Journal of Artificial Intelligence Practice (2025) DOI: 10.23977/jaip.2025.080406
Clausius Scientific Press, Canada ISSN 2371-8412 Vol. 8 Num. 4

A Four-Layer Security Governance Framework for LLM-
Based Al Agents

Yiang Gao'?®", Shanshan Wu?"

!China Telecom Research Institute, Shanghai, 201315, China
2China Telecom, Beijing, 100033, China
agaoya@chinatelecom.cn, Pwushsh@chinatelecom.cn
*Corresponding author

Keywords: Al agents; Security governance; Prompt injection; Memory poisoning;
Autonomous agents; LLM safety; Tool security

Abstract: As artificial intelligence advances from “dialogue intelligence” to “decision
intelligence,” Al agents built upon Large Language Models (LLMs) are becoming a
crucial force driving transformation across industries. However, their autonomous
capabilities in perception, decision-making, memory, and execution introduce systemic
security risks far beyond traditional LLM vulnerabilities. This paper presents a four-layer
security governance framework covering the full Perception—Decision—Memory—
Execution lifecycle to mitigate risks such as multi-source perception failures, decision
hallucination, memory poisoning, and malicious execution. By systematically mapping
each lifecycle phase to security requirements and controls, this framework provides
theoretically grounded and practically applicable guidance for the trustworthy and secure
development of Al agents.

1. Introduction
1.1 Rise of Al Agents and Security Challenges

Artificial intelligence is undergoing a transition from passive conversational systems toward
autonomous decision-making agents. Al agents powered by LLMs have evolved from basic
instruction executors into intelligent systems capable of complex reasoning and strategic planning.
They are increasingly capable of independently sensing environments, formulating action plans and
executing tasks as “digital collaborators.” Their deployment is accelerating across finance,
healthcare, smart manufacturing, and public services, reshaping productivity and service delivery
modelst.

However, enhanced autonomy increases security exposure. Al agents inherit common LLM
vulnerabilities such as prompt injection, adversarial attacks, and data poisoning, while also
introducing system-level risks caused by multimodal perception, autonomous reasoning, and real-
world execution. These risks exhibit strong scene-dependence and can trigger cascading failures.
For example, in April 2025, researchers discovered a severe vulnerability in an enterprise’s agent
demonstration system. Attackers could embed benign-looking natural language instructions — such

49

mailto:gaoya@chinatelecom.cn
mailto:bwushsh@chinatelecom.cn

as “download and execute tool X” — into a webpage, inducing an agent with operating system
privileges to retrieve and run a trojan. The compromised host was infiltrated within seconds. This
case demonstrates that once Al agents obtain execution privileges, language interfaces become a

new remote-attack surface'®.
1.2 Limitations of Current Governance Efforts

Existing Al security governance frameworks focus mainly on LLM-centric risks such as bias,
privacy leakage, or data poisoning!®'. However, Al agents introduce full-chain risks along
Perception—Decision-Memory—Execution, forming a “technology—process—ethics” failure chain.
Traditional perimeter-based defenses no longer suffice for systems capable of autonomous,
continuous, and high-frequency interaction with dynamic environments'®.

1.3 Research Scope and Contributions

This paper proposes a comprehensive four-layer governance framework covering Perception,
Decision, Memory, and Execution. We analyze the risks associated with each layer, propose
targeted governance measures, and explore future research directions®™. The framework provides
a structured approach for identifying and mitigating systemic security risks across an agent’s
lifecycle [°1"

2. Four-Layer Security Risk Analysis

Security risks in Al agents propagate across layers, where a single vulnerability may expand

along the chain of misperception — faulty decision — uncontrolled execution!?!, Each layer
introduces distinct risks, as shown in Figure 1:

| Knowledge

" Memoryand | "
@: I e L Bwe | | swe | Action
le } 7 i
. iComplexlogic. | S ;
User el PSEHED Model [LM Tool Prompt
- . i Se‘;fg'm i Perception ...l
Interaction Input _ Invocatio |
Interface Lo Percenti n Logic | Resources

B ; . ption : .

i Perceptl-?r\)_ " \Observation _ i Action |

Output .-~ -

3 Monitor
Events I i
hal Other Agent
AP|
H o i LLM
Service e~ Code Execution

MCP

: MCP
i Server

Tools Server

| Tools

Fig. 1. Risk view of Al Agent.
2.1 Perception Layer Risk: From Input Distortion to Environment Hijacking

The perception layer is highly vulnerable to manipulation such as prompt hijacking, sensor
interference, and communication protocol exploitation. By exploiting the perception—decision—
execution loop, attackers can convert textual or multimodal disturbances into real-world chain
reactions. For example, sending falsified LIiDAR reflections to an autonomous vehicle may
fabricate obstacles or hide real ones, leading to hazardous behavior.

50

2.2 Decision Layer Risk: From Hallucination to Logical Traps

Al agent decision-making relies on multi-step reasoning and repeated model invocations. Even
minor hallucinations or flawed assumptions may propagate and amplify across steps, resulting in
severe deviations from intended goals. In industrial scenarios, hallucinating a non-existent

equipment failure may cause unnecessary shutdowns, false procurement, and production losses'®.
2.3 Memory Layer Risk: From Privacy Leakage to Persistent Poisoning

Long-term memory stores high-value data and historical context, making it a prime target for
tampering. Once an attacker successfully plants malicious content through prompt injection or
interactive manipulation, the agent may repeatedly reference contaminated memory, leading to
stealthy, long-term behavioral deviation and severe privacy exposurell.

2.4 Execution Layer Risk: From Tool Abuse to Behavior Loss of Control

Execution-layer risks are the most dangerous, as agent outputs directly influence digital or
physical systems. Threats include tool misuse, privilege escalation, altered command routing, and
compromised APIs. For instance, via man-in-the-middle manipulation, an attacker could transform

a harmless home-automation command like “turn off the lights” into “unlock the door” 1],
3. Four-Layer Security Governance Framework

Security governance for Al agents must evolve toward ensuring safety, controllability, and
trustworthiness. We propose targeted governance across four layers, with enhanced detail below.

3.1 Perception Layer Security: Trusted Input and Anti-Interference

To protect the perception layer — the first line of defense — governance must enforce multiple
mechanisms:

- Input validation & sanitization pipelines: Every input (text, file, sensor, multimodal) should
pass through strict syntactic and semantic filters. This helps prevent prompt-injection, role-playing
attacks, covert payload embedding (e.g., steganography), or malformed sensor data.

- Source authentication & provenance checks: Use cryptographic signatures, TLS, or origin
verification to ensure inputs are from trusted sources. For web-facing agents, domain allow-lists and
origin-based trust scoring can be applied to mitigate risks arising from malicious external prompts.

- Sandboxed and limited tool invocation environment: Agents must not directly execute
arbitrary code or system commands upon reception of unvetted inputs. External tools and operating
system—level operations shall be executed within sandboxed containers, restricted virtual machines,
or capability-based isolation mechanisms enforcing least-privilege access.

- Communication encryption & message integrity: Communications between perception
modules, memory stores, and execution engines should be encrypted and authenticated (e.g., TLS +
HMAC). This prevents man-in-the-middle tampering or injection at the network layer.

- Rate limiting and segmentation: Limit how frequently large or untrusted inputs can be fed
into the agent, and segment input streams by trust level (e.g., user prompts, web content, sensor
data). This reduces risk of flooding or injection via high-volume inputs.

These measures help ensure that what the agent “perceives” remains within the bounds of trusted
and sanity-checked data, significantly reducing risk of perception-layer hijacking, as shown in
Figure 2.

51

Tool call @ ﬁ

security !
Tool call Limiting the scope Call rate limit |
monitoring of execution

% &

H Content filtering
1 Input/outp

Consnstency check E

\ o
ut safety <€
. &
H Credibility rating End-to-end
H traceability
E Communica
) tion
i security Message Reliability Security
ation verification

Fig. 2. Perception layer security protection
3.2 Decision Layer Security: Reliable Reasoning and Goal Consistency

At the decision layer — where reasoning and planning occur — we recommend a hybrid
approach combining automated and human-in-the-loop mechanisms:

- Decision verification & “critic” models: For sensitive or high-impact plans, deploy a
secondary verification model (a “critic agent”) to review and approve decisions before execution.
This model can flag unusual or high-risk plans (e.g., operations outside of normal scope).

- Confidence/uncertainty estimation & escalation: Use model-internal uncertainty metrics
(e.g., log-probability variance, MC-dropout, ensemble disagreement) to assess confidence in
outputs. If confidence is low or risk is high, escalate to human-in-the-loop for confirmation.

- Auditable audit trails and chain-of-thought logging: Maintain tamper-proof logs of
reasoning chains, decision history, and intermediate state. Append-only logs combined with
cryptographic signing and trusted timestamping mechanisms should be used to provide verifiable
traceability and tamper resistance.

- Boundary enforcement & goal constraints: Define strict operational policies: which types
of actions require human approval; which are restricted; what temporal or resource limits exist.
Systems shall employ policy engines to verify every decision against predefined safety boundaries.

- Periodic sanity-checks and simulation testing: Before executing any non-trivial action, run
simulated dry-runs or sandbox testing (especially for tool invocation or system calls) to detect
unintended side-effects or logic errors.

By combining automated reasoning, human oversight, logging, and policy constraints, this layer
ensures that even with powerful reasoning capabilities, the agent remains within safe, defined
boundaries, as shown in Figure 3.

oM i

Target consistency Dynamic protection Behavioral verification |
verification measures security audit

w© 7 .

Illl - Y Reduce
& AR 3

fmn, < (0 N model

? illusi
Abnormal task L Pl B S\communication flusion

detection interaction audit

@) wW L ve |
- < Y et |
@S —J d '
E Automatic approvnl Decision tracking Credibility

+ _ and manual review rating

Fig.3. Security protection for decision-makers

52

3.3 Memory Layer Security: Data Integrity, Controlled Access and Self-Healing

Given the long-term and stateful nature of memory in Al agents, memory-layer governance must
handle integrity, confidentiality, and resilience against poisoning:

- Memory write authorization & provenance tracking: Only allow memory writes from
vetted and authenticated sources (system prompts, verified user input, sanitized tools). Each log
entry should be tagged with metadata—including source, timestamp, and cryptographic signature—
and recorded in an append-only log to prevent tampering.

- Memory classification & sensitivity labeling: Automatically classify stored data based on
content type (e.g., private data, operational logs, general facts). Differential access controls and
security policies should be applied based on data sensitivity, including encryption of sensitive
segments, restriction of retrieval privileges, and output sanitization.

- Anomaly detection & memory sanitization routine: Periodically scan memory content for
suspicious patterns or outliers (e.g., improbable instructions, malicious-looking payloads, hidden
triggers).

- Dual-memory design + “experience distillation”: Inspired by recent work A-MemGuard,
maintain two memory layers: a “raw memory” for all entries, and a “trusted memory” for vetted,
sanitized content. Before memory-derived information is used for decision execution, it should be
validated against a trusted memory store, with suspicious or flagged entries routed to manual review
or automated quarantine workflows[1].

- Memory-use auditing & context-aware retrieval controls: When the agent retrieves
memory, check context and access source. For high-risk operations, retrieval should be restricted to
trusted memory, with blocking or sanitization applied when context is untrusted or ambiguous.

- Regular memory integrity snapshots & rollback capability: Periodically snapshot memory
state, sign the snapshot, and maintain versioning. In case of detected compromise, the system can
roll back to the last trusted snapshot.

These protections enhance memory security, mitigate long-term poisoning risks, and increase

E Content Storage @ O

i security security \

H Content

! . anomaly
Security Vector detection

' Database

/

— KY? 3 y 517 Encryption and
[B I < = - Verification
Sandbox ~E 2 — & i
technology Z'g - ’ 2 & 4 &
isolation -
Contextual
‘ Policy Control
Kernel-level @
encryption Session isolation

Fig.4. Memory layer security protection
3.4 Execution Layer Security: Behavior Constraints, Monitoring, and Real-Time Mitigation

Execution is where governance becomes crucial — once an agent acts, damage may already be
done.

53

- Least-privilege tool permissions & capability scoping: Grant each tool invocation only the
minimal privileges required. Broad permissions (e.g., full filesystem access or unrestricted network
calls) should be avoided in favor of scoped capability tokens that explicitly define permitted
operations, such as read-only access, network-limited communication, or API-specific privileges.

- Sandboxed / isolated execution environments: All tool calls should run in secure sandboxes
(containers, VMs) with limited resource and network access. High-risk tools, such as system calls
and operating system-level commands, should be executed within tightly controlled virtual
machines or emulated environments.

- Pre-execution simulation / dry-run sandbox tests: For complex operations, first simulate
actions in a virtual/sandbox environment to detect undesirable side-effects (e.g., excessive network
requests, privilege escalation).

- Runtime behavior monitoring & anomaly detection: Monitor execution behavior (resource
usage, network traffic, file 1/0) in real time. Behavioral deviations from expected patterns should
trigger immediate intervention, including agent suspension, permission revocation, incident logging,
and human operator notification.

- Human-in-the-loop confirmation for high-risk actions: For irreversible or highly sensitive
operations (e.g., data deletion, configuration change, code execution, external calls), require explicit
human confirmation.

- Comprehensive logging, audit trail, and post-mortem analysis: Record all execution
events, inputs, outputs, context, and tool responses. Immutable logs should be maintained to support
forensic analysis and accountability, and leveraged to enable rollback, incident response, and
compliance reporting.

- Periodic security audits & red-teaming: Conduct regular red-teaming and adversarial testing
(e.g., prompt injection, malicious file uploads, memory poisoning) under realistic threat models.
The effectiveness of proposed defense mechanisms can be systematically evaluated using
benchmarks such as the Agent Security Bench (ASB), as shown in Figure 5.

i Task Behavioral safety Security i
i recognition o Block i
| o= =
i - i
! ? 2 Restricting tool Verification i
! ;\) access mechanism :
: O © !@ i

Log monitorin — 7 i
9 9 \3 SV Isolate malicious' |

(55, &5]) 7 agents -

o=

!) Dynamic response |
! Deception :
! detection Io) .

Behavior Target offset i
! detection detection "
|

Fig.5. Execution layer security protection
4. Discussion

The proposed framework offers a comprehensive governance structure for securing Al agents
across all lifecycle layers. But, several open challenges remain:

- Autonomous embodied agents and physical-world safety: For agents controlling robots,
vehicles, or other real-world actuators, physical safety and environment uncertainty introduce

additional risks. Extending the governance framework to cover sensor fusion reliability, real-time
fail-safes, and physical hazard mitigation is essential.

- Multi-agent systems (MAS) and coordinated risks: In systems with multiple collaborating
agents, inter-agent communication and shared resources can amplify vulnerabilities. Methods for
consensus-based anomaly detection (e.g., as in BlindGuard) may help, but multi-agent defense
remains nascent.[3]

- Evaluation standards and benchmarks: While benchmarks like ASB provide a starting
point, the community lacks universally accepted evaluation metrics for agent safety across contexts.
Expanding and standardizing metrics for tool-safety, memory integrity, and cross-layer attacks is
vital.

- Governance vs. usability tradeoffs: Stricter controls (sanitization, human-in-the-loop,
sandboxing) may hamper the flexibility and efficiency that make agents appealing. Striking a
balance between security and usability demands careful design.

- Regulatory and compliance considerations: As agents are deployed in sensitive domains
(healthcare, finance, infrastructure), compliance with data protection, auditability, and responsibility
attribution becomes critical. Integrating the framework with organizational risk governance (e.g.,
ISO/IEC standards, audit logs, access control policies) will be an important next step.

5. Conclusion

Al agents are transforming industries but also introduce unprecedented security challenges
across their entire lifecycle. The Perception—Decision—Memory—Execution governance framework
presented in this paper offers a structured method for identifying vulnerabilities and applying
layered controls. By combining input sanitization, reasoning verification, memory integrity
protection, execution monitoring, and human oversight, we aim to enable robust, trustworthy, and
controllable Al agent deployment. As Al agents continue to evolve and integrate deeply into real-
world systems, such comprehensive governance becomes essential for sustainable technological and
societal progress.

References

[1] Z. Li, H. Wang, and M. Chen, “Security of LLM-based agents regarding attacks, defenses, and applications: A
comprehensive survey,” Information Fusion, vol. 110, pp. 1-25, Jan. 2026.

[2] J. Patel, R. Gupta, and S. Kumar, “Security concerns for Large Language Models: A survey,” Journal of
Information Security and Applications, vol. 85, pp. 103-118, Dec. 2025.

[3] M. Rodriguez, T. Johnson, and A. Lee, “SpAIware: Uncovering a novel artificial intelligence attack vector through
persistent memory in LLM applications and agents,” Future Generation Computer Systems, vol. 162, pp. 44-59, Feb.
2026.

[4] Y. Zhang, Q. Liu, and L. Sun, “A-MemGuard: A proactive defense framework for LLM-based agent memory,” arXiv
preprint arXiv: 2510.02373, Oct. 2025.

[5] H. Ren, X. Zhao, and P. Wang, “BlindGuard: Safeguarding LLM-based multi-agent systems under unknown
attacks,” arXiv preprint arXiv: 2508.08127, Aug. 2025.

[6] A. Smith, D. Torres, and K. Patel, “Agent Security Bench (ASB): Formalizing and benchmarking attacks and
defenses in LLM-based agents,” arXiv preprint arXiv: 2410.02644, Oct. 2024.

55

