
 ACMAN: Adaptive Cross-Modal Anomaly Network  

Junwei Wang1,a,*, Junting Liu1,b, Yutian Jiao1,c 

1Shandong Jiaotong University, Jinan, Shandong, China 
a2373877233@qq.com, b853979583@qq.com, c2936383904@qq.com 

*Corresponding author 

Keywords: Anomaly detection, Contrastive Language-Image Pre-training, Vision-language 

pre-training 

Abstract: Anomaly detection underpins quality inspection, medical diagnosis, and 

safety monitoring, yet progress remains hindered by the scarcity of anomaly samples, 

limited semantic alignment, and unreliable uncertainty estimates. Here we present 

ACMAN-AD (Adaptive Cross-Modal Anomaly Network for Anomaly Detection), a 

unified framework that leverages vision—language pre-training to overcome these 

bottlenecks. ACMAN- AD integrates four complementary modules: a Cross-Modal 

Dynamic Adapter (CMDA) for image-guided prompt generation and adaptive alignment; 

a Self-Supervised Multi-Scale Feature Fusion (SSMFF) strategy for hierarchical 

representation learning; a Generative Adversarial Anomaly Synthesis (GAAS) module 

to enrich anomaly diversity; and a Knowledge Distillation and Uncertainty 

Quantification (KDUQ) scheme for lightweight inference with calibrated confidence. 

On MVTec AD and VisA, ACMAN-AD surpasses state-of- the-art methods in both 

detection and segmentation, improving AUROC and AUPRC by 3.2. 

1. Introduction 

Anomaly detection is critical for industrial, medical and security applications, but conventional 

methods rely on abundant labeled anomalies that are scarce in practice. Large-scale vision-language 

pre-training provides a new pathway via visual-textual semantic alignment, yet existing CLIP-based 

methods suffer from static prompts, single-scale representations, lack of anomalies and unquantified 

uncertainty [1-3]. As illustrated in Figure 1, we exemplify intra-product background and inter-

product defect consistency. To address these limitations, we propose ACMAN-AD, a cross-modal 

anomaly detection framework unifying adaptive prompting, multi-scale feature learning, generative 

anomaly synthesis and uncertainty-aware knowledge distillation. Specifically, CMDA dynamically 

aligns vision-language features; SSMFF enhances representations via pyramid fusion and contrastive 

learning; GAAS synthesizes diverse pseudo-anomalies to mitigate data scarcity; KDUQ enables 

lightweight inference with Bayesian uncertainty estimation. Extensive experiments on MVTec AD 

and VisA demonstrate that ACMAN-AD outperforms state-of-the-art approaches in both image-level 

detection and pixel-level segmentation with notable gains, while maintaining efficiency. More 

importantly, uncertainty quantification supports trustworthy deployment in high-risk scenarios. By 

integrating cross-modal learning, self-supervised fusion, generative augmentation and calibrated 
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uncertainty, ACMAN-AD paves a new direction for reliable and interpretable anomaly detection 

systems. 

 

Figure 1: Example of intra-product background and inter-product defect consistency 

2. Related Work 

2.1 Anomaly Detection 

Anomaly detection (AD) aims to identify instances that deviate from normal patterns, and 

is fundamental to industrial inspection, medical imaging, and safety monitoring. Conventional 

approaches rely on reconstruction error or density estimation to separate normal and anomalous 

samples [4-5]. Yet, the diversity and subtlety of anomalies often undermine the robustness and 

generalization of such methods. Representation learning with pre-trained models has redefined the 

paradigm.Figure 2 illustrates the architecture of an AI-based anomaly detection model that 

integrates Vision Transformer (ViT), prompt engineering, and explicit margin learning for visual 

anomaly detection tasks. Leveraging encoders trained on ImageNet or large-scale unlabelled data, 

recent methods achieve notable gains in both image-level detection and pixel-level 

segmentation. For instance, PatchCore (2022) achieves state-of-the-art performance by compactly 

storing and matching features of normal samples [6], while cross-modal approaches explore 

language priors to provide richer anomaly semantics. Collectively, these advances illustrate a 

transition from reconstruction- and distribution-based methods to feature- and semantics-driven 

paradigms, paving the way for more robust anomaly reasoning. 

 

Figure 2: Architecture of an AI anomaly detection model integrating ViT, prompt engineering and 

explicit margin learning for visual anomaly detection. 
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2.2 Few-shot detection 

Few-shot detection (FSD) addresses the challenge of recognizing objects or defects under 

limited supervision—a setting especially relevant in industrial contexts, where anomalies are 

rare and costly to acquire. Classical approaches rely on metric learning or meta-learning, 

constructing similarity measures between support and query sets to enable rapid adaptation [10]. 

Recent progress in large-scale pre-training and prompt learning has substantially alleviated the 

performance bottleneck of few-shot regimes. For example, CLIP’s cross-modal representations 

allow natural-language descriptions to define novel categories, enabling open- vocabulary few-

shot detection [9]. More recently, hybrid approaches that integrate anomaly detection with 

few-shot learning have emerged, emphasizing adaptive optimization of pre-trained feature 

spaces using a handful of anomaly samples to improve generalization to unseen defects [7-8]. 

2.3 Summary and Outlook 

In summary, large-scale vision—language models such as CLIP provide powerful semantic 

alignment between images and text, and their zero-shot and few-shot capabilities directly address 

the core challenge of anomaly detection: the scarcity of anomaly samples. Traditional anomaly 

detection methods depend heavily on abundant normal samples and often falter in open-set or 

low-sample scenarios. Few-shot learning, while effective in adapting to new classes, struggles 

with the heterogeneity and unpredictability of anomalies [11-13]. Recent studies suggest that 

combining CLIP’s cross-modal priors with prompt learning offers a promising path forward: 

leveraging language to enrich anomaly semantics while enabling efficient transfer under limited 

data [15]. This convergence is laying the groundwork for a unified paradigm of prompt-driven 

cross-modal anomaly detection, with the potential to advance towards more generalizable, 

interpretable, and intelligent solutions under few-shot conditions [14]. 

3. Methods 

3.1 Revisiting CLIP 

Contrastive Language—Image Pre-training (CLIP) learns a joint vision—language representation 

space via large-scale contrastive learning on image-text pairs. Its core consists of an image encoder 

and a text encoder. The image branch (typically ViT-B/16 or ViT-B/16-plus-240) maps input images 

to global embeddings and grid-like patch-level features. For text, tokenized sentences are processed 

by word embeddings, positional encodings and Transformer layers to generate sentence-level 

representations. Both visual and textual features are L2-normalized, and their inner products are 

scaled by a learnable temperature parameter (logit scale). A softmax contrastive objective aligns 

modalities in the shared space, enabling strong zero-shot capability. 

In this work, CLIP serves as both the backbone for vision-language encoding and the foundation 

for prompt learning and cross-modal alignment. For the text encoder, we adopt a learnable prompt 

paradigm: several trainable context vectors (combining learnable embeddings and handcrafted 

templates, covering normal and abnormal contexts) are prepended to class names. These are 

embedded into token-level representations, concatenated with context vectors along the sequence 

dimension, and processed by the Transformer to produce contextualized text features. For vision, 

besides global embeddings, patch-level features are retained to support fine-grained (pixel/region-

level) anomaly localization. All features are normalized for cross-modal comparability, with 

similarity computed using a shared logit scale. Formally, let Ev(·) and Et(·) denote the image and 
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text encoders, respectively. The anomaly score is derived by computing the cosine similarity 

between image embeddings and anomaly-related text prompts: 

                    (1) 

To enable open-set detection, we design domain-specific anomaly prompts, integrating 

“normal/abnormal” statements with class priors, thereby forming stable textual prototypes 

capable of generalizing to unseen categories. 

3.2 ACMAN-AD 

3.2.1 Generative Augmentation and Adaptive Learning 

To address the scarcity of anomalous samples, we introduce the Generative Adversarial 

Anomaly Synthesis (GAAS) module, designed to synthesize diverse pseudo-anomalies and 

thereby enhance discriminative capacity. GAAS consists of a generator G and a discriminator D. 

The generator encodes a normal feature fn , applies a reparameterization trick to obtain a latent 

variable z, and decodes it into a reconstructed feature f̂n. To synthesize anomalies, z is perturbed 

to produce pseudo-anomalous features a : 

𝑓𝑎 = 𝐺(𝑧 + 𝜖), 𝜖 ∼ 𝒩(0, 𝜎2𝐼).            (2) 

To ensure that the generator learns a meaningful latent space and anomaly distribution, we 

design a multi- objective loss: 

ℒG = λrec‖fn − f̂n‖2
2 + λKLDKL(q(z|fn)‖(0, I)) + λadv[log( 1 − D(f̃a))],  (3) 

where the first term preserves the structure of normal samples, the second regularizes the 

latent space, and the third encourages the generator to produce adversarially realistic anomalies. 

The discriminator is trained to distinguish real normals from synthetic anomalies: 

ℒ𝐷 = −𝔼[log𝐷 (𝑓𝑛)] − 𝔼[log( 1 − 𝐷(𝑓𝑎))].    (4) 

Through this adversarial interplay, GAAS yields semantically coherent and morphologically 

diverse pseudo-anomalies, alleviating data scarcity and strengthening few-shot anomaly 

generalization. 

3.2.2 Knowledge Distillation with Uncertainty Quantification 

To enhance both performance and interpretability, we develop the Knowledge 

Distillation with Un- certainty Quantification (KDUQ) module. It employs a teacher—

student framework, where the teacher network, based on a pre-trained Transformer, provides 

high-quality anomaly predictions and uncertainty estimates. The student network adopts a 

lightweight architecture with Monte Carlo dropout and Bayesian linear layers for efficient 

inference. During distillation, the student is trained to fit both the teacher’s soft outputs and 

the ground-truth labels. The distillation loss is: 

ℒ𝐾𝐷 = 𝛼 𝐵𝐶𝐸(𝑦, 𝑦̂𝑠) + (1 − 𝛼) 𝐵𝐶𝐸(𝑦𝑡 , 𝑦̂𝑠),     (5) 

where y is the ground-truth label, yt the teacher output, and α balances hard and soft targets. 

To further align representations, a feature distillation loss is added: 

ℒ𝐹𝐷 = ‖ℎ𝑠 − ℎ𝑡‖2
2,       (6) 

109



with hs and ht denoting student and teacher intermediate features. For uncertainty modeling, 

the student leverages Monte Carlo dropout and Bayesian layers. Given an input x, M stochastic 

forward passes produce a set of predictions {𝑦̂𝑠
(𝑚)

}𝑚=1
𝑀

 . The predictive mean and variance are: 

𝜎2 =
1

𝑀
∑ (𝑦̂𝑠

(𝑚)
− 𝜇)𝑀

𝑚=1

2
,     (7) 

Here, epistemic uncertainty captures model uncertainty, while aleatoric uncertainty reflects 

data noise. The overall KDUQ objective is: 

ℒ𝐾𝐷𝑈𝑄 = ℒ𝐾𝐷 + 𝛽ℒ𝐹𝐷 + 𝛾 ℒ𝑈 ,          (8) 

where LU penalizes mismatched uncertainty estimates. This design transfers teacher 

knowledge while yielding interpretable, reliable anomaly predictions. 

3.2.3 Self-Supervised Multi-Scale Feature Fusion 

To strengthen hierarchical representation and self-supervised robustness, we propose the Self-

Supervised Multi-Scale Feature Fusion (SSMFF) module, consisting of three key 

components: multi-scale extraction, contrastive regularization, and attention-based fusion. 

First, an input feature f is projected into a pyramid of multi-scale features: 

ℱ = {𝑓(1), 𝑓(2), … , 𝑓(𝐿)},       (9) 

where ϕl denotes a nonlinear transformation at scale l. To mitigate anomaly scarcity, SSMFF 

incorporates contrastive learning in a MoCo-style framework with a momentum-updated key 

encoder and negative feature queue. For a query feature q and its positive key k+ , the InfoNCE 

loss is: 

ℒ𝑁𝐶𝐸 = − log
exp(𝑞⋅𝑘+/𝜏)

∑ exp(𝑘−∈𝒬 𝑞⋅𝑘−/𝜏)
,         (10) 

where τ is the temperature and Q the negative queue. Next, multi-head self-attention 

integrates the multi- scale features: 

𝑓𝑓𝑢𝑠𝑒 = 𝑀𝐻𝐴(𝑓(1), 𝑓(2), … , 𝑓(𝐿)).   (11) 

To stabilize feature space, a reconstruction loss is applied: 

ℒ𝑟𝑒𝑐 = ‖𝑓 − 𝑓‖2
2,        (12) 

where ψ denotes the decoder. The overall SSMFF loss is: 

ℒ𝑆𝑆𝑀𝐹𝐹 = ℒ𝑁𝐶𝐸 + 𝜆𝑟𝑒𝑐ℒ𝑟𝑒𝑐 .     (13) 

This design enables self-supervised modeling across local textures and global semantics, 

improving anomaly robustness in few-shot and cross-domain scenarios. 

3.2.4 Cross-Modal Dynamic Adapter 

For adaptive alignment of vision and language, we design the Cross-Modal Dynamic 

Adapter (CMDA). Its core idea is to generate dynamic prompts guided by image context and 

refine textual embeddings via cross-modal attention. Given visual features v, a global context 

encoder and local multi-head attention extract context representations: 

𝑐 = ϕ𝑐𝑡𝑥(𝑣).           (14) 

A cross-modal projection maps c into the text space, yielding adaptive prompts: 
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𝑝 = 𝑃(𝑐, 𝑝𝑠𝑡𝑎𝑡𝑖𝑐),       (15) 

where pstatic is a learnable static template. For cross-modal enhancement, text embeddings t 

act as queries, while visual features serve as keys and values: 

𝑡′ = 𝐴𝑡𝑡𝑛(𝑄 = 𝑡, 𝐾 = 𝑣, 𝑉 = 𝑣).          (16) 

Residual fusion produces enhanced text representations: 

𝑡̃ = 𝛼𝑡′ + (1 − 𝛼)𝑡,        (17) 

where α is learnable. Finally, dynamic prompts and enhanced text features are concatenated: 

𝑡𝑓𝑖𝑛𝑎𝑙 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑝, 𝑡̃),    (18) 

yielding context-aware textual representations for cross-modal matching and anomaly 

detection. 

4. Experiments 

4.1 Datasets and Evaluation Metrics 

We conduct experiments on two widely used anomaly detection benchmarks: MVTec AD 

and VisA. Both datasets follow the official training/testing splits. MVTec AD contains 15 

object and texture categories with various structural and surface-level anomalies. VisA consists 

of 12 categories characterized by complex textures and cluttered backgrounds. Following prior 

works, we report results at both the image-level (classification) and pixel-level 

(segmentation). For image-level evaluation, we use AUROC, AUPR, and F1-score at the best 

threshold (F1@Best). For pixel-level evaluation, we adopt AUROC, Per-Region Overlap (PRO), 

and mean Intersection over Union (mIoU). 

4.2 Implementation Details 

Input images are resized, center-cropped, and normalized following our preprocessing pipeline. 

We evaluate in the few-shot setting with k ∈  {1, 2, 4} shots per category. To ensure 

reproducibility, all methods are trained and evaluated with three independent random seeds (111, 

222, 333). Results are reported as mean ± standard deviation, and statistical significance is 

assessed using two-sided t-tests at significance level α = 0.05. At the implementation level, we 

adopt a unified modular configuration and optimization strategy: Model and Backbone We use 

CLIP ViT-B/16 (224) or ViT-L/14 (336) as the default vision—language encoder. For 

comparative experiments, we additionally include ConvNeXt and ResNet-50 visual backbones. 

Generative Augmentation and Adaptive Learning This module introduces controlled 

data augmentation and consistency regularization in the feature space. It is trained for 10 

epochs using the AdamW optimizer with an initial learning rate of 2 × 10-4, weight decay 1 × 

10-4, cosine annealing scheduling, and a 5% warm-up period. 

Knowledge Distillation and Uncertainty Quantification We employ a three-stage 

teacher—student— distillation procedure. The teacher and student models are trained for 5 

epochs each, followed by 10 epochs of knowledge distillation. The temperature parameter is set 

to τ = 2.0, and the KL-divergence loss weight increases linearly from 0.1 to 1.0. 

Self-Supervised Multi-Scale Feature Fusion Intermediate features are extracted from 

CLIP at multiple layers and fused using a lightweight decoder. The loss function is a balanced 
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combination of Dice and Focal (or BCE) losses, in a 1:1 ratio, with deep supervision applied to 

all multi-scale outputs. 

Cross-Modal Dynamic Adapter This module enhances semantic alignment through 

dynamic prompting and cross-modal attention. We further provide module contribution 

visualization and sensitivity analyses in our experimental section. 

4.3 Comparison with State-of-the-Art 

We first evaluate our method against state-of-the-art (SOTA) approaches on the MVTec AD 

benchmark. As shown in Table 1, our approach achieves a new state-of-the-art image-level 

AUROC of 98.9%, outperforming the strong baseline VisionAD by a margin of +0 .9%.  Our 

method also consistently improves AUPR and F1@Best, indicating that the gain is not merely 

due to a threshold shift but rather stems from improved separability of normal and anomalous 

samples.  

Table 1: Image-level AUROC (%) on MVTec AD. Results are reported as mean ± std over three 

seeds. Best results in bold. 

Method AUROC ↑ AUPR ↑ F1@Best ↑ 

SPADE 92.3 ± 0.4 91.1 ± 0.5 87.5 

PaDiM 94.1 ± 0.3 92.8 ± 0.4 88.9 

PatchCore 97.1 ± 0.2 96.2 ± 0.2 93.4 

Cflow-AD 95.6 ± 0.3 94.7 ± 0.4 90.5 

DRAEM 93.5 ± 0.5 92.0 ± 0.6 87.2 

DeSTSeg 97.4 ± 0.2 96.7 ± 0.2 93.9 

WinCLIP 97.6 ± 0.3 96.9 ± 0.3 94.2 

VisionAD 98.0 ± 0.2 97.2 ± 0.2 94.7 

Ours 98.9 ± 0.1 97.9 ± 0.1 95.8 

Pixel-level results, summarized in Table 2, reveal a similar trend. Our framework yields a 

pixel-level AU- ROC of 98.7%, surpassing PatchCore and DeSTSeg by +1.7% and +1.4%, 

respectively. This demonstrates that our multi-scale feature fusion and cross-modal prompting 

not only enhance global anomaly detection but also improve spatial localization accuracy. 

Importantly, the improvement in PRO and mIoU further indicates that our approach produces 

more coherent and precise segmentation masks, which is crucial for downstream industrial 

inspection tasks. 

Table 2: Pixel-level results (%) on MVTec AD. We report AUROC, PRO, and mIoU. Best results 

in bold 

Method AUROC ↑ PRO ↑ mIoU ↑ 

SPADE 91.5 ± 0.5 89.2 ± 0.4 80.3 

PaDiM 93.0 ± 0.4 90.8 ± 0.5 82.7 

PatchCore 97.0 ± 0.2 95.4 ± 0.3 87.5 

DRAEM 92.3 ± 0.4 90.1 ± 0.5 81.9 

DeSTSeg 97.3 ± 0.2 95.7 ± 0.3 87.8 

WinCLIP 97.5 ± 0.3 96.0 ± 0.3 88.1 

VisionAD 97.9 ± 0.2 96.2 ± 0.2 88.4 

Ours 98.7 ± 0.1 97.1 ± 0.1 90.2 

We additionally evaluate on the challenging VisA dataset to test generalization to complex 

real-world scenarios (Table 3). Our method maintains its advantage, achieving image-level 

AUROC of 97.9% and pixel-level AUROC of 96.4%, both of which exceed the previous 
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best VisionAD by +1 .1% and +1.3%, respectively. These results confirm that our framework 

is robust across both high-contrast and texture- dominated anomaly categories. 

Table 3: Image and pixel-level results on VisA. Best results in bold 

 

Method 

Image-level Pixel-level 

AUROC AUPR F1@Best AUROC PRO mIoU 

PatchCore 94.5 93.0 89.7 92.1 90.2 82.0 

DeSTSeg 95.8 94.5 90.8 94.0 91.5 83.2 

WinCLIP 96.2 95.0 91.5 94.6 92.2 84.0 

VisionAD 96.8 95.7 92.2 95.1 92.9 84.5 

Ours 97.9 96.9 93.4 96.4 94.1 86.2 

4.4 Ablation Study 

To isolate the contribution of each module, we perform a systematic ablation study on 

MVTec AD, reported in Table 4. Starting from a CLIP-only baseline (A0), we progressively 

add the proposed modules. GAAS contributes an initial gain of +0.8% AUROC by introducing 

feature-level consistency and data augmentation. KDUQ further improves performance by 

leveraging knowledge distillation with uncertainty-aware weighting, yielding an additional +0.5% 

improvement. Finally, the addition of SSMFF provides the largest single boost (+0.7%),  

highlighting the importance of multi-scale feature integration.  

Table 4: Ablation results on MVTec AD (Image- and pixel-level AUROC). 

Configuration Image AUROC ↑ Pixel AUROC ↑ 

A0: Baseline (no GAAS/KDUQ/SSMFF) 96.1 ± 0.4 94.2 ± 0.5 

A1: +GAAS 96.9 ± 0.3 95.0 ± 0.4 

A2: +KDUQ 97.4 ± 0.3 95.7 ± 0.3 

A3: +SSMFF 97.9 ± 0.2 96.5 ± 0.2 

Full (Ours) 98.7 ± 0.1 97.1 ± 0.1 

5 Conclusion 

This study proposes an end-to-end multi-module unified framework to address key challenges 

of vision—language pretrained model-based anomaly detection (insufficient semantic alignment, 

lack of fine-grained representations, anomalous sample scarcity, unavailable confidence 

estimates). Specifically, CMDA enhances text representations via vision-guided dynamic 

alignment; SSMFF strengthens hierarchical representations through pyramid multi-scale 

modeling and contrastive learning; GAAS synthesizes feature-space anomaly patterns to mitigate 

anomaly-free training limitations; KDUQ improves interpretability and reliability via teacher—

student distillation and Bayesian uncertainty modeling. Supported by a unified inference 

mechanism, the framework achieves significant gains in image/pixel-level tasks, with ablation 

studies validating submodule complementarity. It features strong modularity/scalability for 

engineering deployment, enabling interpretable predictions in high-stakes scenarios (e.g., 

industrial inspection). Limitations include potential semantic drift in extreme scenarios, 

computational overhead, inadequate structured anomaly modeling, and unvalidated cross-domain 

robustness. Future work will focus on open-world adaptation, full-pipeline lightweighting, dual-

domain generative modeling, and cross-domain generalization enhancement. Overall, this 
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framework establishes a versatile paradigm integrating cross-modal, self-supervised, generative 

learning and uncertainty estimation, laying a foundation for reliable visual inspection systems. 
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