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Abstract: Anomaly detection underpins quality inspection, medical diagnosis, and
safety monitoring, yet progress remains hindered by the scarcity of anomaly samples,
limited semantic alignment, and unreliable uncertainty estimates. Here we present
ACMAN-AD (Adaptive Cross-Modal Anomaly Network for Anomaly Detection), a
unified framework that leverages vision—Ilanguage pre-training to overcome these
bottlenecks. ACMAN- AD integrates four complementary modules: a Cross-Modal
Dynamic Adapter (CMDA) for image-guided prompt generation and adaptive alignment;
a Self-Supervised Multi-Scale Feature Fusion (SSMFF) strategy for hierarchical
representation learning; a Generative Adversarial Anomaly Synthesis (GAAS) module
to enrich anomaly diversity; and a Knowledge Distillation and Uncertainty
Quantification (KDUQ) scheme for lightweight inference with calibrated confidence.
On MVTec AD and VisA, ACMAN-AD surpasses state-of- the-art methods in both
detection and segmentation, improving AUROC and AUPRC by 3.2.

1. Introduction

Anomaly detection is critical for industrial, medical and security applications, but conventional
methods rely on abundant labeled anomalies that are scarce in practice. Large-scale vision-language
pre-training provides a new pathway via visual-textual semantic alignment, yet existing CLIP-based
methods suffer from static prompts, single-scale representations, lack of anomalies and unquantified
uncertainty [1-3]. As illustrated in Figure 1, we exemplify intra-product background and inter-
product defect consistency. To address these limitations, we propose ACMAN-AD, a cross-modal
anomaly detection framework unifying adaptive prompting, multi-scale feature learning, generative
anomaly synthesis and uncertainty-aware knowledge distillation. Specifically, CMDA dynamically
aligns vision-language features; SSMFF enhances representations via pyramid fusion and contrastive
learning; GAAS synthesizes diverse pseudo-anomalies to mitigate data scarcity; KDUQ enables
lightweight inference with Bayesian uncertainty estimation. Extensive experiments on MVTec AD
and VisA demonstrate that ACMAN-AD outperforms state-of-the-art approaches in both image-level
detection and pixel-level segmentation with notable gains, while maintaining efficiency. More
importantly, uncertainty quantification supports trustworthy deployment in high-risk scenarios. By
integrating cross-modal learning, self-supervised fusion, generative augmentation and calibrated
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uncertainty, ACMAN-AD paves a new direction for reliable and interpretable anomaly detection
systems.

Figure 1: Example of intra-product background and inter-product defect consistency

2. Related Work
2.1 Anomaly Detection

Anomaly detection (AD) aims to identify instances that deviate from normal patterns, and
is fundamental to industrial inspection, medical imaging, and safety monitoring. Conventional
approaches rely on reconstruction error or density estimation to separate normal and anomalous
samples [4-5]. Yet, the diversity and subtlety of anomalies often undermine the robustness and
generalization of such methods. Representation learning with pre-trained models has redefined the
paradigm.Figure 2 illustrates the architecture of an Al-based anomaly detection model that
integrates Vision Transformer (ViT), prompt engineering, and explicit margin learning for visual
anomaly detection tasks. Leveraging encoders trained on ImageNet or large-scale unlabelled data,
recent methods achieve notable gains in both image-level detection and pixel-level
segmentation. For instance, PatchCore (2022) achieves state-of-the-art performance by compactly
storing and matching features of normal samples [6], while cross-modal approaches explore
language priors to provide richer anomaly semantics. Collectively, these advances illustrate a
transition from reconstruction- and distribution-based methods to feature- and semantics-driven
paradigms, paving the way for more robust anomaly reasoning.
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Figure 2: Architecture of an Al anomaly detection model integrating ViT, prompt engineering and
explicit margin learning for visual anomaly detection.
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2.2 Few-shot detection

Few-shot detection (FSD) addresses the challenge of recognizing objects or defects under
limited supervision—a setting especially relevant in industrial contexts, where anomalies are
rare and costly to acquire. Classical approaches rely on metric learning or meta-learning,
constructing similarity measures between support and query sets to enable rapid adaptation [10].
Recent progress in large-scale pre-training and prompt learning has substantially alleviated the
performance bottleneck of few-shot regimes. For example, CLIP’s cross-modal representations
allow natural-language descriptions to define novel categories, enabling open- vocabulary few-
shot detection [9]. More recently, hybrid approaches that integrate anomaly detection with
few-shot learning have emerged, emphasizing adaptive optimization of pre-trained feature
spaces using a handful of anomaly samples to improve generalization to unseen defects [7-8].

2.3 Summary and Outlook

In summary, large-scale vision—language models such as CLIP provide powerful semantic
alignment between images and text, and their zero-shot and few-shot capabilities directly address
the core challenge of anomaly detection: the scarcity of anomaly samples. Traditional anomaly
detection methods depend heavily on abundant normal samples and often falter in open-set or
low-sample scenarios. Few-shot learning, while effective in adapting to new classes, struggles
with the heterogeneity and unpredictability of anomalies [11-13]. Recent studies suggest that
combining CLIP’s cross-modal priors with prompt learning offers a promising path forward:
leveraging language to enrich anomaly semantics while enabling efficient transfer under limited
data [15]. This convergence is laying the groundwork for a unified paradigm of prompt-driven
cross-modal anomaly detection, with the potential to advance towards more generalizable,
interpretable, and intelligent solutions under few-shot conditions [14].

3. Methods
3.1 Revisiting CLIP

Contrastive Language—Image Pre-training (CLIP) learns a joint vision—Ilanguage representation
space via large-scale contrastive learning on image-text pairs. Its core consists of an image encoder
and a text encoder. The image branch (typically ViT-B/16 or ViT-B/16-plus-240) maps input images
to global embeddings and grid-like patch-level features. For text, tokenized sentences are processed
by word embeddings, positional encodings and Transformer layers to generate sentence-level
representations. Both visual and textual features are L2-normalized, and their inner products are
scaled by a learnable temperature parameter (logit scale). A softmax contrastive objective aligns
modalities in the shared space, enabling strong zero-shot capability.

In this work, CLIP serves as both the backbone for vision-language encoding and the foundation
for prompt learning and cross-modal alignment. For the text encoder, we adopt a learnable prompt
paradigm: several trainable context vectors (combining learnable embeddings and handcrafted
templates, covering normal and abnormal contexts) are prepended to class names. These are
embedded into token-level representations, concatenated with context vectors along the sequence
dimension, and processed by the Transformer to produce contextualized text features. For vision,
besides global embeddings, patch-level features are retained to support fine-grained (pixel/region-
level) anomaly localization. All features are normalized for cross-modal comparability, with
similarity computed using a shared logit scale. Formally, let Ev(J and Et() denote the image and
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text encoders, respectively. The anomaly score is derived by computing the cosine similarity
between image embeddings and anomaly-related text prompts:

oo Bu(x) - Ei(t)

) = B @ BT 1)

To enable open-set detection, we design domain-specific anomaly prompts, integrating
“normal/abnormal” statements with class priors, thereby forming stable textual prototypes
capable of generalizing to unseen categories.

3.2 ACMAN-AD

3.2.1 Generative Augmentation and Adaptive Learning

To address the scarcity of anomalous samples, we introduce the Generative Adversarial
Anomaly Synthesis (GAAS) module, designed to synthesize diverse pseudo-anomalies and
thereby enhance discriminative capacity. GAAS consists of a generator G and a discriminator D.
The generator encodes a normal feature fn , applies a reparameterization trick to obtain a latent
variable z, and decodes it into a reconstructed feature ¥n. To synthesize anomalies, z is perturbed

to produce pseudo-anomalous features fa:
fa=G@z+¢€),e~N(0,02D. )

To ensure that the generator learns a meaningful latent space and anomaly distribution, we
design a multi- objective loss:

%5 = Mecllfa = Lill3 + Ak D (Q(ZIED 10, D) + Ao [log(1 = DE)], (3)
where the first term preserves the structure of normal samples, the second regularizes the

latent space, and the third encourages the generator to produce adversarially realistic anomalies.
The discriminator is trained to distinguish real normals from synthetic anomalies:

Lp = —E[log D ()] — E[log(1 - D(f))]. (4)

Through this adversarial interplay, GAAS vyields semantically coherent and morphologically
diverse pseudo-anomalies, alleviating data scarcity and strengthening few-shot anomaly
generalization.

3.2.2 Knowledge Distillation with Uncertainty Quantification

To enhance both performance and interpretability, we develop the Knowledge
Distillation with Un- certainty Quantification (KDUQ) module. It employs a teacher—
student framework, where the teacher network, based on a pre-trained Transformer, provides
high-quality anomaly predictions and uncertainty estimates. The student network adopts a
lightweight architecture with Monte Carlo dropout and Bayesian linear layers for efficient
inference. During distillation, the student is trained to fit both the teacher’s soft outputs and
the ground-truth labels. The distillation loss is:

Lgp = aBCE(y,95) + (1 —a) BCE(y:, ¥5),  (5)

where y is the ground-truth label, yt the teacher output, and o balances hard and soft targets.
To further align representations, a feature distillation loss is added:

Lep = llhs —hell3,  (6)
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with hs and ht denoting student and teacher intermediate features. For uncertainty modeling,
the student leverages Monte Carlo dropout and Bayesian layers. Given an input x, M stochastic

forward passes produce a set of predictions {ys(m)}%=1 . The predictive mean and variance are:
1 ~ 2
o2 = IM (3™ —u) )
Here, epistemic uncertainty captures model uncertainty, while aleatoric uncertainty reflects
data noise. The overall KDUQ objective is:
Lypyg = Lgp + BLpp + v Ly, (8)

where LU penalizes mismatched uncertainty estimates. This design transfers teacher
knowledge while yielding interpretable, reliable anomaly predictions.

3.2.3 Self-Supervised Multi-Scale Feature Fusion

To strengthen hierarchical representation and self-supervised robustness, we propose the Self-
Supervised Multi-Scale Feature Fusion (SSMFF) module, consisting of three key
components: multi-scale extraction, contrastive regularization, and attention-based fusion.
First, an input feature f is projected into a pyramid of multi-scale features:

F={fD,f@ Ly 9)

where ¢l denotes a nonlinear transformation at scale I. To mitigate anomaly scarcity, SSMFF
incorporates contrastive learning in a MoCo-style framework with a momentum-updated key
encoder and negative feature queue. For a query feature g and its positive key k* , the InfoNCE
loss is:

exp(q-k*/7)
Yk-egexp(q-k=/7)’

where t is the temperature and Q the negative queue. Next, multi-head self-attention
integrates the multi- scale features:

Lycg = —log (10)

ffuse = MHA(f(l)'f(z)' ---;f(L))' (11)

To stabilize feature space, a reconstruction loss is applied:
Liee = |If _f”%: (12)

where y denotes the decoder. The overall SSMFF loss is:
Lssmrr = Lnce + ArecLrec:  (13)

This design enables self-supervised modeling across local textures and global semantics,
improving anomaly robustness in few-shot and cross-domain scenarios.

3.2.4 Cross-Modal Dynamic Adapter

For adaptive alignment of vision and language, we design the Cross-Modal Dynamic
Adapter (CMDA). Its core idea is to generate dynamic prompts guided by image context and
refine textual embeddings via cross-modal attention. Given visual features v, a global context
encoder and local multi-head attention extract context representations:

¢ = Gerx (V). (14)

A cross-modal projection maps c into the text space, yielding adaptive prompts:
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p = P(¢, Dstatic) (15)

where pstatic is a learnable static template. For cross-modal enhancement, text embeddings t
act as queries, while visual features serve as keys and values:

t'=Attn(Q =t,K = v,V =v). (16)
Residual fusion produces enhanced text representations:
t=at'+ (1 - a)t, a7)
where a is learnable. Finally, dynamic prompts and enhanced text features are concatenated:
trinat = Concat(p,t), (18)

yielding context-aware textual representations for cross-modal matching and anomaly
detection.

4. Experiments
4.1 Datasets and Evaluation Metrics

We conduct experiments on two widely used anomaly detection benchmarks: MVTec AD
and VisA. Both datasets follow the official training/testing splits. MVTec AD contains 15
object and texture categories with various structural and surface-level anomalies. VisA consists
of 12 categories characterized by complex textures and cluttered backgrounds. Following prior
works, we report results at both the image-level (classification) and pixel-level
(segmentation). For image-level evaluation, we use AUROC, AUPR, and F1-score at the best
threshold (F1@Best). For pixel-level evaluation, we adopt AUROC, Per-Region Overlap (PRO),
and mean Intersection over Union (mloU).

4.2 Implementation Details

Input images are resized, center-cropped, and normalized following our preprocessing pipeline.
We evaluate in the few-shot setting with k & {1, 2, 4} shots per category. To ensure
reproducibility, all methods are trained and evaluated with three independent random seeds (111,
222, 333). Results are reported as mean = standard deviation, and statistical significance is
assessed using two-sided t-tests at significance level a = 0.05. At the implementation level, we
adopt a unified modular configuration and optimization strategy: Model and Backbone We use
CLIP VIiT-B/16 (224) or ViT-L/14 (336) as the default vision—language encoder. For
comparative experiments, we additionally include ConvNeXt and ResNet-50 visual backbones.

Generative Augmentation and Adaptive Learning This module introduces controlled
data augmentation and consistency regularization in the feature space. It is trained for 10

epochs using the AdamW optimizer with an initial learning rate of 2 x 1074, weight decay 1 x

1074, cosine annealing scheduling, and a 5% warm-up period.

Knowledge Distillation and Uncertainty Quantification We employ a three-stage
teacher—student— distillation procedure. The teacher and student models are trained for 5
epochs each, followed by 10 epochs of knowledge distillation. The temperature parameter is set
to T = 2.0, and the KL-divergence loss weight increases linearly from 0.1 to 1.0.

Self-Supervised Multi-Scale Feature Fusion Intermediate features are extracted from
CLIP at multiple layers and fused using a lightweight decoder. The loss function is a balanced
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combination of Dice and Focal (or BCE) losses, in a 1:1 ratio, with deep supervision applied to
all multi-scale outputs.

Cross-Modal Dynamic Adapter This module enhances semantic alignment through
dynamic prompting and cross-modal attention. We further provide module contribution
visualization and sensitivity analyses in our experimental section.

4.3 Comparison with State-of-the-Art

We first evaluate our method against state-of-the-art (SOTA) approaches on the MVTec AD
benchmark. As shown in Table 1, our approach achieves a new state-of-the-art image-level
AUROC of 98.9%, outperforming the strong baseline VisionAD by a margin of +0.9%. Our
method also consistently improves AUPR and F1@Best, indicating that the gain is not merely
due to a threshold shift but rather stems from improved separability of normal and anomalous
samples.

Table 1: Image-level AUROC (%) on MV Tec AD. Results are reported as mean =%std over three
seeds. Best results in bold.

Method AUROC 1 AUPR 1 Fl@Best 1
SPADE 92.3+0.4 91.1 +0.5 87.5
PaDiM 94.1 +0.3 92.8 +0.4 88.9
PatchCore 97.1 +0.2 96.2 +0.2 93.4
Cflow-AD 95.6 +0.3 94.7 +0.4 90.5
DRAEM 93.5+05 92.0 +0.6 87.2
DeSTSeg 97.4 +0.2 96.7 +0.2 93.9
WinCLIP 97.6 +0.3 96.9 +0.3 94.2
VisionAD 98.0 +0.2 97.2 +0.2 94.7
Ours 98.9 +0.1 97.9 0.1 95.8

Pixel-level results, summarized in Table 2, reveal a similar trend. Our framework yields a
pixel-level AU- ROC of 98.7%, surpassing PatchCore and DeSTSeg by +1.7% and +1.4%,
respectively. This demonstrates that our multi-scale feature fusion and cross-modal prompting
not only enhance global anomaly detection but also improve spatial localization accuracy.
Importantly, the improvement in PRO and mloU further indicates that our approach produces
more coherent and precise segmentation masks, which is crucial for downstream industrial
inspection tasks.

Table 2: Pixel-level results (%) on MVVTec AD. We report AUROC, PRO, and mloU. Best results

in bold

Method AUROC 1 PRO 1 mloU 1
SPADE 91.5+0.5 89.2 +0.4 80.3
PaDiM 93.0 +0.4 90.8 +0.5 82.7
PatchCore 97.0 +0.2 95.4 +0.3 87.5
DRAEM 92.3+0.4 90.1 +£0.5 81.9
DeSTSeg 97.3 +0.2 95.7 +£0.3 87.8
WinCLIP 97.5 +0.3 96.0 +0.3 88.1
VisionAD 97.9 +0.2 96.2 +0.2 88.4
Ours 98.7 +0.1 97.1 +£0.1 90.2

We additionally evaluate on the challenging VisA dataset to test generalization to complex
real-world scenarios (Table 3). Our method maintains its advantage, achieving image-level
AUROC of 97.9% and pixel-level AUROC of 96.4%, both of which exceed the previous
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best VisionAD by +1 .1% and +1.3%, respectively. These results confirm that our framework
is robust across both high-contrast and texture- dominated anomaly categories.

Table 3: Image and pixel-level results on VisA. Best results in bold

Image-level Pixel-level
Method AUROC AUPR F1@Best AUROC PRO mloU
PatchCore 945 93.0 89.7 92.1 90.2 82.0
DeSTSeg 95.8 94.5 90.8 94.0 915 83.2
WinCLIP 96.2 95.0 915 94.6 92.2 84.0
VisionAD 96.8 95.7 92.2 95.1 92.9 84.5
ours 97.9 96.9 93.4 96.4 94.1 86.2

4.4 Ablation Study

To isolate the contribution of each module, we perform a systematic ablation study on
MVTec AD, reported in Table 4. Starting from a CLIP-only baseline (AQ), we progressively
add the proposed modules. GAAS contributes an initial gain of +0.8% AUROC by introducing
feature-level consistency and data augmentation. KDUQ further improves performance by
leveraging knowledge distillation with uncertainty-aware weighting, yielding an additional +0.5%
improvement. Finally, the addition of SSMFF provides the largest single boost (+0.7%),
highlighting the importance of multi-scale feature integration.

Table 4: Ablation results on MV Tec AD (Image- and pixel-level AUROC).

Configuration Image AUROC 1 Pixel AUROC 1
AQ: Baseline (no GAAS/KDUQ/SSMFF) 96.1 +0.4 94.2 +£0.5
Al: +GAAS 96.9 0.3 95.0 +0.4
A2: +KDUQ 97.4 0.3 95.7 0.3
A3: +SSMFF 97.9 0.2 96.5 +0.2
Full (Ours) 98.7 0.1 97.1 0.1

5 Conclusion

This study proposes an end-to-end multi-module unified framework to address key challenges
of vision—Ilanguage pretrained model-based anomaly detection (insufficient semantic alignment,
lack of fine-grained representations, anomalous sample scarcity, unavailable confidence
estimates). Specifically, CMDA enhances text representations via vision-guided dynamic
alignment; SSMFF strengthens hierarchical representations through pyramid multi-scale
modeling and contrastive learning; GAAS synthesizes feature-space anomaly patterns to mitigate
anomaly-free training limitations; KDUQ improves interpretability and reliability via teacher—
student distillation and Bayesian uncertainty modeling. Supported by a unified inference
mechanism, the framework achieves significant gains in image/pixel-level tasks, with ablation
studies validating submodule complementarity. It features strong modularity/scalability for
engineering deployment, enabling interpretable predictions in high-stakes scenarios (e.g.,
industrial inspection). Limitations include potential semantic drift in extreme scenarios,
computational overhead, inadequate structured anomaly modeling, and unvalidated cross-domain
robustness. Future work will focus on open-world adaptation, full-pipeline lightweighting, dual-
domain generative modeling, and cross-domain generalization enhancement. Overall, this
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framework establishes a versatile paradigm integrating cross-modal, self-supervised, generative
learning and uncertainty estimation, laying a foundation for reliable visual inspection systems.
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