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Abstract: Accurate and robust automated segmentation of Left Atrial (LA) tumors is
essential for clinical diagnosis and treatment planning. Due to the inherent challenges in
cardiac imaging, such as low tumor-to-background contrast and subtle boundaries, high-
precision segmentation remains difficult. This study proposes and evaluates a standard 2D
U-Net architecture for effective LA tumor segmentation. We address class imbalance using
the Dice Loss function and enhance generalization through critical data augmentation,
including elastic deformation. Evaluated on an independent cardiac MRI dataset, the U-Net
model achieves a Dice Similarity Coefficient (DSC) of 0.8145, demonstrating its strong
capability as a reliable baseline for this challenging task.

1. Introduction

Left Atrial (LA) tumors are a critical type of cardiac mass requiring precise delineation for
accurate volume quantification and surgical planning. Automated segmentation is necessary to
reduce the subjectivity and time associated with manual delineation. While the U-Net architecture[1]
has become the standard in medical image analysis, segmenting LA tumors presents unique
challenges due to their small size, low contrast, and high susceptibility to artifacts. The objective of
this study is to propose an optimized 2D U-Net model and comprehensively evaluate its
segmentation performance against these specific clinical challenges.

Our main contributions include: (1) Proposing and implementing a 2D U-Net model optimized
for LA tumor segmentation, utilizing Dice Loss for class imbalance. (2) Employing essential data
augmentation, such as elastic deformation, to enhance model robustness against non-rigid shape
variations. (3) Providing a thorough quantitative and qualitative analysis of the model's performance
on a challenging independent test set.

2. Related Work

The segmentation of cardiac structures, particularly Left Atrial (LA) tumors, sits at the
intersection of deep learning and medical image analysis, leveraging advancements across several
domains.
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2.1. Deep Learning for Medical Image Segmentation

The development of Deep Convolutional Neural Networks (DCNNs) marked a paradigm shift in
medical image analysis. The U-Net architecture, introduced by Ronneberger et al., remains the
cornerstone of many segmentation tasks due to its effective encoding-decoding structure coupled
with skip connections. This architecture allows for the fusion of high-resolution feature maps (from
the contracting path) with semantic information (from the expanding path), which is crucial for
achieving high boundary accuracy. Subsequent variants, such as the V-Net[2] and Attention U-Net
[3], have been introduced to address 3D volumetric data and enhance feature selection, respectively.
For instance, the V-Net extended the U-Net concept to directly process 3D volumes, demonstrating
superior consistency in the slice-to-slice prediction dimension.

2.2. Cardiovascular Image Segmentation

In cardiovascular imaging, DCNNs have been widely adopted for segmenting critical structures
like the ventricles, atria, and major vessels. Segmentation of the Left Atrium (LA) itself is a well-
studied area, often focusing on identifying the LA wall for atrial fibrillation (AF) analysis[4].
Recent work has explored deep supervision and multi-scale feature aggregation to cope with the
complex, thin boundaries of the LA structure[5]. However, the segmentation of pathologies such as
LA tumors presents an additional challenge: the tumors are small, irregularly shaped objects, often
obscured by weak contrast against the blood pool or adjacent myocardium. This difficulty requires
models to achieve high precision (low False Positives) while maintaining high recall (low False
Negatives).

2.3. Addressing Challenges in Segmentation

A key challenge in segmenting small lesions like LA tumors is the severe class imbalance
between the large background area and the small target region. This has necessitated the adoption of
specialized loss functions. The Dice Similarity Coefficient (DSC) has become the de facto metric
and, consequently, the primary loss function (Dice Loss)[6] in medical segmentation to directly
optimize the model for overlap accuracy, offering robustness against class imbalance. Furthermore,
techniques such as aggressive data augmentation, including geometric transformations and non-
linear transformations like elastic deformation, are essential for improving the model's
generalization ability and robustness against imaging artifacts and morphological variations
inherent in clinical data.

3. Methodology

The segmentation of LA tumors is implemented using a 2D U-Net architecture [1], chosen for its
proven efficacy in extracting both local and global features necessary for accurate delineation in
medical images. The model processes each MRI slice independently, treating the task as a pixel-
wise binary classification problem.

3.1. U-Net Architecture

The U-Net structure comprises a symmetric Contracting Path (Encoder) and an Expanding Path
(Decoder), connected by Skip Connections.

The Contracting Path (Encoder) is responsible for capturing contextual information. It follows a
typical convolutional network structure, consisting of five resolution levels. At each level, the
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feature maps undergo two sequential 3x 3 convolutional layers, each followed by a Rectified
Linear Unit (ReLU) activation function. This is succeeded by a 2x 2 max-pooling operation with
stride 2 for downsampling, which effectively halves the spatial dimensions and doubles the number
of feature channels. This process enables the network to extract increasingly abstract and high-level
features of the tumor and surrounding tissue.

The Expanding Path (Decoder) is tasked with precise localization and upsampling the
compressed feature maps back to the original input size. It also consists of five corresponding levels.
At each stage, the feature maps are first up-sampled using a 2x 2 transpose convolution (or up-
convolution), which doubles the spatial dimensions and halves the number of feature channels. The
key architectural feature of the U-Net is the Skip Connection, where the corresponding high-
resolution feature maps extracted from the contracting path are concatenated with the upsampled
features. This concatenation is vital, as it allows the decoder to efficiently integrate fine-grained
spatial information (lost during pooling) with the abstract semantic information, which is critical for
accurately defining the subtle and often ambiguous boundaries of the LA tumor. Following
concatenation, two 3 x 3 convolutional layers and ReLU activations are used to refine the
reconstructed features.

3.2. Output Generation

The final layer of the expanding path utilizes a single 1x 1 convolution to map the final feature
set to the desired number of output channels, which is one (representing the probability of
belonging to the tumor class). A Sigmoid activation function is applied to the output to produce a
continuous probability map, P(x) € [0,1], over the entire image. The final binary segmentation
mask is then obtained by applying a threshold of 0.5 to the probability map P (x).

4. Experiments
4.1. Dataset Description

The study utilized a Left Atrium (LA) Segmentation Dataset[7]. The dataset contains 30
volumetric MRI scans, partitioned into 20 cases for training and 10 independent cases for testing.
All volumes feature a 320 x 320 lateral resolution. However, the axial depth (slice count) varies
across cases,with counts typically ranging from approximately 90 to 220 slices. For instance, the
volume la_018.nii.gz has 220 slices.

Each 3D MRI volume was processed slice by slice. Z-score Standardization and Min-Max
Normalization were applied to ensure consistent pixel intensity distribution and scale the data to [0,
1]:

Tstd = I?Tu and Tnorm = Tara~trmin

Imax_lmin.
Where I is the original pixel intensity u and o are the mean and standard deviation of the pixels,
respectively; and I,,,,, and I,,,;;, are the minimum and maximum pixel values after standardization.

4.2. Data Augmentation and Implementation

To enhance generalization, extensive data augmentation was used, including affine
transformations, random rotation, scaling, and critically, elastic deformation. Elastic deformation is
key to simulating non-rigid tissue changes and provides an effective regularization against
overfitting.

The primary loss function was the Dice Similarity Coefficient Loss (1 — DSC) to mitigate severe
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class imbalance. The model was trained using the Adam optimizer for 200 epochs with a batch size
of 12.

To maintain stable training and prevent premature convergence, a dynamic learning rate
scheduler (ReduceLROnPlateau) was employed to maintain stable convergence. Specifically, the
learning rate was reduced when the training loss showed no significant improvement over a set
number of epochs, effectively preventing the model from oscillating and maintaining convergence
towards the minimum.

The TensorBoard visualization tool was used throughout the process to monitor and track the
evolution of the training and testing losses in real-time.

5. Results and Discussion
5.1. Quantitative Evaluation

The proposed U-Net model was evaluated on the 10 unseen MRI volumes of the test set. The
primary metric used was the Dice Similarity Coefficient (DSC), Jaccard Index (loU),
and metrics derived from the confusion matrix (Sensitivity, Specificity, and Accuracy).

The performance metrics averaged over the entire test set are summarized in Table 1:

Table 1: Summary of quantitative segmentation results on the left atrium test set.

Metrics Mean score Standard deviation
Dice similarity soefficient (DSC) 0.8145 0.3288
Jaccard index (loU) 0.7773 0.3297
Sensitivity 0.9299 0.2064
Specificity 0.9994 0.0008
Accuracy 0.9993 0.0008

The achieved DSC of 0.8145 demonstrates a strong capability of the 2D U-Net architecture
to accurately identify and segment the Left Atrium cavity in diverse MRI scans. This high overlap
score is complemented by a robust Jaccard Index (loU) of  0.7773,  further validating the
segmentation quality. The high standard deviation in DSC (£ 0.3288) indicates significant
performance variance on a few challenging cases.

Furthermore, the training dynamics are illustrated in Figure 1. The stable convergence, despite
initial fluctuation in the test loss curve, confirms the effectiveness of the dynamic learning rate
scheduler in preventing overfitting.

Loss
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Figure 1: Convergence plot of training and testing losses over 30 epochs.

This figure illustrates the training dynamics over the first 30 epochs, showcasing the evolution of
the Dice Loss on both the training set (right panel) and the independent test set (left panel).
Training Loss (Right): The training loss exhibits a rapid, smooth decline, indicating that the U-
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Net model is effectively learning to segment the Left Atrium during the early phases of training.
Test Loss (Left): The test loss demonstrates a more volatile but overall decreasing trend,
reaching its minimum value around epoch 20-25. This loss is the primary criterion for model
selection, and its fluctuation justifies the use of the dynamic learning rate scheduler to prevent
overfitting and ensure stability.
This visualization confirms the model's convergence and the effectiveness of the training
protocol.

5.2. Qualitative Analysis (Visual Results)

Visual inspection of the predicted masks provides crucial insight into the model's performance,
particularly concerning boundary precision. Figure 2 shows visual segmentation results from the

test set.
Label GD Label GD Label GD

prediction

Figure 2: Qualitative segmentation results on representative test cases: a comparison of Ground
Truth (top row) and predicted masks (bottom row), both overlaid on the original MRI slices, across
three scenarios.

As shown in Figure 2, the qualitative segmentation results across three representative cases
provide crucial insights into the model's performance range and failure modes. The first column
illustrates the Best Case Scenario, where the predicted mask achieves Near-perfect overlap and
highly precise boundary delineation against the Ground Truth (GT), typically observed in slices
with high signal quality and distinct contrast. The second column demonstrates the volume effects;
despite minor visible discrepancies, the model successfully maintains the overall morphology and
localization of the target tumor. Conversely, the third column highlights an Error Case, revealing
the primary limitation of the current system, often manifested as significant segmentation errors
(e.g., False Positives or False Negatives) in slices corrupted by severe noise or highly ambiguous
tumor-tissue boundaries. These visual observations complement the quantitative metrics in Table 1,
confirming the model’s strong performance under clear conditions while indicating areas for future
focus, particularly in noise robust boundary extraction.

The effectiveness of the extensive data augmentation strategy[8], which includes affine
transformations, rotation, scaling, and the crucial Elastic Deformation, is visually confirmed in
Figure 3.
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Figure 3: Hllustration of on-the-fly data augmentation effects.

This figure visualizes the extensive geometric and non-linear transformations applied to a single,
specific 2D magnetic resonance image (MRI) slice during the training phase. The original slice is
repeatedly augmented 16 times (a 4 X 4 grid) using combinations of affine transformations (rotation,
scaling) and elastic deformation. The visualization method involves overlaying the segmentation
mask (pink/magenta) onto the MRI image, where pixels with a mask value of zero (background) are
masked out to ensure transparency and clear display of the segmentation target (Left Atrium). This
augmentation strategy is critical for enhancing the model's robustness against varying anatomical
orientations and non-rigid shape changes, thereby improving generalization on the limited training
set.

5.3. Discussion and Future Work

The competitive performance shown in Table 1 is primarily due to the effective Dice Loss
function and the boundary-preserving skip connections of the U-Net architecture. Crucially, the
implemented elastic deformation was vital for ensuring model robustness against non-rigid shape
changes.

The primary limitation of this study is the use of 2D slice processing, which inherently ignores
spatial coherence across adjacent slices. This may lead to inconsistencies in the predicted mask
along the Z-axis. Future work will address this by exploring 3D U-Net (or V-Net) architectures to
leverage the full 3D spatial relationship of the heart structure. We will also investigate advanced
loss functions that incorporate boundary-aware terms to further refine segmentation borders.

6. Conclusions

This paper presented and evaluated a 2D U-Net model for Left Atrial tumor segmentation,
achieving a DSC of 0.8145 on an independent test set. By optimizing the model with Dice Loss and
elastic deformation, the model demonstrated good robustness and accuracy. The comprehensive
quantitative and qualitative analysis establishes a solid baseline for U-Net application in this
challenging cardiac tumor segmentation task.
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