Comparison 

Combined with the research content of this paper and the parameter configuration experience of 

previous studies [22], the same parameters are set: population size N=200, crossover probability Pc

=0.85, mutation probability Pm=0.5, PSO inertia weight w=0.5, learning factors c1=2.05, c2=2. The 

algorithms are run 10 times under different iteration numbers, and the results are expressed as mean 

± standard deviation (core results + fluctuation range), as shown in Table 3 and Table 4. 

Table 3 Comparison of Total Cost Solution Results 

Number of Iterations 
TC(CNY)Mean ± Standard Deviation 

MOPSO NSGA-II H-MPGA-II 

100 1076598.26±2450.32 1054869.85±1890.63 1046458.38±1560.82 

200 1054502.81±1980.56 1051955.04±1650.38 1041268.18±1320.65 

300 1051684.29±1720.41 1051034.23±1420.52 1038455.80±1150.39 

400 1048533.32±1560.78 1049028.83±1280.45 1022822.47±980.56 

Table 4 Comparison of Makespan Solution Results 

Number of Iterations 
Makespan(h)Mean ± Standard Deviation 

MOPSO NSGA-II H-MPGA-II 

100 10.98±0.32 10.73±0.26 10.35±0.21 

200 10.64±0.28 10.46±0.23 10.33±0.17 

300 10.39±0.25 10.43±0.20 9.41±0.14 

400 10.31±0.21 10.33±0.18 9.25±0.15 

146



As can be seen from the table data, H-IPNSGA-II demonstrates significant performance 

advantages at different iterative stages, and its standard deviation is generally smaller than that of the 

comparison algorithms, indicating better stability: 

(1) Total Cost Control Performance: At 400 iterations, the average Total Cost (TC) of H-IPNSGA-

II reduces by 2.45% and 2.5% compared with MOPSO and NSGA-II, respectively. The core reason 

lies in its accurate adaptation to the coupling relationship of multiple costs—through the hybrid search 

strategy combining PSO and NSGA-II, it synchronously optimizes equipment assignment and 

processing scheduling, which not only reduces the failure costs caused by equipment overload, but 

also cuts down the flexibility adjustment costs brought by demand fluctuations. 

(2) Makespan Optimization Effect: Similarly, the average Makespan of H-IPNSGA-II shortens by 

10.3% and 10.4% in contrast to the comparison algorithms, respectively. The "equipment selection-

start time" dual-domain encoding design in this paper avoids the mechanical binding between 

equipment and tasks in traditional encoding methods, and can more flexibly adapt to the customized 

process routes of different workpieces, thus reducing the operation waiting time and equipment idle 

time. It is particularly suitable for the order characteristics of multi-variety and small-batch 

production in personalized manufacturing. 

(3) Iterative Optimization Stability: The performance improvement of H-IPNSGA-II shows a 

continuous and stable trend. With the increase of iteration times, its standard deviation continues to 

decrease, approaching the optimal solution gradually with smaller fluctuations. In contrast, the 

standard MOPSO and NSGA-II algorithms experience optimization stagnation after 200 iterations, 

where the reduction amplitudes of Makespan and TC are less than 1%, and the standard deviation 

declines slowly, making it difficult to break through the performance bottleneck further. This also 

verifies the advantage of the H-MPGA-II hybrid strategy in avoiding premature convergence. 

4.2.2 Convergence Comparison 

Convergence is a key indicator for measuring the rapid optimization capability of algorithms in 

dynamic demand scenarios, and the convergence curve reflects the speed and accuracy of algorithms 

approaching the Pareto optimal solution. Figure 6 and Figure 7 show the convergence curves of the 

three algorithms in the dimensions of Makespan and total cost, respectively, intuitively presenting the 

differences in optimization efficiency at different iterative stages. 

 

Figure 6 Makespan Convergence Curve Figure 7 Total Cost Convergence Curve 

As shown in the figures, the H-IPNSGA-II algorithm exhibits a much faster early-stage 

convergence speed than the comparison algorithms, indicating that this algorithm can quickly respond 

to dynamic demands such as urgent order insertion, thus reducing the time consumed for adjusting 

scheduling schemes. In addition, the H-IPNSGA-II algorithm does not suffer from premature 
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convergence, and its final convergence value is superior to those of the comparison algorithms. This 

demonstrates that it can still maintain the accurate exploration of the optimal solution in the later 

stage of the search process instead of premature stagnation, and thus can effectively meet the 

sophisticated requirements of multi-objective optimization in personalized production. 

In summary, under the same parameter settings, the algorithm proposed in this paper demonstrates 

superior multi-objective optimization performance, faster convergence speed and stronger stability in 

the practical case. The optimal scheduling Gantt chart of this algorithm is shown in Figure 8. 

  

Figure 8 Optimal Scheduling Gantt Chart for the Enterprise Y Instance 

4.3 Model Experiments 

4.3.1 Result Analysis 

The H-IPNSGA-II algorithm is applied to solve the model, and the obtained Pareto front solution 

set covers scheduling schemes with different objective priorities. Three typical solutions are selected 

for detailed analysis, as shown in Table 5. Enterprises can flexibly select suitable scheduling schemes 

according to their own strategic objectives. 

Table 5 Scheduling Schemes with Different Priorities 

scheme  𝑇𝐶(CNY) Makespan(h) 
𝐹𝐶 

(CNY) 
𝑃𝐶 

(CNY) 
𝐿𝐶 

(CNY) 
𝐹𝐶𝑜𝑠𝑡(CNY) 

𝐷𝐶 
(CNY) 

𝑀𝐶(CNY) 

1 1024822.47 9.83 11876.35(1.16%) 498235.12(48.62%) 500916.85(48.88%) 6239.80(0.61%) 4567.12(0.44%) 
987.23 

(0.10%) 

2 1132749.17 9.13 13842.51(1.22%) 551237.64(48.66%) 495874.65(43.78%) 6930.23(0.61%) 62345.78(5.50%) 2518.36(0.22%) 

3 1098721.33 10.04 12534.68(1.14%) 529457.32(48.20%) 499768.24(45.58%) 6628.08(0.60%) 
47823.45 

(4.38%) 
2209.45(0.20%) 

Scheme 1 is Cost-Oriented: Its core advantage lies in significantly reducing delay costs and 

equipment failure costs through optimized resource allocation. It is suitable for regular production 

scenarios with accurate demand forecasting and stable orders, where enterprises can achieve 

economies of scale relying on long-term contracts and stable supply chains. 

Scheme 2 is Efficiency-Prioritized: It features the highest total cost yet the shortest production 

cycle, thus demonstrating significant advantages in scenarios involving urgent order insertion and 

stringent customer due dates. This scheme maximizes production efficiency by increasing investment 

in delay costs and equipment maintenance, making it ideal for responding to sudden changes in 

market demand. 

Scheme 3 is Balanced Type: It achieves a trade-off between cost and efficiency in terms of total 
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cost and manufacturing cycle. The proportion of each cost item is relatively balanced, making it 

applicable to scenarios with moderate demand fluctuations where both operational economy and 

response speed need to be considered. It provides enterprises with a robust compromise decision 

option. 

Through the multi-dimensional comparison of the Pareto solution set, enterprises can flexibly 

select suitable scheduling strategies according to order characteristics, market priorities and resource 

constraints, so as to achieve dynamic balance between personalized demands and production 

resources. 

4.3.2 Sensitivity Analysis 

To verify the robustness of the model in uncertain environments, this section focuses on two key 

parameters—demand fluctuation amplitude and delay cost—to explore the influence law of parameter 

changes on total cost (TC) and production cycle (Makespan), providing a quantitative basis for 

enterprise decision-making. 

(1) Impact of Demand Fluctuation AmplitudeTaking the average TC and Makespan under the 

condition of ±5% demand fluctuation amplitude as the baseline, the change ratio of the results under 

other demand fluctuation amplitudes relative to the baseline value is quantified. The simulation 

results are shown in Table 6. 

Table 6 Simulation Results of Demand Fluctuation 

Fluctuation Amplitude Average TC (CNY) Average Makespan (h) Change Rate (vs ±5%) 

±5% 1050593.81 9.38 0% 

±10% 1058562.80 9.61 TC+0.76%, Makespan+2.45% 

±15% 1126848.19 10.35 TC+7.26%, Makespan+10.34% 

±20% 1193848.19 11.23 TC+13.64%, Makespan+19.72% 

There is a nonlinear positive correlation between demand fluctuation and scheduling objectives. 

When the fluctuation amplitude is ≤ ±10%, the total cost (TC) and Makespan increase gently (with 

the change rates both below 3%). The equipment and logistics resources are not saturated, and the 

fluctuations can be absorbed through dynamic AGV path optimization and adaptive batch adjustment. 

Exceeding this threshold will lead to equipment overloading, frequent adjustments to production 

plans, intensified AGV congestion, and a sharp surge in failure and waiting costs. This is consistent 

with the resource-constrained bottleneck effect of flexible job shops, verifying the model’s sensitive 

response characteristic to fluctuation amplitude. 

(2) Impact of Delay CostsAs a key factor affecting enterprise scheduling decisions, changes in 

delay costs exert an important impact on production scheduling results. Simulation experiments were 

conducted with different incremental gradients of unit delay cost, as detailed in Table 7. 

Table 7 Simulation Results of Delay Cost 

Unit Delay Cost (CNY per 

piece·h) 

Average Delay Time (h) Average TC 

(CNY) 

Delay Cost (Proportion) 

10 2.3 1053219.45 8250.06(0.78%) 

15 1.2 1184842.47 11239.21(0.95%) 

20 0.7 1168527.82 23521.58(2.01%) 

25 0.2 1205630.81 37469.32(3.11%) 

It can be seen that 15 CNY per piece per hour is the optimal threshold for delay costs. When the 

delay cost is lower than this value, moderate delays can reduce the risk of equipment overload 

operation; when it is equal to this value, multi-objective balance can be achieved through operation 

sequencing optimization; when it is higher than this value, it may be necessary to implement 

mandatory cycle shortening to offset the substantial delay costs with a small amount of failure costs. 
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In summary, there is an obvious interaction effect between the two parameters, and the optimal 

threshold of delay cost needs to be dynamically adapted in combination with order delivery 

requirements: if the allowable order delay is ≤ 2.5 h, a threshold of 10 CNY per piece per hour can 

minimize the total cost (TC); if the delivery requirement is stringent (allowable delay ≤ 1.5 h), a 

threshold of 15–20 CNY per piece per hour is more suitable, where appropriate increase in delay cost 

can avoid the sharp surge of failure cost; if near-zero delay is required (allowable delay ≤ 0.5 h), a 

threshold of 25 CNY per piece per hour can meet the delivery requirement, but additional standby 

equipment needs to be configured to balance the cost. Overall, dynamic resource adaptation that 

balances demands and costs is required in actual production. 

5. Conclusion 

This paper focuses on the personalized demand-driven production scenario with multi-variety and 

small-batch characteristics. Aiming at the core problems of insufficient adaptation between 

scheduling schemes and dynamic demands, as well as the difficulty in coordinating multi-objective 

optimization and full-process cost control in this scenario, a dual-objective integrated scheduling 

model for flexible job shops is constructed to minimize the total cost and makespan, which 

comprehensively covers full-process cost elements including production, logistics, and delay costs. 

The proposed H-IPNSGA-II algorithm organically integrates the fast optimization characteristics of 

PSO and the multi-objective solution distribution advantages of NSGA-II, providing enterprises with 

flexibly adaptable Pareto optimal decision-making schemes, and effectively supporting the needs of 

resource allocation and dynamic response in personalized production. 
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