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Abstract: Accurate and robust automated segmentation of Left Atrial (LA) tumors is 

essential for clinical diagnosis and treatment planning. Due to the inherent challenges in 

cardiac imaging, such as low tumor-to-background contrast and subtle boundaries, high-

precision segmentation remains difficult. This study proposes and evaluates a standard 2D 

U-Net architecture for effective LA tumor segmentation. We address class imbalance using 

the Dice Loss function and enhance generalization through critical data augmentation, 

including elastic deformation. Evaluated on an independent cardiac MRI dataset, the U-Net 

model achieves a Dice Similarity Coefficient (DSC) of 0.8145, demonstrating its strong 

capability as a reliable baseline for this challenging task. 

1. Introduction 

Left Atrial (LA) tumors are a critical type of cardiac mass requiring precise delineation for 

accurate volume quantification and surgical planning. Automated segmentation is necessary to 

reduce the subjectivity and time associated with manual delineation. While the U-Net architecture[1] 

has become the standard in medical image analysis, segmenting LA tumors presents unique 

challenges due to their small size, low contrast, and high susceptibility to artifacts. The objective of 

this study is to propose an optimized 2D U-Net model and comprehensively evaluate its 

segmentation performance against these specific clinical challenges. 

Our main contributions include: (1) Proposing and implementing a 2D U-Net model optimized 

for LA tumor segmentation, utilizing Dice Loss for class imbalance. (2) Employing essential data 

augmentation, such as elastic deformation, to enhance model robustness against non-rigid shape 

variations. (3) Providing a thorough quantitative and qualitative analysis of the model's performance 

on a challenging independent test set. 

2. Related Work 

The segmentation of cardiac structures, particularly Left Atrial (LA) tumors, sits at the 

intersection of deep learning and medical image analysis, leveraging advancements across several 

domains. 
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2.1. Deep Learning for Medical Image Segmentation 

The development of Deep Convolutional Neural Networks (DCNNs) marked a paradigm shift in 

medical image analysis. The U-Net architecture, introduced by Ronneberger et al., remains the 

cornerstone of many segmentation tasks due to its effective encoding-decoding structure coupled 

with skip connections. This architecture allows for the fusion of high-resolution feature maps (from 

the contracting path) with semantic information (from the expanding path), which is crucial for 

achieving high boundary accuracy. Subsequent variants, such as the V-Net[2] and Attention U-Net 

[3], have been introduced to address 3D volumetric data and enhance feature selection, respectively. 

For instance, the V-Net extended the U-Net concept to directly process 3D volumes, demonstrating 

superior consistency in the slice-to-slice prediction dimension. 

2.2. Cardiovascular Image Segmentation 

In cardiovascular imaging, DCNNs have been widely adopted for segmenting critical structures 

like the ventricles, atria, and major vessels. Segmentation of the Left Atrium (LA) itself is a well-

studied area, often focusing on identifying the LA wall for atrial fibrillation (AF) analysis[4]. 

Recent work has explored deep supervision and multi-scale feature aggregation to cope with the 

complex, thin boundaries of the LA structure[5]. However, the segmentation of pathologies such as 

LA tumors presents an additional challenge: the tumors are small, irregularly shaped objects, often 

obscured by weak contrast against the blood pool or adjacent myocardium. This difficulty requires 

models to achieve high precision (low False Positives) while maintaining high recall (low False 

Negatives). 

2.3. Addressing Challenges in Segmentation 

A key challenge in segmenting small lesions like LA tumors is the severe class imbalance 

between the large background area and the small target region. This has necessitated the adoption of 

specialized loss functions. The Dice Similarity Coefficient (DSC) has become the de facto metric 

and, consequently, the primary loss function (Dice Loss)[6] in medical segmentation to directly 

optimize the model for overlap accuracy, offering robustness against class imbalance. Furthermore, 

techniques such as aggressive data augmentation, including geometric transformations and non-

linear transformations like elastic deformation, are essential for improving the model's 

generalization ability and robustness against imaging artifacts and morphological variations 

inherent in clinical data. 

3. Methodology 

The segmentation of LA tumors is implemented using a 2D U-Net architecture [1], chosen for its 

proven efficacy in extracting both local and global features necessary for accurate delineation in 

medical images. The model processes each MRI slice independently, treating the task as a pixel-

wise binary classification problem. 

3.1. U-Net Architecture 

The U-Net structure comprises a symmetric Contracting Path (Encoder) and an Expanding Path 

(Decoder), connected by Skip Connections. 

The Contracting Path (Encoder) is responsible for capturing contextual information. It follows a 

typical convolutional network structure, consisting of five resolution levels. At each level, the 
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feature maps undergo two sequential 3× 3  convolutional layers, each followed by a Rectified 

Linear Unit (ReLU) activation function. This is succeeded by a 2× 2 max-pooling operation with 

stride 2 for downsampling, which effectively halves the spatial dimensions and doubles the number 

of feature channels. This process enables the network to extract increasingly abstract and high-level 

features of the tumor and surrounding tissue. 

The Expanding Path (Decoder) is tasked with precise localization and upsampling the 

compressed feature maps back to the original input size. It also consists of five corresponding levels. 

At each stage, the feature maps are first up-sampled using a 2× 2 transpose convolution (or up-

convolution), which doubles the spatial dimensions and halves the number of feature channels. The 

key architectural feature of the U-Net is the Skip Connection, where the corresponding high-

resolution feature maps extracted from the contracting path are concatenated with the upsampled 

features. This concatenation is vital, as it allows the decoder to efficiently integrate fine-grained 

spatial information (lost during pooling) with the abstract semantic information, which is critical for 

accurately defining the subtle and often ambiguous boundaries of the LA tumor. Following 

concatenation, two 3 × 3 convolutional layers and ReLU activations are used to refine the 

reconstructed features. 

3.2. Output Generation 

The final layer of the expanding path utilizes a single 1× 1 convolution to map the final feature 

set to the desired number of output channels, which is one (representing the probability of 

belonging to the tumor class). A Sigmoid activation function is applied to the output to produce a 

continuous probability map, 𝑃(𝑥) ∈ [0,1], over the entire image. The final binary segmentation 

mask is then obtained by applying a threshold of 0.5 to the probability map 𝑃(𝑥). 

4. Experiments 

4.1. Dataset Description 

The study utilized a Left Atrium (LA) Segmentation Dataset[7]. The dataset contains 30 

volumetric MRI scans, partitioned into 20 cases for training and 10 independent cases for testing. 

All volumes feature a 320 × 320 lateral resolution. However, the axial depth (slice count) varies 

across cases,with counts typically ranging from approximately 90 to 220 slices. For instance, the 

volume la_018.nii.gz has 220 slices. 

Each 3D MRI volume was processed slice by slice. Z-score Standardization and Min-Max 

Normalization were applied to ensure consistent pixel intensity distribution and scale the data to [0, 

1]: 

Îstd =
I−μ

σ
  and Înorm =

Îstd−Imin

Imax−Imin
. 

Where 𝐼 is the original pixel intensity 𝜇 and 𝜎 are the mean and standard deviation of the pixels, 

respectively; and 𝐼𝑚𝑎𝑥 and 𝐼𝑚𝑖𝑛 are the minimum and maximum pixel values after standardization. 

4.2. Data Augmentation and Implementation 

To enhance generalization, extensive data augmentation was used, including affine 

transformations, random rotation, scaling, and critically, elastic deformation. Elastic deformation is 

key to simulating non-rigid tissue changes and provides an effective regularization against 

overfitting. 

The primary loss function was the Dice Similarity Coefficient Loss (1 − DSC) to mitigate severe 
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class imbalance. The model was trained using the Adam optimizer for 200 epochs with a batch size 

of 12. 

To maintain stable training and prevent premature convergence, a dynamic learning rate 

scheduler (ReduceLROnPlateau) was employed to maintain stable convergence. Specifically, the 

learning rate was reduced when the training loss showed no significant improvement over a set 

number of epochs, effectively preventing the model from oscillating and maintaining convergence 

towards the minimum. 

The TensorBoard visualization tool was used throughout the process to monitor and track the 

evolution of the training and testing losses in real-time. 

5. Results and Discussion 

5.1. Quantitative Evaluation 

The proposed U-Net model was evaluated on the 10 unseen MRI volumes of the test set. The 

primary metric used was the Dice Similarity Coefficient (DSC), Jaccard Index (IoU), 

and metrics derived from the confusion matrix (Sensitivity, Specificity, and Accuracy).  

The performance metrics averaged over the entire test set are summarized in Table 1: 

Table 1: Summary of quantitative segmentation results on the left atrium test set. 

Metrics Mean score  Standard deviation 

Dice similarity soefficient (DSC) 0.8145 0.3288 

Jaccard index (IoU) 0.7773 0.3297 

Sensitivity 0.9299 0.2064 

Specificity 0.9994 0.0008 

Accuracy 0.9993 0.0008 

The achieved DSC of 0.8145 demonstrates a strong capability of the 2D U-Net architecture 

to accurately identify and segment the Left Atrium cavity in diverse MRI scans. This high overlap 

score is complemented by a robust Jaccard Index (IoU) of 0.7773, further validating the 

segmentation quality. The high standard deviation in DSC ( ± 0.3288) indicates significant 

performance variance on a few challenging cases. 

Furthermore, the training dynamics are illustrated in Figure 1. The stable convergence, despite 

initial fluctuation in the test loss curve, confirms the effectiveness of the dynamic learning rate 

scheduler in preventing overfitting. 

 

Figure 1: Convergence plot of training and testing losses over 30 epochs. 

This figure illustrates the training dynamics over the first 30 epochs, showcasing the evolution of 

the Dice Loss on both the training set (right panel) and the independent test set (left panel). 

Training Loss (Right): The training loss exhibits a rapid, smooth decline, indicating that the U-
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Net model is effectively learning to segment the Left Atrium during the early phases of training. 

Test Loss (Left): The test loss demonstrates a more volatile but overall decreasing trend, 

reaching its minimum value around epoch 20–25. This loss is the primary criterion for model 

selection, and its fluctuation justifies the use of the dynamic learning rate scheduler to prevent 

overfitting and ensure stability. 

This visualization confirms the model's convergence and the effectiveness of the training 

protocol. 

5.2. Qualitative Analysis (Visual Results) 

Visual inspection of the predicted masks provides crucial insight into the model's performance, 

particularly concerning boundary precision. Figure 2 shows visual segmentation results from the 

test set.  

     

      

Figure 2: Qualitative segmentation results on representative test cases: a comparison of Ground 

Truth (top row) and predicted masks (bottom row), both overlaid on the original MRI slices, across 

three scenarios. 

As shown in Figure 2, the qualitative segmentation results across three representative cases 

provide crucial insights into the model's performance range and failure modes. The first column 

illustrates the Best Case Scenario, where the predicted mask achieves Near-perfect overlap and 

highly precise boundary delineation against the Ground Truth (GT), typically observed in slices 

with high signal quality and distinct contrast. The second column demonstrates the volume effects; 

despite minor visible discrepancies, the model successfully maintains the overall morphology and 

localization of the target tumor. Conversely, the third column highlights an Error Case, revealing 

the primary limitation of the current system, often manifested as significant segmentation errors 

(e.g., False Positives or False Negatives) in slices corrupted by severe noise or highly ambiguous 

tumor-tissue boundaries. These visual observations complement the quantitative metrics in Table 1, 

confirming the model’s strong performance under clear conditions while indicating areas for future 

focus, particularly in noise robust boundary extraction. 

The effectiveness of the extensive data augmentation strategy[8], which includes affine 

transformations, rotation, scaling, and the crucial Elastic Deformation, is visually confirmed in 

Figure 3. 
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Figure 3: Illustration of on-the-fly data augmentation effects. 

This figure visualizes the extensive geometric and non-linear transformations applied to a single, 

specific 2D magnetic resonance image (MRI) slice during the training phase. The original slice is 

repeatedly augmented 16 times (a 4 × 4 grid) using combinations of affine transformations (rotation, 

scaling) and elastic deformation. The visualization method involves overlaying the segmentation 

mask (pink/magenta) onto the MRI image, where pixels with a mask value of zero (background) are 

masked out to ensure transparency and clear display of the segmentation target (Left Atrium). This 

augmentation strategy is critical for enhancing the model's robustness against varying anatomical 

orientations and non-rigid shape changes, thereby improving generalization on the limited training 

set. 

5.3. Discussion and Future Work 

The competitive performance shown in Table 1 is primarily due to the effective Dice Loss 

function and the boundary-preserving skip connections of the U-Net architecture. Crucially, the 

implemented elastic deformation was vital for ensuring model robustness against non-rigid shape 

changes.  

The primary limitation of this study is the use of 2D slice processing, which inherently ignores 

spatial coherence across adjacent slices. This may lead to inconsistencies in the predicted mask 

along the Z-axis. Future work will address this by exploring 3D U-Net (or V-Net) architectures to 

leverage the full 3D spatial relationship of the heart structure. We will also investigate advanced 

loss functions that incorporate boundary-aware terms to further refine segmentation borders. 

6. Conclusions 

This paper presented and evaluated a 2D U-Net model for Left Atrial tumor segmentation, 

achieving a DSC of 0.8145 on an independent test set. By optimizing the model with Dice Loss and 

elastic deformation, the model demonstrated good robustness and accuracy. The comprehensive 

quantitative and qualitative analysis establishes a solid baseline for U-Net application in this 

challenging cardiac tumor segmentation task. 
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