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Abstract: To improve vehicle ride comfort and address the temporal dependency inherent 

in active suspension control, this study proposes a reinforcement learning–based control 

algorithm that integrates a Deep Q-Network (DQN) with a Long Short-Term Memory 

(LSTM) network, referred to as DQN-LSTM. A two-degree-of-freedom vertical dynamics 

model is first established as the interaction environment for the algorithm. A reward 

function is then designed to minimize the root-mean-square (RMS) value of the vehicle 

body vertical acceleration, where the DQN is responsible for policy optimization, and an 

LSTM layer is incorporated to extract temporal features embedded in historical state 

sequences, thereby enhancing the controller’s capability to predict and respond to road 

excitations. Simulation tests on Class B and Class C random roads are conducted in 

MATLAB. The results indicate that, compared with the passive suspension, the DQN 

controller reduces the RMS of the body vertical acceleration by 12.78%, whereas the 

proposed DQN-LSTM controller further reduces it by 25.11%, yielding a notably 

smoother system response. These findings demonstrate that the proposed algorithm 

effectively captures temporal characteristics and exhibits strong adaptability, robustness, 

and application potential under stochastic road excitations. 

1. Introduction 

As the number of vehicles in use continues to increase, the demand for ride comfort and vehicle 

ride quality is growing accordingly. As a key component of the vehicle running system, the 

suspension system has, as one of its core functions, the effective attenuation of road-induced 

vibrations transmitted to the vehicle body, thereby improving both ride comfort and handling 

stability [1-2]. Compared with passive suspensions with fixed parameters, which can only achieve a 

compromise between comfort and stability, active suspensions utilise actuators to regulate the 

suspension force in real time to compensate for road excitations, thereby improving ride comfort 

and safety simultaneously [3-4]. Consequently, the development of efficient active suspension control 

strategies is of great significance for enhancing vehicle running performance and improving 

occupant comfort. 
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A wide variety of active suspension control methods have been proposed, each with its own 

limitations. Classical linear control strategies (such as PID and LQR) rely on accurate system model 

parameters, and their performance often degrades when suspension parameters or road conditions 

vary [5–7]. Intelligent control methods such as fuzzy control can handle non-linearities to some 

extent, but their control performance depends heavily on expert-designed rule bases and lacks 

systematic design guidelines [8-9]. 

To address the problem of active suspension control, deep reinforcement learning (DRL) 

methods have been introduced to achieve adaptive optimisation of control policies. Ming et al. [10] 

proposed a control method based on Deep Q-Networks (DQN), in which a neural network 

approximates the Q-value function and uses suspension states such as body acceleration and 

suspension deflection as inputs to autonomously generate control actions. Wang Zihao et al. [11] 

proposed a semi-active suspension control method based on DQN, where a reward function 

integrating both ride comfort and handling stability is designed to enable self-learning and 

reproduction of the control policy, thereby improving control performance under different road 

conditions. Compared with traditional methods, DRL-based approaches do not require an accurate 

model; instead, they obtain an optimal policy through large-scale training, enabling the suspension 

system to adaptively adjust itself online. As a result, they exhibit strong robustness to parameter 

uncertainties and varying road conditions, and can maximise ride comfort while ensuring safety 
[12-13]. However, the classical DQN architecture does not possess an internal memory mechanism, 

and its decisions are made solely based on the current observed state. Given that the dynamic 

response of the suspension system is closely related to the time series of road excitations, a DQN 

model that lacks temporal information struggles to capture the evolution patterns of the system 

accurately [14–16]. 

To overcome this limitation, this study incorporates a Long Short-Term Memory (LSTM) 

network into the DQN framework to enhance its capability for temporal feature extraction. 

Specifically, one of the fully connected layers in the conventional DQN is replaced by an LSTM 

layer, enabling the network to integrate long-term historical observations through recurrent 

connections. The improved model can thus capture the temporal correlation characteristics of road 

excitations, estimate the current system state more accurately, and generate appropriate control 

strategies, thereby significantly improving the response speed and control accuracy of the system 

under dynamic road inputs. 

On the basis of a two-degree-of-freedom vehicle model, this paper designs a DQN control 

algorithm integrated with an LSTM layer. The algorithm takes the body vertical acceleration, 

suspension dynamic deflection and tyre dynamic displacement as state inputs, and outputs the 

discrete control force of the active suspension system. To improve vehicle ride quality, a reward 

function is constructed that minimises body acceleration while simultaneously accounting for 

suspension travel and tyre–road contact, thereby realising multi-objective collaborative optimisation. 

The main contributions of this paper are as follows: 

(1) A DQN–LSTM control algorithm that fuses temporal feature extraction is proposed. By using 

the LSTM layer to memorise historical state information, the algorithm enhances the system’s 

perception of and adaptability to dynamic variations in road excitation. 

(2) Through systematic simulation experiments and parameter analyses, it is verified that the 

proposed algorithm can significantly improve vehicle ride comfort under road excitations of 

different grades, providing a design reference for the deployment of deep reinforcement learning in 

vehicle suspension control. 

The remainder of this paper is organised as follows. Section 1 presents the design of the core 

control algorithm and details how the DQN–LSTM framework is constructed to address the 

aforementioned temporal dependence problem. Section 2 provides simulation validation and 
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systematically evaluates the effectiveness of the proposed control algorithm from three perspectives: 

overall performance, temporal behaviour mechanisms and real-time capability. Section 3 concludes 

the work and outlines future research directions. 

2. Design of a DQN–LSTM Control Algorithm Incorporating Temporal Feature Extraction  

This chapter provides a detailed description of the DQN–LSTM control algorithm designed to 

address the problem of temporal dependence in suspension control. As the core part of this study, it 

presents a systematic introduction covering the network architecture, temporal modelling, parameter 

configuration and training deployment. By combining the feature extraction capability of deep 

learning with the dynamic characteristics of the vehicle system, an intelligent control method is 

constructed that can effectively suppress vehicle vertical vibrations and enhance ride comfort and 

stability. 

2.1 State Input Modelling and Feature Pre-processing 

The core state of the vehicle suspension system consists of three physical quantities: the vertical 

acceleration of the sprung mass, the relative displacement between the sprung and unsprung masses, 

and the relative displacement between the unsprung mass and the road surface. At time instant k , 

these three observations are combined into the vector: 

                             (1) 

This vector fully captures the instantaneous information on body vibration and tyre–road contact 

performance. Since these three physical quantities have different dimensions, directly feeding them 

into the neural network would lead to gradient imbalance and slow down convergence; therefore, 

each component is first standardised to zero mean and unit variance: 

                                  (2) 

where i  and i  denote the mean and standard deviation of the i-th component of the 

observation, obtained by computing statistics over all ,k is  in the training data. After normalisation, 

a fully connected layer maps the three-dimensional input into a 128-dimensional hidden space, 

followed by a ReLU activation to extract non-linear features: 

                           (3) 

where 
(0) 128 3W  , 

(0) 128 3b  . In this way, the complex coupled non-linear relationships are 

decoupled, and it is ensured that the subsequent network receives inputs following a stable 

distribution. 

2.2 Temporal Dependence Modelling and LSTM Network Design 

The dynamic response of the vehicle suspension system to road excitations exhibits pronounced 

temporal correlation: the current body state depends not only on the present road condition but is 

also closely related to the vibration history over a preceding time interval. To capture such 

time-series characteristics, a memory-capable network, namely the LSTM, is introduced in this 
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study. The LSTM network is a special type of recurrent neural network, whose structure is shown in 

Fig. 1. Each LSTM unit contains a memory cell together with input, forget and output gates. These 

gating mechanisms effectively regulate what information is “remembered” or “forgotten”, enabling 

the network to retain relevant historical information over long time spans [17-18]. 

 

Figure 1: Architecture of the LSTM network. 

In the active suspension scenario, when the vehicle is travelling on a bumpy road, neglecting 

historical states makes it difficult for the DQN to exploit past information to make optimal 

decisions for the current control. Therefore, by embedding an LSTM within the DQN network, i.e., 

forming a DQN–LSTM architecture, the agent is able to “remember” the effects of previous road 

excitations, thereby enhancing its capability to handle temporal, non-Markovian characteristics. In 

summary, introducing LSTM units into the DQN enables the joint consideration of past states and 

inputs, and offers clear advantages for tackling sequence-dependent vehicle suspension control 

problems. 

2.3 Control Algorithm Architecture and Parameter Configuration 

The LSTM output Lh  is passed through a fully connected layer followed by layer normalisation 

(LayerNorm), and a ReLU activation is then applied to obtain the intermediate features:  

(1) (1) (1)( ( ))k Lh ReLU LayerNorm W h b                      (4) 

Where 
(1) 128 128W  . Subsequently, a 51-dimensional fully connected layer is used to output the 

action-value vector. 

(2) (1) (2)( , ; )k kQ s W h b                            (5) 

Corresponding to the action set { 50, 48, ,48,50}A    . The reinforcement learning 

hyperparameters are configured as follows: the discount factor 0.99   ensures a reasonable 

discounting of future rewards; the learning rate 
510  , together with the Adam optimiser, 

balances convergence speed and stability; the experience replay buffer capacity 
610  and a 

mini-batch size of 64 are used to break data correlations; Double DQN is enabled by setting 

UseDoubleDQN = true to reduce overestimation of Q-values; the sequence length 16L  ensures 

that the LSTM can capture sufficient historical information; the exploration strategy adopts an 
-greedy policy, where   is linearly decayed from 1.0 to 0.05 to balance exploration and 

exploitation; and the target network is synchronised using a soft update scheme: 

(1 )                                    (6) 

Where 
310   

        tanh

tanh

tanh

tanh

tanh

tanh

2tC 

2tH 

1tH 

1tx  1tx 

1tH tH

tx

2tH 

2tC 
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To balance ride comfort, road holding and energy consumption, this study designs a penalty-type 

reward function as given in: 

                     (7) 

where the first term penalises fluctuations in suspension dynamic deflection, the second term 

penalises fluctuations in body vertical acceleration, the third term ensures tyre–road contact, and the 

fourth term constrains the energy consumption of the active control force. 

During policy updates, the action value is iteratively updated according to the Bellman 

optimality equation: 

1( , ) ( , ) max ( , ) ( , )k k k k k k k k
a

Q s a Q s a r Q s a Q s a  


    
                  (8) 

where 
1max ( , )k k

a
r Q s a 


  denotes the current target value and   is the learning rate. The 

network parameters are updated by minimising the mean-squared TD error: 

2

1( ) max ( , ; ) ( , ; )k k k k
a

L E r Q s a Q s a   




   
                     (9) 

In the Double DQN architecture, the current network is used to select the action, while the target 

network is used to evaluate its value: 

 1 1,arg max ( , ; );k k k
a

y r Q s Q s a   

 


 
                    (10) 

Which further alleviates estimation bias. 

2.4 Agent Training and Deployment Process 

The rlSimulinkEnv interface is used to connect the Simulink active suspension model with the 

DQN–LSTM agent. The observation and action spaces are defined by rlNumericSpec([3,1]) and 

rlFiniteSetSpec(-50:2:50), respectively, and the agent is constructed using rlQValueRepresentation 

together with rlDQNAgentOptions. The training options are specified via rlTrainingOptions, 

including a maximum of 200 episodes, a maximum step number  / sT T , a stopping criterion based 

on the average reward reaching a prescribed threshold, and enabling visualisation of the training 

process. The command train(agent, env, trainingOpts) is then called to start training, during which 

the agent continuously interacts with the environment and updates its policy. After training, 

closed-loop simulations are performed using rlSimulationOptions and sim(env, agent, simOptions), 

and variables such as body acceleration, suspension and tyre displacements, and control force are 

recorded. A custom function plotSimulationResults is used to plot comparative time-response 

curves. 

The training and update mechanism of the DQN–LSTM agent comprises three main components. 

First, an  -greedy strategy is adopted for action selection to strike a balance between exploration 

and exploitation. Second, an experience replay buffer is employed to store interaction data and 

randomly sample mini-batches during training, thereby breaking data correlations and improving 

training stability. Third, a target network is used in parallel with the online network, and its 

parameters are synchronised at a fixed period to ensure smooth target value computation. 

In terms of temporal feature extraction, the LSTM network maps the historical state sequence 

into a hidden vector with long-term dependencies, thus providing more accurate input features for 

Q-value estimation. On this basis, the agent’s decision-making performance under complex road 

excitations is enhanced. During training, the loss function is still constructed based on the 
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temporal-difference (TD) method, and the optimisation objective is to make the estimated Q-values 

approach the target Q-values, thereby achieving convergence. 

3. Simulation and Analysis 

To verify the performance of the DQN–LSTM control algorithm in a structured manner, the 

simulation analyses in this section are organised as follows. First, overall performance indices are 

compared under typical operating conditions to demonstrate its comprehensive superiority. Next, 

the temporal behavioural characteristics of the control force are examined in depth, providing direct 

evidence for the core innovation of “temporal feature extraction”. Finally, the engineering 

feasibility and real-time capability of the algorithm are evaluated. 

To reflect the realism of actual vehicle driving on roads and to showcase the good ride comfort 

of the proposed DQN–LSTM active suspension system under complex road conditions, the 

simulation vehicle speed is set to 60 km/h. A combined B- and C-level road excitation signal is 

constructed for co-simulation, as illustrated in Fig. 2, where 0–10 s corresponds to a B-level road 

and 10–20 s corresponds to a C-level road. 

 

Figure 2: Road excitation signal. 

To evaluate the ride comfort performance of the proposed DQN–LSTM active suspension 

control system, this study analyses ride comfort indices of the vehicle when the active suspension is 

subjected to road excitation disturbances, such as body acceleration, suspension dynamic deflection 

and tyre dynamic displacement, and compares the advantages and disadvantages of the DQN and 

DQN–LSTM control strategies. To enable a more comprehensive assessment of the active 

suspension control system, the vehicle simulation parameters are specified as listed in Table 1. 

Table 1: Parameters of the quarter-vehicle suspension and tyre 

Name Parameter 

Sprung mass/(kg) 450 

Unsprung mass/(kg) 50 

Damping coefficient/(N/(m/s)) 2000 

Tyre stiffness /(N/m) 192000 

Spring stiffness/(N/m) 28000 

The simulation results for body acceleration, suspension dynamic deflection, wheel dynamic 

displacement and power spectral density are shown in Figs. 3–6: 
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Figure 3: Comparison of vertical body acceleration 

 

Figure 4: Comparison of suspension dynamic deflection 

 

Figure 5: Comparison of wheel dynamic displacement 

 

Figure 6: Comparison of power spectral density of vertical body acceleration 

From Fig. 3 it can be seen that, as the road roughness level increases, both the vertical body 

acceleration and the vibration peaks increase noticeably. The growth in the peak vertical vibration 

of the body under the DQN–LSTM active suspension is smaller than that under the DQN active 
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suspension, and the higher the road grade, the more pronounced the optimisation effect of DQN–

LSTM becomes. 

From Fig. 4 it can be observed that, for both DQN and DQN–LSTM active suspensions, the 

suspension dynamic deflection is larger than that of the uncontrolled suspension; however, the 

dynamic deflection of the DQN–LSTM suspension is smaller than that of the DQN suspension, and 

its increase remains within an acceptable range. 

As shown in Fig. 5, the wheel dynamic displacement of the DQN–LSTM active suspension 

system is lower than that of both the DQN active suspension and the uncontrolled suspension, in 

terms of both overall vibration amplitude and peak vibration. 

From Fig. 6 it can be seen that, in the main vehicle resonance region (1–2 Hz), both DQN and 

DQN–LSTM significantly reduce the PSD peak, with DQN–LSTM achieving the best effect. 

Taken together, under this operating condition it can be concluded that when the road excitation 

becomes more severe, the DQN–LSTM active suspension system still outperforms the DQN active 

suspension system in terms of vertical body acceleration and wheel dynamic displacement. Owing 

to the introduction of the LSTM to capture the temporal characteristics of the road excitation, the 

optimisation effect further improves as the road grade increases. 

Table 2: Comparison of ride comfort performance between the two active suspension control 

systems 

Suspension 

type 

Body vertical 

acceleration/ 
2m s  

Improvement / 

%
 

Suspension 

dynamic 

deflection/

m
 

Improvement / 

%
 

Wheel 

dynamic 

displace

ment/
m

 

Improve-

ment / 

%
 

Total band 

energy/
2 4/ /m s Hz

 

Attenua- 

tion/ 
%

 

Passive 

suspension 
0.0892  0.0011  0.000218  0.0079  

DQN active 

suspension 
0.0778 12.78 0.00136 -23.63 0.000216 0.91 0.0052 33.6 

DQN–LSTM 

active 

suspension 

0.0668 25.11 0.00128 -16.36 0.000192 11.92 0.0035 55.7 

From Table 2, the following observations can be made: 

(1) The moderate increase in suspension dynamic deflection reported in Table 2 is an inevitable 

consequence of the multi-objective performance trade-off inherent in active suspension systems, 

which must balance ride comfort, handling stability and actuator energy consumption. In order to 

significantly reduce body acceleration (comfort) and wheel dynamic displacement (road holding), 

the control algorithm needs to apply larger control forces, causing the suspension to operate more 

frequently within its working space. Under the same optimisation objective defined by an identical 

reward function, the DQN–LSTM algorithm exhibits a superior capability for intelligent trade-off: 

it achieves a higher performance gain (25.11% improvement in comfort vs 12.78% for DQN) at a 

smaller performance cost (suspension deflection deterioration of −16.36% vs −23.63% for DQN). 

This result demonstrates the advanced nature of the DQN–LSTM algorithm in addressing complex 

multi-objective optimisation problems. 

(2) From the frequency-domain analysis, it can be observed that the total band energy is reduced 

by 33.6% under DQN control, indicating that the reinforcement learning-based method provides 

effective vibration suppression. In contrast, DQN–LSTM delivers even better vibration reduction 

across the entire frequency range, with the total energy reduced by 55.7%. This shows that the 

DQN–LSTM control algorithm, which is based on temporal feature modelling, can more effectively 

accommodate the dynamic characteristics of the suspension system and achieve significant 

attenuation of broadband vibrations. 

In summary, under complex operating conditions, the DQN–LSTM active suspension system 

provides a notable improvement in overall vehicle ride comfort, further confirming the feasibility of 
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the active suspension framework developed in this study. Therefore, under mixed road conditions, 

vehicles equipped with the DQN–LSTM active suspension system exhibit superior ride quality. 

4. Conclusion 

This study investigates an intelligent active suspension control strategy for vehicles based on 

deep reinforcement learning, and analyses the control performance of a DQN–LSTM algorithm on a 

two-degree-of-freedom suspension model. The optimisation effect of the control algorithm is 

evaluated using indices such as body acceleration, suspension dynamic deflection and tyre dynamic 

displacement. The main contributions are as follows: 

(1) Deep reinforcement learning is applied to the vehicle active suspension control system, and a 

DQN–LSTM control algorithm incorporating a temporal memory mechanism is constructed. With 

the minimisation of body acceleration as its primary objective, the reinforcement learning agent 

realises active control of the vehicle suspension system under discretised control forces. 

(2) Simulation results show that both DQN- and DQN–LSTM-based intelligent control 

algorithms can effectively reduce the RMS value of body acceleration under road excitations and 

thus improve ride comfort. Owing to the introduction of the LSTM network structure, the DQN–

LSTM control algorithm possesses a stronger capability for time-series modelling and exhibits 

better control smoothness and convergence behaviour, particularly under long-duration excitations. 

(3) As an initial feasibility study of the algorithm, the present work is conducted on a classical 

two-degree-of-freedom model. We fully acknowledge its limitations in capturing coupled vehicle 

dynamics such as pitch and roll. Therefore, the core focus of future work will immediately shift to 

co-simulation based on a seven-degree-of-freedom full-vehicle model using CarSim/Simulink, and 

a hardware-in-the-loop test procedure has already been planned to validate the effectiveness and 

robustness of the proposed strategy in more complex scenarios. 
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