
A Review of Research on Pruning Strategies in Maximum 

Frequent Itemset Mining Algorithms 

Fentian Li 

The Tourism College of Changchun University, Changchun, Jilin, 130607, China 

2812001856@qq.com 

Keywords: Frequent Itemsets; Enumeration Tree; Pruning Strategy; Maximum Frequent 

Itemsets 

Abstract: The mining of frequent itemsets has become a hot topic among researchers. If the 

process of mining frequent itemsets is regarded as a search problem, then the search space 

is an enumeration tree. In order to minimize unnecessary nodes for search, the optimization 

of pruning technology can improve the mining efficiency of frequent itemsets to a certain 

extent. This is one of the important means to improve the efficiency of frequent itemsets. 

This article improves the definitions of frequent itemsets and enumeration trees, analyzes 

the use of various pruning strategies, and summarizes the efficiency of various pruning 

strategies for mining maximum frequent itemsets. 

1. Introduction 

With the development of the big data era, the role of data mining technology in this field cannot 

be underestimated. Discovering association rules is the focus of data mining work. The mining of 

frequent patterns is the core and foundation of association mining [1]. It is a decisive factor affecting 

the efficiency of mining algorithms. It is the basis for generating association rules. Therefore, any 

progress in frequent pattern mining will have an important impact on the efficiency of association 

mining and other data mining tasks. However, under normal circumstances, the number of frequent 

item sets obtained is huge, and items are repeated among each other, which leads to the problem of 

information redundancy. Since the maximum frequent itemset contains all frequent itemsets, which 

greatly reduces the number of frequent itemsets, the problem of calculating frequent itemsets can be 

transformed into calculating the maximum frequent itemsets. In some applications, only the 

maximum frequent itemset is needed and not all frequent itemsets are needed. In this way, it is of 

great significance to study the algorithm for directly calculating the maximum frequent itemsets [2]. 

How to effectively prune the search space is a core of research work on maximum frequent itemset 

mining. Choosing an appropriate pruning strategy can effectively reduce the search space during the 

mining process. This paper reviews the pruning strategies of maximum frequent itemsets from three 

aspects: using non-frequent subset pruning, using frequent superset pruning, and using parent-child 

relationship pruning. Clever selection of pruning strategies during the mining process can improve 

the efficiency of the algorithm [3]. 
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2. Basic concepts and theories 

2.1 Concept explanation 

Definition 1 Assume that I={I1,I2,I3,...,Im} is a set of all items, where each item Ii (1≤i≤m) in I is 

called an item. If the set X⊆I, then X is called an itemset. 

Definition 2 Definition 2 Given an item set X⊆I, the number of times X appears in T is taken as 

the support of the item set 

Definition 3 Let the minimum support threshold be min_sup. min_sup can be either a specific 

value or expressed as a percentage. Assuming that the number of transactions in the database is M 

and min_sup is expressed as a percentage, the minimum support threshold can be obtained by 

multiplying the minimum support percentage by the number of transactions M. If min_sup=2%, and 

there are 100 transactions in total, then when the number of occurrences of an item set is greater than 

or equal to 2, we consider it to be frequent. Of course, we can also set min_sup=2 directly. In this 

article, we set min_sup to a specific value. If Sup(X)≥min_sup, then X is said to be a frequent itemset 

FI [4]. 

Definition 4: Each item of set X is included in set Y, but at least one item in set Y is not in set X. 

Y is called a true superset of X, and X is a true subset of Y. 

Definition 5 If there is no true superset Y such that sup(Y)=sup(X), and the itemset X is frequent, 

then the itemset X is said to be a closed frequent itemset CFI in the database. 

Definition 6 If the itemset X is frequent in the database, and for any itemset Y that satisfies X⊂Y, 

Y is a superset of X and is infrequent, then X is the maximum frequent itemset MFI. 

2.2 Theoretical properties 

Definition 7 Enumeration tree refers to arranging all items appearing in the database in dictionary 

order and logically organizing them into the form of an enumeration tree. If item i appears before 

item j in set I, then i < j. "<" is used to indicate the lexicographic order on the item set I. Level 0 is 

the root and is empty. The kth layer contains all k itemsets. Each node in the tree is composed of two 

parts, namely the head of the node and the tail of the node. Head is actually the item set represented 

by the node itself. Tail is a collection of items that can be expanded by a node. Note that Tail contains 

all item elements that are lexicographically greater than Head. As shown in Figure 1, assume that the 

set of all items is {a, b, c}, the "()" in the figure represents Head, and the "{}" represents Tail. 

 

Figure 1: enumeration tree 

As shown in Figure 1, it is a set enumeration tree of {a, b, c}. In this enumeration tree, it is assumed 

that these three elements satisfy the relationship of a, b, c increasing in order. The unique ordered 

relationship of items represents the parent-child relationship of nodes in the enumeration tree. In the 

figure above, what we assume is a relatively static sequential correlation. In a specific algorithm, if 

we want to improve the efficiency of the algorithm, we can do this by dynamically adjusting the 

corresponding relationship. Obviously, if the order in which the elements in the set are defined is 
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different, the corresponding set enumeration tree will also be different [5]. 

Property 1 (Apriori property) All non-empty subsets of frequent itemsets must also be frequent. 

Property 1 has anti-monotonicity, that is, if X is a non-frequent itemset, then any superset Y of X 

is a non-frequent itemset. During the deep search process, the enumeration tree can be pruned using 

Property 1 and its anti-monotonicity. 

Property 2: If an itemset is not a maximum frequent itemset, then it is not completely certain 

whether its subset can be a maximum frequent itemset, but the subset has the possibility of being a 

frequent itemset, and of course it may also be an infrequent itemset. Therefore, it is necessary to 

determine the maximum frequent itemset of the subset in turn. 

Property 3: Let the current node be C, i∈Tail(C). If Sup(C∪{i})=Sup(C) and Sup(C∪

{i})≥min_sup, you can directly point the current node to C∪{i}. This property can be used to prune 

the parent-child equivalence relationship. 

3. Pruning strategy  

The mining of maximum frequent itemsets can actually be regarded as a search problem, and its 

search space is an enumeration tree. According to the definition of enumeration tree, if there are m 

items in the database, then the enumeration tree will have 2m nodes to be searched. In order to reduce 

unnecessary search nodes as much as possible, pruning optimization technology can improve the 

exploration efficiency of frequent item sets, which is an important means to improve the efficiency 

of frequent item set mining. For the huge search space that exists, pruning becomes an advantageous 

method for mining frequent itemsets [6]. 

The enumeration tree is a hierarchical tree structure, combined with the definition of the 

enumeration tree. Each node is expanded by the nodes of the previous layer in a certain order. This 

order is called lexicographic order. The meaning represented by the Head of a node is the item set of 

each node. The Tail of a node refers to the possible lexicographically extended set of each node, 

Tail={x|x∈I and y∈Head and y<x}, that is, the elements contained in the Tail are greater than each 

element in the Head in lexicographic order. The candidate extended item set CE(N)={x|x∈I and 

x∉Head and N∪{x} of node N may be frequent}, and CE(N)=Tail(N) can be obtained from analysis. 

The frequent extended itemset FE(N)={x|x∈CE(N) and N∪{x} of node N is frequent} and is 

represented by "[]" in the figure. 

3.1 Pruning using infrequent subsets 

3.1.1 Basic pruning strategy 1 (BasicPS1) 

For the current node N, through support calculation, the frequent expansion branches of N are 

retained and the infrequent expansion branches of N are deleted. The specific operation of support 

calculation is as follows: according to the dictionary order, the support of N∪{x}(x∈CE(N)) is 

calculated sequentially. If sup(N∪{x})≥min_sup, retain the N∪{x} branch; otherwise, delete this 

branch. In other words, the child nodes of N are composed of N∪{x}, where x∈FE(N). 

Since it is meaningless to perform any operation on infrequent itemsets. Therefore, pruning 

infrequent expansion branches will avoid many unnecessary expansions and can effectively reduce 

the size of the search space without losing the information of frequent itemsets. As shown in Figure 

2, I={a,b,c,d}, node N={a}, then CE(N)={b,c,d}. Through support calculation, it is known that {ab} 

and {ad} are frequent item sets, while {ac} is a non-frequent item set. Based on the basic pruning 

strategy 1, there is no need to continue to expand {ac} and can be deleted. At the same time, the 

candidate extension set FE(N)={b,d} of node N is obtained. 
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Figure 2: BasicPS1 (the dotted box is the pruned node) 

To sum up, this strategy is essentially a process of obtaining FE(N), which can be applied to most 

frequent itemset mining algorithms. It has universal applicability and can improve the efficiency of 

the algorithm on the basis of reducing the search space. It is especially suitable for mining algorithms 

using the depth-first strategy. However, the shortcoming of this strategy is that when traversing node 

N, FE(N) must be obtained from CE(N) through support calculation. Pruning is conditional, and the 

condition is that it can only be realized when there is non-frequent expansion. In the above figure2, 

only after the itemset {ac} is supplemented and the support is calculated, it is discovered that the set 

is a non-frequent itemset. This approach produces a large number of non-frequent itemsets that have 

no effect [7]. 

3.1.2 Basic pruning strategy 2 (BasicPS2)  

In the enumeration tree, let N be the current node and its parent node is P, then N=P∪{x}, x∈

FE(P). CE(N) comes from FE(P) of its parent node P. That is, CE(N)={y|y∈FE(P)andx<y}. 

As shown in Figure 3, node N={a}, according to the definition of lexicographic subset enumeration 

tree, CE(N)={b,c,d}, that is to say, {ab}, {ac} and {ad} should be extended at the next level of N. 

However, N's parent node P={∅}, it is known through support calculation that FE(P)={a,b,d}, and 

{c} is infrequent. According to the Apriori characteristics, it can be inferred that {ac} is also 

infrequent. Therefore, according to the basic pruning strategy 2, CE (N) = {b, d}, the number of items 

in the candidate extended item set is reduced, so that the extended item set {ac} will not be obtained, 

thereby avoiding repeated calculation of support for infrequent extended item sets, effectively 

reducing the amount of calculation, and further improving the execution speed of the algorithm. 

 

Figure 3: BasicPS2 

Comparing the two basic pruning strategies, we can see that BasicPS2 can reduce the candidate 

extension set CE of its own node based on the frequent extension set FE of the parent node. Basic 

pruning strategy 2 can be regarded as an effective supplement to basic pruning strategy 1. Basic 

pruning strategy 2 is established after basic pruning strategy 1 generates the frequent expansion set 

FE of the parent node. There is a logical progressive relationship between the two pruning strategies. 

They generally appear at the same time in the algorithm for mining frequent item sets. The cross-use 

of each other can greatly reduce the search space. However, in each candidate candidate extended 

item set, only one item is taken for support calculation operation, which makes the algorithm face a 

huge amount of calculation, which is an inevitable problem of the basic pruning strategy. 
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In the context of the digital economy, the continuous emergence of new technologies and new 

business models has caused changes on the demand side, and customer demand is also shifting 

towards intelligence and digitalization. To a certain extent, this forces enterprises to use digitalization 

to empower themselves and carry out digital transformation and upgrading. Changes in consumer 

demand have forced the equipment manufacturing industry to transform and upgrade. Driven by 

changes in demand, the equipment manufacturing industry uses digital transformation to empower 

itself is an inevitable choice for it to meet customer needs and improve its comprehensive competitive 

strength [8]. 

3.2 Exploiting frequent superset pruning  

The theoretical basis of this type of pruning strategy is that the subsets of property 1 frequent 

itemsets are also frequent. For the maximum frequent itemset, once it is determined to be the 

maximum frequent itemset, there is no need to obtain its subsets. 

3.2.1 Maximum pruning strategy 1 (MaxPS1)  

For the current node N, let M=N∪CE(N). If sup(M)≥min_sup, then M is frequent. Then the 

subtree with N as the root node does not need to be traversed and is suitable for mining the maximum 

frequent itemset. 

This strategy is based on the definition of maximum frequent itemsets and the Apriori property. In 

the enumeration tree, if M is frequent, then its subsets are also frequent. At the same time, in the 

subtree rooted at N, there will be no itemset larger than M. Therefore, in the process of mining the 

maximum frequent itemsets, only the maximum of M can be detected. As shown in Figure 4, for node 

N={a}, before extending it, first calculate the support of N∪CE(N)={abcde}. It is assumed here that 

sup({abcde})≥min_sup, then N∪CE(N) is frequent. According to the maximum pruning strategy 1, 

node {a} does not need to continue to expand, and the subtree can be deleted from the search space.  

 

Figure 4: MaxPS (The dotted box is the extended branch that can be pruned)1 

This strategy can effectively reduce the search space in the maximum frequent itemset mining 

algorithm, but it requires scanning the database when making support judgments, which increases I/O 

operations. Moreover, it can only be tentatively designated as the candidate maximum frequent 

itemset, and it cannot be determined whether it is the maximum frequent itemset. This still needs to 

be judged through global operations [9]. 

3.2.2 Maximum pruning strategy 2 (MaxPS2)  

In the enumeration tree, the current node is N. If M=N∪CE(N) is a subset of a certain maximum 

frequent itemset, then M must be frequent. Then the subtree rooted at N can be subtracted. Because 

starting from node N, the expansion obtained are all subsets of M, and there will be no frequent 

itemsets larger than M. Therefore, this method is conducive to and can more effectively mine the 
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maximum frequent itemset. 

This method is based on two theories: the concept of maximum frequent itemsets and the Apriori 

property. First, a part of the maximum frequent itemset will be obtained through the traditional 

method, as shown in Figure 5. Assume {abcd} is a maximum frequent itemset, then when expanding 

the N={b} node, it is found that N∪CE(N)={bcd}⊆{abcd}, then delete the subtree with the {b} node 

as the root. In the same way, for nodes {c}, {d}, the union of them and their respective candidate 

extension sets is also included in {abcd}, so it can also be pruned. The final result is actually a path 

from the root node to {abcd}. 

 

Figure 5: MaxPS2 (The dotted box is the pruned node) 

Maximum pruning strategy 2 can greatly reduce the search space during the maximum frequent 

itemset search process. Because this process does not need to calculate support, it greatly reduces the 

number of database scans and improves efficiency. Especially when the database size is large, the 

execution speed of the algorithm will be significantly improved. But the disadvantage is that detection 

methods must be used. Every time a node is expanded or supplemented, it is necessary to check 

whether the union of the node and its candidate expansion set forms a subset of a known maximum 

frequent item set. In the process of increasing the maximum frequent itemset, the detection space 

continues to expand, which increases the algorithm overhead. Because this pruning strategy has a 

predictive nature, if the maximum frequent itemset is a node in the deepest layer, each prediction step 

in the previous operation is a waste of time. Therefore, this method can be integrated into this pruning 

strategy after obtaining a certain amount of maximum frequent itemsets. 

From the comparison, it can be seen that both MaxPS1 and MaxPS2 operate on the "merging" of 

the current node and its candidate extension set. MaxPS2 can also be regarded as a supplementary 

operation of MaxPS1. The candidate maximum frequent itemset is first obtained through MaxPS1. 

However, MaxPS2 does not perform support calculation, while MaxPS1 does. Therefore, MaxPS1 is 

suitable for small databases, and MaxPS2 is suitable for large databases [10]. 

3.2.3 Maximum pruning strategy 3 (MaxPS3)  

This strategy is also called the lookahead pruning strategy. If N∪CE(N) is frequent, all sibling 

nodes of N can be deleted. 

Assume that node M is an adjacent node of node N, and node P is the parent node of nodes N and 

M, then N=P∪ij, N=P∪ik, ij, ik∈CE(P), and CE(M) ∈CE(N) ∈CE(P); thus we get: M∪CE(M)=P

∪{ik}∪CE(M)⊆P∪CE(N)P∪{ij}∪CE(N)=N∪CE(N), that is, M∪CE(M) is a proper subset of 

N∪CE(N). Since N∪CE(N) is frequent, according to the characteristics of frequent itemsets, M∪

CE(M) is frequent. And |N∪CE(N)|>|M∪CE(M)|, obviously, M∪CE(M) is a frequent itemset but 

not a maximum frequent itemset, so no new maximum frequent itemsets will appear when searching 

for node M and its corresponding expansion space. Therefore, if N∪CE(N) is frequent, the adjacent 
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nodes on the right side of node N (such as node M) and its extended subtree can be pruned, as shown 

in Figure 6. 

 

Figure 6: MaxPS3 (The dotted box is the pruned node) 

This strategy is a progressive pruning strategy of MaxPs1 and MaxPs2. Different from the first 

two, MaxPs3 can not only delete its child nodes, but also delete its sibling nodes at the same level. 

After theoretical proof, the same judgment criteria can delete more useless branches. The method of 

determining its frequency is also flexible, which can be determined by calculating the support or by 

determining whether it is a subset of the existing maximum frequent itemset. 

MaxPs3 is an effective extension of MaxPs1 and MaxPs2. MaxPs1 and MaxPs2 mainly use the 

prediction maximization strategy when node N is expanded downward to judge the frequency of N

∪CE(N) in advance. If it is frequent, N will not be expanded in any way. On this basis, 3 can not 

only cut off the expansion space of the N node, but also further cut off the expansion space of the 

adjacent nodes on the right side of N. In some algorithms, the combined use of MaxPs1, MaxPs 2 and 

MaxPs 3 can greatly improve the efficiency of pruning [11]. 

3.2.4 Depth-first maximum pruning strategy (DFMaxPS) 

In the depth-first algorithm, P is the parent node of N N=P∪{x}, x∈FE(P). When N nodes and 

their extended subtrees are traversed, the support of P∪{y|y∈FX(P) and x<y} is calculated. If it is 

frequent, in the subtree with P as the head node, all nodes on the right side of N and their extended 

branches can be pruned. At this time, you only need to check whether P∪{y|y∈FX(P)andx<y} is 

the maximum frequent itemset. Assume that depth-first search always starts from the left subtree. 

Being adjacent to N means that it is at the same level as N and has the same parent node as N, that is, 

it is expanded and generated by the same parent node. 

The depth-first maximum pruning strategy is very similar to the maximum pruning strategy 3. 

They both prune the search space expanded by all "adjacent" nodes to the right of node N. The 

difference is that maximum pruning strategy 3 prunes the adjacent nodes on the right side of node N 

and its extended branches by judging whether the item set N∪CE(N) is a frequent item set. However, 

if N∪CE(N) is not a frequent item set, this strategy cannot prune the adjacent nodes on the right side 

of node N and its extended branches. It can only be processed by relying on maximum pruning 

strategies 1 and 2. The depth-first maximum pruning strategy uses the parent node P of node N to 

prune the branch on the right side of node N by calculating whether P∪{y|y∈FX(P)and x<y} is 

frequent, regardless of whether N∪CE(N) is a frequent item set. In this way, the depth-first maximum 

pruning strategy can well overcome the limitations of the maximum pruning strategy 3, thus greatly 

improving the efficiency of pruning [12]. 
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3.3 Pruning using the parent-child relationship  

If Sup(N)=Sup(N∪{i})(i∈CE(N)), then node N can be replaced by node N∪{i}. Remove other 

extension branches containing N but not i from the enumeration tree. When expanding the candidate 

space in the lexicographic subset enumeration tree, the item x must be taken out from CE(N) in order 

to calculate the support of N∪{x}. The deleted itemsets are all proper subsets of a maximum frequent 

itemset containing N∪{i}. 

As shown in Figure 7, N={a}, assuming Sup({ab})=Sup(a), node a can be replaced by node a, and 

then delete the extension branches ac and ad. 

 

Figure 7: Prune using the parent-child relationship (the dotted box is the pruned node) 

This strategy is different from other strategies. The difference is that this strategy adds support 

information and does not require. It is necessary to calculate other redundant things, which brings 

benefits and can improve the efficiency of pruning search. in addition, In the process of pruning, 

unlike the previous pruning strategies, it retains support information, so it can be used in frequent 

item set mining. Algorithms have been widely used [13]. 

4. Conclusion 

This article mainly analyzes some issues involved in the process of mining maximum frequent 

itemsets. First, the relevant definitions and theoretical knowledge of frequent itemsets and maximum 

frequent itemsets involved in mining association rules in data mining are introduced. Then it 

summarizes pruning strategies to speed up search, including using infrequent subset pruning, using 

frequent superset pruning, and using parent-child relationship pruning. Finally, related algorithms for 

different pruning strategies are introduced. 
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