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Abstract: With China's rapid economic development, human activities have encroached 

upon ecological spaces, subjecting regional ecosystems to increasing pressures. To advance 

the United Nations Sustainable Development Goals for ecological conservation, it has 

become imperative to strengthen environmental protection in critical regions. This paper 

uses the Middle Yangtze River Urban Agglomeration (MYRUA) as a case study. It employs 

the upgraded Remote Sensing Ecological Index (RSEI-new) to assess the quality of the 

regional ecological environment quality (EEQ) and analyzes its spatial and temporal trends. 

To further reveal the key drivers of ecological improvement or degradation, an Optimal 

Parameter Geographic Detector is utilized to systematically investigate the factors 

influencing EEQ and their interactions. The findings indicate that the regional ecological 

environment exhibits a general pattern of “low values in urban areas and high values in 

forested areas,” with low-value zones primarily concentrated in densely urbanized belts 

along the Yangtze River. Temporally, the ecological environment in the study area shows 

an overall positive trend, with approximately 54% of the region demonstrating significant 

improvement. Net primary productivity (NPP) of vegetation emerges as the key single-

factor driver of ecological and environmental change, while the interaction effect between 

NPP and population density is most pronounced (q = 0.413), making it the primary 

composite driver of ecological and environmental change. Overall, identifying the trends 

and dominant factors of ecological and environmental change in the MYRUA provides vital 

statistical insights and scientific support for regional environmental management, 

ecological restoration, and policy optimization. 

1. Introduction 

To advance sustainable development in human society, the United Nations Sustainable 

Development Goals (SDGs) propose “Promoting the sustainable use of terrestrial ecosystems” (SDG 

15). This objective arises from the deeply interdependent relationship between human systems and 

ecosystems. Human economic production and construction activities not only alter land use patterns 
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but also continually erode space for vegetation growth, leading to ongoing disturbances in the 

ecological environment[1]. A healthy ecological environment is essential as a regional carbon sink and 

a foundation for green resources. When damaged, it exacerbates environmental pollution, reduces 

residents' quality of life, and may trigger more frequent extreme weather events and natural disasters[2]. 

Therefore, scientifically assessing regional ecological and environmental quality and accurately 

identifying the core drivers of ecological and environmental change are critically important for 

optimizing management strategies and ensuring the sustainable development of human society. 

In the field of ecological environment status assessment, scholars have proposed various 

evaluation methods from different research perspectives. The most widely applied methods include 

the Pressure-State-Response (PSR) model[3], the Ecological Environment Index (EI)[4], and the 

Remote Sensing Ecological Index (RSEI)[5]. It is important to note that the PSR model and EI index 

may be affected by subjective weighting or biases in indicator selection during metric design. In 

contrast, the RSEI derives evaluation metrics from remote sensing data inversion and employs 

principal component analysis (PCA) for integrated computation, effectively reducing human 

interference. As a result, it has been extensively applied in ecological and environmental assessment 

research[6]. To further enhance the RSEI's adaptability and accuracy while accommodating diverse 

regional ecological characteristics, researchers have strategically supplemented it with specialized 

indicators. For example, factors such as soil erosion and air quality conditions were included to 

address the specific characteristics of mining cities[7], while the Air Quality Index was added to 

consider both urban and industrial development contexts[8]. 

To advance regional ecological restoration and improvement, accurately identifying the key 

drivers of ecological change and formulating targeted conservation policies based on these findings 

have become central issues in contemporary ecological governance. As a method for identifying 

influencing factors, optimal parameter geographic detector (OPGD) model[9] not only quantify the 

contribution of individual factors to ecological and environmental changes but also analyze the 

interactive effects among variables, thereby characterizing the nonlinear relationships between factors. 

Consequently, they have gradually become a commonly used method for identifying ecological and 

environmental impact factors. 

As a pivotal hub connecting the upper and lower reaches of the Yangtze River, the Middle Yangtze 

River Urban Agglomeration (MYRUA) References has experienced intensified land development, 

driven by its role in receiving industrial transfers from downstream regions and promoting regional 

economic growth. However, this growth has led to challenges such as deteriorating air quality and 

impaired ecological functions. To accurately reflect the ecological and environmental quality of the 

region, this study incorporates air quality factors into the traditional RSEI framework to construct an 

upgraded Remote Sensing Ecological Index (RSEI-new) for a more comprehensive assessment of 

regional ecological and environmental quality. Concurrently, the SLOPE analysis method and the 

optimal parameter geographic detector model are employed to analyze trends and influencing factors 

of regional ecological and environmental changes. Ultimately, this research provides scientific basis 

and policy references for the sustainable ecological and environmental development of the MYRUA. 

2. Data Sources 

The construction of RSEI-new utilizes MODIS product data and employs google earth engine 

(GEE) for modeling. Due to variations in resolution stemming from different raster data sources, the 

resolution was uniformly standardized to 1km during the data preprocessing stage. Data sources are 

listed in Table 1. 
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Table 1: Data sources. 

Data 

function 

Data name Time Source 

RSEI-

new 

MOD11A2-LST 2003-

2021 

GEE (https://developers.google.com) 

MOD13Q1-KNDVI 

MOD09A1-WET, 

NDBSI and MNDVI 

MCD19A2-AOD 

Driving 

factor 

Methane (CH4) European Commission 

(https://edgar.jrc.ec.europa.eu/) 

Population density 

(POP) 

Oak Ridge National 

Laboratory(https://landscan.ornl.gov/) 

LUCC Paper (https://doi.org/10.5281/zenodo.8176941) 

Precipitation (PRE)  GEE (https://developers.google.com) 

NPP 

The share of 

secondary and 

tertiary industries in 

GDP（SIG） 

CHINA CITY STATISTICAL YEARBOOK 

(https://www.stats.gov.cn/sj/ndsj/) 

Total Population (TP) 

GDP 

3. Method 

3.1 RSEI-new Model 

Since traditional RSEI neglects air quality factors, it struggles to assess the negative impacts of 

industrial and urban development on air quality within MYRUA regions. Therefore, this paper 

introduces air quality indicators to construct a novel RSEI model. The RSEI-new₀ model employs the 

first principal component to circumvent biases arising from subjective weighting. Its expression is as 

follows: 

𝑅𝑆𝐸𝐼 − 𝑛𝑒𝑤0 = 𝑃𝐶𝐴1[𝑓(𝑁𝐷𝑉𝐼,𝑊𝐸𝑇, 𝐿𝑆𝑇,𝑁𝐷𝐵𝑆𝐼, 𝐴𝑂𝐷)]           (1) 

Among these, NDVI, WET, and NDBSI are calculated using MOD09A1 products; LST is 

constructed using MOD11A2; and AOD, representing the air quality factor, is calculated using the 

MCD19A2 Product-Optical_Depth_047 Band. Since areas with higher ecological quality usually 

have higher RSEI-new₀ values, and areas with lower ecological quality have lower RSEI₀ values. 

However, if RSEI-new₀ yields lower values in areas with good ecological quality, we calculate the 

final RSEI-new by subtracting RSEI-new₀ from 1. The inverse processing equation for RSEI-new is: 

𝑅𝑆𝐸𝐼 − 𝑛𝑒𝑤 = 1 − 𝑃𝐶𝐴1[𝑓(𝑁𝐷𝑉𝐼,𝑊𝐸𝑇, 𝐿𝑆𝑇,𝑁𝐷𝐵𝑆𝐼, 𝐴𝑂𝐷)]         (2) 

The RSEI-new is further normalized to ensure that its values ranging from 0 to 1, where 0 indicates 

severely poor ecological quality and 1 indicates signifies excellent ecological quality. The RSEI-new 

values were subsequently classified into five categories, each spanning an interval of 0.2: very poor 

(0–0.2), poor (0.2–0.4), moderate (0.4–0.6), good (0.6–0.8), and excellent (0.8–1). 
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3.2 Trend Analysis 

To further analyze trends in ecological environment changes, SLOPE analysis was employed to 

examine ecological change trends in RSEI-new from 2003 to 2021. An F-test was applied to 

determine the significance of these trends. The formula is as follows: 

𝜃𝑠𝑙𝑜𝑝𝑒 =

𝑛×∑ (𝑖×𝑋𝑖)−∑ 𝑖×∑ 𝑋𝑖
𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

𝑛×∑ 𝑖2−(∑ 𝑖𝑛
𝑖=1 )

2𝑛

𝑖=1

                      (3) 

Where 𝜃𝑠𝑙𝑜𝑝𝑒  denotes the regression slope; 𝑛  represents the total number of study years; 𝑖 

indicates the time variable; 𝑋𝑖  signifies the RSEI-new value. Combining the final trend analysis 

results with significance test outcomes allows categorizing RSEI-new trends as: extremely significant 

increase (𝜃𝑠𝑙𝑜𝑝𝑒 > 0, 𝑃 < 0.01), significant increase (𝜃𝑠𝑙𝑜𝑝𝑒 > 0, 0.01 < 𝑃 < 0.05), stable (𝑃 > 0.05), 

significant decline (𝜃𝑠𝑙𝑜𝑝𝑒 < 0, 0.01 < 𝑃 < 0.05), extremely significant decline (𝜃𝑠𝑙𝑜𝑝𝑒  < 0, 𝑃 < 

0.01). 

3.3 Optimal Parameters-based Geographical Detectors Model 

The OPGD addresses the issue of variable discretization by building upon traditional geographic 

detectors. It automatically classifies continuous variables using equal breaks, natural breaks, quantile 

breaks, geometric breaks, and standard deviation breaks, thereby reducing human interference. 

Therefore, this study selects the OPGD and utilizes its R package (https://www.geodetector.org/) to 

analyze the driving forces of the ecological environment in the MYRUA. Its formula is as follows: 

𝑞 = 1 −
∑ 𝑁ℎ𝜎ℎ

2
𝐿

ℎ=1

𝑁𝜎2
= 1 −

𝑆𝑆𝑊

𝑆𝑆𝑇
                           (4) 

In the formula: 𝑞 denote the explanatory power of the factor, with a value range of [0, 1]. A higher 

value indicates more pronounced spatial heterogeneity in Y and greater explanatory power. ℎ 

represents the stratum (Strata) of the dependent variable X. 𝑁ℎ and 𝑁 denote the number of units in 

stratum ℎ and the entire area, respectively. 𝜎ℎ
2 and 𝜎2 represent the variance of Y values within 

stratum ℎ and the entire area, respectively; 𝑆𝑆𝑊 and 𝑆𝑆𝑇 denote the sum of variance within strata 

and the total variance across the entire area, respectively. First, the study determines the optimal q-

value and classification method by applying different classification approaches to continuous 

variables. This helps identify the individual explanatory power of various influencing factors on 

spatial variations in ecological environment quality. Subsequently, we employ interaction detection 

analysis to examine the combined effects of different factors on the ecological environment. 
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4. Results 

4.1 Spatiotemporal Variations of RSEI-new 

 

Figure 1: Spatio-temporal distribution of RSEI-new. 

As shown in Figure 1, the regional ecological environment is predominantly rated “medium” and 

“good,” with these categories collectively accounting for over 60% of the total area. Areas rated ‘poor’ 

and “very poor” are primarily concentrated in urban zones, particularly in cities like Wuhan and 

Nanchang, where concentrated human activities and construction land use have adversely affected 

vegetation growth. Moderate and good grades are predominantly distributed along the Yangtze River, 

in valley areas, and in regions where forested and cultivated lands intermingle, exhibiting continuous 

block-like spatial clustering. Areas rated excellent are primarily located in mountainous regions, such 

as the Jiuling Mountains in the central part, Wudang Mountain and Wushan in the northwest, and the 

Wuyi Mountains in the south. Temporal trends reveal overall ecological improvement from 2003 to 

2008, with an average increase of 0.234. From 2008 to 2016, the average declined by approximately 

0.298 amid fluctuating conditions. and rebounded again from 2016 to 2021, with the average value 

increasing by 0.152. This ecological recovery trend aligns with the ecological restoration 

requirements outlined in the Yangtze River Economic Belt Development Plan and the symposium on 

the development of the Yangtze River Economic Belt, indicating that the effectiveness of regional 

ecological governance is gradually becoming apparent. 
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4.2 Trend Analysis of Ecological and Environmental Changes 

 

Figure 2: Spatial-temporal trends of RSEI-new. 

As shown in Figure 2, the slope values in the study area ranged from 0.017 to 0.031, indicating 

overall minimal ecological fluctuations and a generally positive trend. Only 1.063% of the area 

exhibited slope values below 0, primarily concentrated in the northern part of Xiangyang and the 

Hanjiang River basin spanning Jingmen and Tianmen. The remaining 98.557% of areas had slope 

values >0, with Loudi and Yiyang showing the most significant improvements. Combined with the 

RSEI-new significance results, 18.628% and 35.375% of the study area exhibited extremely 

significant and significant improvements, respectively, while 45.997% remained stable, indicating a 

pronounced overall ecological improvement trend. 

Spatially, areas with stable ecological conditions encompass both regions with solid ecological 

foundations like Ji'an and Yichang, as well as highly urbanized cities such as Wuhan, Xiantao, 

Qianjiang, and Nanchang, suggesting ecological pressures in these urban centers have gradually 

stabilized. Regions showing ecological improvement or significant improvement are predominantly 

distributed across forested and cultivated land areas. Notably, the study area exhibits a transitional 

trend from stable to significantly increased to extremely significantly increased ecological conditions, 

reflecting a progressive pattern of ecological change. 

4.3 Drivers of Ecological and Environmental Change 

To avoid model bias caused by sample data overlapping with target data, this study selected the 

multi-year average values of influencing factors across prefecture-level cities from 2003 to 2021 as 

input variables. Due to significant data gaps in Tianmen, Xiantao, and Qianjiang, these locations were 

excluded, resulting in 532 sample points. All factors yielded p-values below 0.05, indicating statistical 

significance. 
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Figure 3: Analysis of Influencing Factors of RSEI-new. 

The results of single-factor and interaction factor detection are shown in Figure 3. Single-factor 

detection revealed that NPP is the primary factor influencing ecological environment changes (q = 

0.238), followed by PD, CH4, and LUCC. The q values for PRE, SIG, and GDP were all below 0.1, 

indicating relatively weak explanatory power for ecological environment changes. Interaction 

detection results indicate that NPP∩PD exhibits the strongest explanatory power (q = 0.413), 

followed by PRE∩CH4 and NPP∩CH4 (q values of 0.385 and 0.384, respectively). TP∩GDP 

exhibited the weakest effect (q = 0.185). Overall, the q-values for interaction factors were generally 

higher than those for single factors, indicating that the combined action of multiple factors 

significantly enhances the explanatory power for ecological changes.  

5. Conclusion 

The SDGs underscore the urgency of strengthening terrestrial ecological conservation. This study 

employs the RSEI-new index to evaluate regional ecological conditions and analyzes their trends and 

key influencing factors. Key findings are as follows: 

(1) The overall ecological environment across the region remains at a relatively high level. Areas 

with poorer ecological conditions are primarily urban regions, particularly in cities like Nanchang 

and Wuhan. Conversely, areas with better ecological conditions are mainly mountainous regions 

distant from urban centers. 

(2) The overall ecological environment of the Middle Yangtze River Urban Agglomeration shows 

a positive trend. Areas with extremely significant and significant improvements account for 18.628% 

and 35.375% of the total area, respectively. 

(3) NPP, PD, and CH4 are the primary single factors influencing the ecological environment. All 

factors are enhanced through interactions, indicating that interactions between social and ecological 

factors can exert more significant impacts on the ecological environment. 

The factor analysis indicates that enhancing regional ecological environments requires 

strengthening vegetation conservation to increase NPP values. Additionally, attention must be paid to 

the impact of interactions between regional vegetation and population density on ecological 

environment quality. Coordinating population development with vegetation conservation objectives 

is essential to advance the sustainable development of ecological environments. 
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