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Abstract: As artificial intelligence advances from “dialogue intelligence” to “decision 

intelligence,” AI agents built upon Large Language Models (LLMs) are becoming a 

crucial force driving transformation across industries. However, their autonomous 

capabilities in perception, decision-making, memory, and execution introduce systemic 

security risks far beyond traditional LLM vulnerabilities. This paper presents a four-layer 

security governance framework covering the full Perception–Decision–Memory–

Execution lifecycle to mitigate risks such as multi-source perception failures, decision 

hallucination, memory poisoning, and malicious execution. By systematically mapping 

each lifecycle phase to security requirements and controls, this framework provides 

theoretically grounded and practically applicable guidance for the trustworthy and secure 

development of AI agents. 

1. Introduction 

1.1 Rise of AI Agents and Security Challenges 

Artificial intelligence is undergoing a transition from passive conversational systems toward 

autonomous decision-making agents. AI agents powered by LLMs have evolved from basic 

instruction executors into intelligent systems capable of complex reasoning and strategic planning. 

They are increasingly capable of independently sensing environments, formulating action plans and 

executing tasks as “digital collaborators.” Their deployment is accelerating across finance, 

healthcare, smart manufacturing, and public services, reshaping productivity and service delivery 

models
[1]

. 

However, enhanced autonomy increases security exposure. AI agents inherit common LLM 

vulnerabilities such as prompt injection, adversarial attacks, and data poisoning, while also 

introducing system-level risks caused by multimodal perception, autonomous reasoning, and real-

world execution. These risks exhibit strong scene-dependence and can trigger cascading failures. 

For example, in April 2025, researchers discovered a severe vulnerability in an enterprise’s agent 

demonstration system. Attackers could embed benign-looking natural language instructions — such 
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as “download and execute tool X” — into a webpage, inducing an agent with operating system 

privileges to retrieve and run a trojan. The compromised host was infiltrated within seconds. This 

case demonstrates that once AI agents obtain execution privileges, language interfaces become a 

new remote-attack surface
[6]

. 

1.2 Limitations of Current Governance Efforts 

Existing AI security governance frameworks focus mainly on LLM-centric risks such as bias, 

privacy leakage, or data poisoning[2] . However, AI agents introduce full-chain risks along 

Perception–Decision–Memory–Execution, forming a “technology–process–ethics” failure chain. 

Traditional perimeter-based defenses no longer suffice for systems capable of autonomous, 

continuous, and high-frequency interaction with dynamic environments[6]. 

1.3 Research Scope and Contributions 

This paper proposes a comprehensive four-layer governance framework covering Perception, 

Decision, Memory, and Execution. We analyze the risks associated with each layer, propose 

targeted governance measures, and explore future research directions
[3][4]

. The framework provides 

a structured approach for identifying and mitigating systemic security risks across an agent’s 

lifecycle [5]"  

2. Four-Layer Security Risk Analysis 

Security risks in AI agents propagate across layers, where a single vulnerability may expand 

along the chain of misperception → faulty decision → uncontrolled execution
[1][2]

. Each layer 

introduces distinct risks, as shown in Figure 1: 

 

Fig. 1. Risk view of AI Agent. 

2.1 Perception Layer Risk: From Input Distortion to Environment Hijacking 

The perception layer is highly vulnerable to manipulation such as prompt hijacking, sensor 

interference, and communication protocol exploitation. By exploiting the perception–decision–

execution loop, attackers can convert textual or multimodal disturbances into real-world chain 

reactions. For example, sending falsified LiDAR reflections to an autonomous vehicle may 

fabricate obstacles or hide real ones, leading to hazardous behavior. 
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2.2 Decision Layer Risk: From Hallucination to Logical Traps 

AI agent decision-making relies on multi-step reasoning and repeated model invocations. Even 

minor hallucinations or flawed assumptions may propagate and amplify across steps, resulting in 

severe deviations from intended goals. In industrial scenarios, hallucinating a non-existent 

equipment failure may cause unnecessary shutdowns, false procurement, and production losses
[6]

. 

2.3 Memory Layer Risk: From Privacy Leakage to Persistent Poisoning 

Long-term memory stores high-value data and historical context, making it a prime target for 

tampering. Once an attacker successfully plants malicious content through prompt injection or 

interactive manipulation, the agent may repeatedly reference contaminated memory, leading to 

stealthy, long-term behavioral deviation and severe privacy exposure[4]. 

2.4 Execution Layer Risk: From Tool Abuse to Behavior Loss of Control 

Execution-layer risks are the most dangerous, as agent outputs directly influence digital or 

physical systems. Threats include tool misuse, privilege escalation, altered command routing, and 

compromised APIs. For instance, via man-in-the-middle manipulation, an attacker could transform 

a harmless home-automation command like “turn off the lights” into “unlock the door”
[3][6]

. 

3. Four-Layer Security Governance Framework 

Security governance for AI agents must evolve toward ensuring safety, controllability, and 

trustworthiness. We propose targeted governance across four layers, with enhanced detail below. 

3.1 Perception Layer Security: Trusted Input and Anti-Interference 

To protect the perception layer — the first line of defense — governance must enforce multiple 

mechanisms: 

• Input validation & sanitization pipelines: Every input (text, file, sensor, multimodal) should 

pass through strict syntactic and semantic filters. This helps prevent prompt-injection, role-playing 

attacks, covert payload embedding (e.g., steganography), or malformed sensor data. 

• Source authentication & provenance checks: Use cryptographic signatures, TLS, or origin 

verification to ensure inputs are from trusted sources. For web-facing agents, domain allow-lists and 

origin-based trust scoring can be applied to mitigate risks arising from malicious external prompts. 

• Sandboxed and limited tool invocation environment: Agents must not directly execute 

arbitrary code or system commands upon reception of unvetted inputs. External tools and operating 

system–level operations shall be executed within sandboxed containers, restricted virtual machines, 

or capability-based isolation mechanisms enforcing least-privilege access. 

• Communication encryption & message integrity: Communications between perception 

modules, memory stores, and execution engines should be encrypted and authenticated (e.g., TLS + 

HMAC). This prevents man-in-the-middle tampering or injection at the network layer. 

• Rate limiting and segmentation: Limit how frequently large or untrusted inputs can be fed 

into the agent, and segment input streams by trust level (e.g., user prompts, web content, sensor 

data). This reduces risk of flooding or injection via high-volume inputs. 

These measures help ensure that what the agent “perceives” remains within the bounds of trusted 

and sanity-checked data, significantly reducing risk of perception-layer hijacking, as shown in 

Figure 2. 
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Fig. 2. Perception layer security protection 

3.2 Decision Layer Security: Reliable Reasoning and Goal Consistency 

At the decision layer — where reasoning and planning occur — we recommend a hybrid 

approach combining automated and human-in-the-loop mechanisms: 

• Decision verification & “critic” models: For sensitive or high-impact plans, deploy a 

secondary verification model (a “critic agent”) to review and approve decisions before execution. 

This model can flag unusual or high-risk plans (e.g., operations outside of normal scope). 

• Confidence/uncertainty estimation & escalation: Use model-internal uncertainty metrics 

(e.g., log-probability variance, MC-dropout, ensemble disagreement) to assess confidence in 

outputs. If confidence is low or risk is high, escalate to human-in-the-loop for confirmation. 

• Auditable audit trails and chain-of-thought logging: Maintain tamper-proof logs of 

reasoning chains, decision history, and intermediate state. Append-only logs combined with 

cryptographic signing and trusted timestamping mechanisms should be used to provide verifiable 

traceability and tamper resistance. 

• Boundary enforcement & goal constraints: Define strict operational policies: which types 

of actions require human approval; which are restricted; what temporal or resource limits exist. 

Systems shall employ policy engines to verify every decision against predefined safety boundaries. 

• Periodic sanity-checks and simulation testing: Before executing any non-trivial action, run 

simulated dry-runs or sandbox testing (especially for tool invocation or system calls) to detect 

unintended side-effects or logic errors. 

By combining automated reasoning, human oversight, logging, and policy constraints, this layer 

ensures that even with powerful reasoning capabilities, the agent remains within safe, defined 

boundaries, as shown in Figure 3. 

 

Fig.3. Security protection for decision-makers 
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3.3 Memory Layer Security: Data Integrity, Controlled Access and Self-Healing 

Given the long-term and stateful nature of memory in AI agents, memory-layer governance must 

handle integrity, confidentiality, and resilience against poisoning: 

• Memory write authorization & provenance tracking: Only allow memory writes from 

vetted and authenticated sources (system prompts, verified user input, sanitized tools). Each log 

entry should be tagged with metadata—including source, timestamp, and cryptographic signature—

and recorded in an append-only log to prevent tampering. 

• Memory classification & sensitivity labeling: Automatically classify stored data based on 

content type (e.g., private data, operational logs, general facts). Differential access controls and 

security policies should be applied based on data sensitivity, including encryption of sensitive 

segments, restriction of retrieval privileges, and output sanitization. 

• Anomaly detection & memory sanitization routine: Periodically scan memory content for 

suspicious patterns or outliers (e.g., improbable instructions, malicious-looking payloads, hidden 

triggers).  

• Dual-memory design + “experience distillation”: Inspired by recent work A-MemGuard, 

maintain two memory layers: a “raw memory” for all entries, and a “trusted memory” for vetted, 

sanitized content. Before memory-derived information is used for decision execution, it should be 

validated against a trusted memory store, with suspicious or flagged entries routed to manual review 

or automated quarantine workflows[1].  

• Memory-use auditing & context-aware retrieval controls: When the agent retrieves 

memory, check context and access source. For high-risk operations, retrieval should be restricted to 

trusted memory, with blocking or sanitization applied when context is untrusted or ambiguous. 

• Regular memory integrity snapshots & rollback capability: Periodically snapshot memory 

state, sign the snapshot, and maintain versioning. In case of detected compromise, the system can 

roll back to the last trusted snapshot. 

These protections enhance memory security, mitigate long-term poisoning risks, and increase 

traceability — turning memory from a vulnerability into a controllable asset, as shown in Figure 4. 

 

Fig.4. Memory layer security protection 

3.4 Execution Layer Security: Behavior Constraints, Monitoring, and Real-Time Mitigation 

Execution is where governance becomes crucial — once an agent acts, damage may already be 

done.  
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• Least-privilege tool permissions & capability scoping: Grant each tool invocation only the 

minimal privileges required. Broad permissions (e.g., full filesystem access or unrestricted network 

calls) should be avoided in favor of scoped capability tokens that explicitly define permitted 

operations, such as read-only access, network-limited communication, or API-specific privileges. 

• Sandboxed / isolated execution environments: All tool calls should run in secure sandboxes 

(containers, VMs) with limited resource and network access. High-risk tools, such as system calls 

and operating system–level commands, should be executed within tightly controlled virtual 

machines or emulated environments. 

• Pre-execution simulation / dry-run sandbox tests: For complex operations, first simulate 

actions in a virtual/sandbox environment to detect undesirable side-effects (e.g., excessive network 

requests, privilege escalation). 

• Runtime behavior monitoring & anomaly detection: Monitor execution behavior (resource 

usage, network traffic, file I/O) in real time. Behavioral deviations from expected patterns should 

trigger immediate intervention, including agent suspension, permission revocation, incident logging, 

and human operator notification. 

• Human-in-the-loop confirmation for high-risk actions: For irreversible or highly sensitive 

operations (e.g., data deletion, configuration change, code execution, external calls), require explicit 

human confirmation. 

• Comprehensive logging, audit trail, and post-mortem analysis: Record all execution 

events, inputs, outputs, context, and tool responses. Immutable logs should be maintained to support 

forensic analysis and accountability, and leveraged to enable rollback, incident response, and 

compliance reporting. 

• Periodic security audits & red-teaming: Conduct regular red-teaming and adversarial testing 

(e.g., prompt injection, malicious file uploads, memory poisoning) under realistic threat models. 

The effectiveness of proposed defense mechanisms can be systematically evaluated using 

benchmarks such as the Agent Security Bench (ASB), as shown in Figure 5. 

 

Fig.5. Execution layer security protection 

4. Discussion  

The proposed framework offers a comprehensive governance structure for securing AI agents 

across all lifecycle layers. But, several open challenges remain: 

• Autonomous embodied agents and physical-world safety: For agents controlling robots, 

vehicles, or other real-world actuators, physical safety and environment uncertainty introduce 

54



additional risks. Extending the governance framework to cover sensor fusion reliability, real-time 

fail-safes, and physical hazard mitigation is essential. 

• Multi-agent systems (MAS) and coordinated risks: In systems with multiple collaborating 

agents, inter-agent communication and shared resources can amplify vulnerabilities. Methods for 

consensus-based anomaly detection (e.g., as in BlindGuard) may help, but multi-agent defense 

remains nascent.[3] 

• Evaluation standards and benchmarks: While benchmarks like ASB provide a starting 

point, the community lacks universally accepted evaluation metrics for agent safety across contexts. 

Expanding and standardizing metrics for tool-safety, memory integrity, and cross-layer attacks is 

vital. 

• Governance vs. usability tradeoffs: Stricter controls (sanitization, human-in-the-loop, 

sandboxing) may hamper the flexibility and efficiency that make agents appealing. Striking a 

balance between security and usability demands careful design. 

• Regulatory and compliance considerations: As agents are deployed in sensitive domains 

(healthcare, finance, infrastructure), compliance with data protection, auditability, and responsibility 

attribution becomes critical. Integrating the framework with organizational risk governance (e.g., 

ISO/IEC standards, audit logs, access control policies) will be an important next step. 

5. Conclusion 

AI agents are transforming industries but also introduce unprecedented security challenges 

across their entire lifecycle. The Perception–Decision–Memory–Execution governance framework 

presented in this paper offers a structured method for identifying vulnerabilities and applying 

layered controls. By combining input sanitization, reasoning verification, memory integrity 

protection, execution monitoring, and human oversight, we aim to enable robust, trustworthy, and 

controllable AI agent deployment. As AI agents continue to evolve and integrate deeply into real-

world systems, such comprehensive governance becomes essential for sustainable technological and 

societal progress. 

References 

[1] Z. Li, H. Wang, and M. Chen, “Security of LLM-based agents regarding attacks, defenses, and applications: A 

comprehensive survey,” Information Fusion, vol. 110, pp. 1–25, Jan. 2026. 

[2] J. Patel, R. Gupta, and S. Kumar, “Security concerns for Large Language Models: A survey,” Journal of 

Information Security and Applications, vol. 85, pp. 103–118, Dec. 2025. 

[3] M. Rodriguez, T. Johnson, and A. Lee, “SpAIware: Uncovering a novel artificial intelligence attack vector through 

persistent memory in LLM applications and agents,” Future Generation Computer Systems, vol. 162, pp. 44–59, Feb. 

2026. 

[4] Y. Zhang, Q. Liu, and L. Sun, “A-MemGuard: A proactive defense framework for LLM-based agent memory,” arXiv 

preprint arXiv: 2510.02373, Oct. 2025. 

[5] H. Ren, X. Zhao, and P. Wang, “BlindGuard: Safeguarding LLM-based multi-agent systems under unknown 

attacks,” arXiv preprint arXiv: 2508.08127, Aug. 2025. 

[6] A. Smith, D. Torres, and K. Patel, “Agent Security Bench (ASB): Formalizing and benchmarking attacks and 

defenses in LLM-based agents,” arXiv preprint arXiv: 2410.02644, Oct. 2024. 

55




