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Abstract: Proliferative diabetic retinopathy (PDR) is a vision-threatening complication of 

diabetes, in which hypoxia plays a central pathogenic role. However, the hypoxia-associated 

molecular mechanisms and biomarkers in PDR remain incompletely understood. RNA 

sequencing data from patients with PDR and healthy controls (GSE146615) were analyzed 

to identify differentially expressed genes (DEGs). Hypoxia-related genes (HRGs) were 

obtained from the GeneCards database and integrated with DEGs and weighted gene co-

expression network analysis (WGCNA) modules. Candidate genes were refined using least 

absolute shrinkage and selection operator (LASSO) regression and extreme gradient 

boosting (XGBoost). Diagnostic performance was assessed by receiver operating 

characteristic (ROC) analysis. Immune infiltration was estimated with the CIBERSORT 

algorithm, and biomarker–immune cell correlations were examined. We identified 1,650 

DEGs in PDR, enriched in immune regulation, vascular function, and mitochondrial 

pathways. Intersection analysis identified 13 hypoxia-related genes, of which four—CXCL9, 

DSC2, DSC3, and PITRM1—were selected as key biomarkers by LASSO and XGBoost. 

ROC analysis showed strong diagnostic performance for PITRM1 (AUC = 0.863), DSC2 

(AUC = 0.861), DSC3 (AUC = 0.837), and CXCL9 (AUC = 0.749). Immune infiltration 

analysis revealed increased plasma cells and CD8⁺ T cells, and decreased resting mast cells 

in PDR. This integrative bioinformatics analysis identified four hypoxia-related genes as 

potential diagnostic biomarkers for PDR, providing insights into hypoxia-driven immune 

and vascular changes in disease pathogenesis. These findings may inform future diagnostic 

and therapeutic strategies. 

1. Introduction 

Diabetic retinopathy (DR) represents a prevalent microvascular complication of diabetes and a 

major cause of vision loss among working-age individuals worldwide. [1]. Proliferative diabetic 
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retinopathy (PDR), the most severe form of DR, is defined by abnormal retinal neovascularization 

and affects roughly 7% of individuals with diabetes globally [2]. With the continuous growth in 

diabetes incidence, PDR has become an increasingly important public health concern [3]. Despite the 

availability of treatments such as anti-VEGF agents and laser photocoagulation, PDR remains a 

leading contributor to vision loss, underscoring the pressing need to clarify its underlying pathogenic 

pathways and to discover new therapeutic opportunities [4]. 

The development of PDR is driven by a cascade of events initiated by hyperglycemia-induced 

retinal microvascular injury, progressing through vascular dysfunction, retinal ischemia, and 

ultimately uncontrolled neovascular growth [5]. Persistent hyperglycemia impairs retinal blood flow 

and oxygen delivery, generating localized ischemic and hypoxic conditions [6,7]. This low-oxygen 

environment activates hypoxia-inducible factors (HIFs), which in turn stimulate the production of 

angiogenic mediators, notably vascular endothelial growth factor (VEGF) [8,9]. Beyond the well-

known angiogenic responses, recent studies indicate that hypoxia also engages multiple inflammatory 

and immune-regulatory pathways [10,11]. Hypoxia can alter cellular metabolic profiles, heighten 

inflammatory signaling, and influence immune cell activity, implying its involvement in PDR 

progression through complex molecular networks [12]. 

To address these gaps in knowledge, we applied a comprehensive bioinformatics strategy to 

identify and characterize hypoxia-related genes implicated in PDR. Using integrated approaches that 

combined differential expression analysis, weighted gene co-expression network construction, and 

machine learning-based feature selection, we profiled the hypoxia-associated molecular landscape of 

PDR and examined its links to immune microenvironment alterations. Our findings provide deeper 

insight into hypoxia-driven molecular mechanisms in PDR and highlight potential biomarkers for 

diagnosis and therapeutic intervention. 

2. Method 

2.1 Data acquisition and preprocessing 

The gene expression dataset GSE146615 was obtained from the Gene Expression Omnibus (GEO) 

database and includes RNA sequencing data from 26 patients with proliferative diabetic retinopathy 

(PDR) and 21 healthy controls. Standard quality control procedures were applied to the raw 

expression data, followed by normalization.  

To identify hypoxia-related genes (HRGs), we queried the GeneCards database 

(https://www.genecards.org/) using “Hypoxia” as the keyword and restricted the results to protein-

coding genes. This search, performed on December 11, 2024, yielded 6,259 unique HRGs.  

2.2 Differential gene expression analysis 

We compared transcriptomic profiles between PDR and control groups using the limma package 

in R. Genes were considered differentially expressed if they satisfied the thresholds of |log₂ fold 

change| > 0 and adjusted P-value < 0.05 (Benjamini–Hochberg correction). Volcano plots were 

generated to depict the overall distribution of significantly upregulated and downregulated genes. 

2.3 Functional and pathway enrichment 

GO enrichment analysis was performed to identify biological processes (BP), cellular components 

(CC), and molecular functions (MF) associated with PDR. KEGG pathway analysis was then used to 

explore potential disease-related pathways. All analyses were conducted with the clusterProfiler 

package in R and visualized as dot and bar plots. 
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2.4 Co-expression network construction 

A weighted gene co-expression network was constructed to identify modules of co-expressed 

genes associated with PDR. The WGCNA package in R was employed, and the optimal soft-

thresholding power (β) was selected by evaluating the scale-free topology criterion across β values 

from 1 to 20, targeting an R² ≥ 0.85. Based on these criteria, β = 11 was chosen, balancing network 

scale-freeness and mean connectivity. 

2.5 Hypoxia-related gene identification 

To identify core PDR-associated genes, we performed intersection analysis between the DEGs 

identified from differential expression analysis and genes from the most PDR-relevant module 

identified by WGCNA. The resulting core genes were further intersected with a comprehensive 

database of hypoxia-related genes (n=6,259) to identify candidates specifically associated with 

hypoxic conditions. Venn diagrams were used to visualize these intersection analyses. 

2.6 LASSO regression analysis 

Least Absolute Shrinkage and Selection Operator (LASSO) regression with 10-fold cross-

validation was applied to the hypoxia-related PDR genes to identify the most discriminative features 

for PDR diagnosis. The glmnet package in R was used for this analysis. LASSO coefficient paths 

were plotted to show how regression coefficients change with the regularization parameter lambda 

(λ).  

The optimal λ value was determined using 10-fold cross-validation by plotting binomial deviance 

against log(λ). Two criteria were considered: lambda.min (minimum cross-validation error) and 

lambda.1se (1 standard error rule). The 1-SE criterion was used for final model selection to achieve 

optimal balance between model performance and parsimony. 

2.7 XGBoost feature ranking 

Extreme Gradient Boosting (XGBoost) was employed to validate and rank the importance of 

LASSO-selected genes using the xgboost package in R. Feature importance scores were calculated 

to assess the discriminative power of each gene in distinguishing PDR patients from healthy controls. 

Genes were ranked based on their importance scores, with the top-ranked genes selected for 

individual diagnostic performance evaluation. 

2.8 Biomarker diagnostic evaluation 

Receiver Operating Characteristic (ROC) curve analysis was performed to evaluate the diagnostic 

capability of the top four biomarkers identified via XGBoost, using the pROC package in R. The area 

under the curve (AUC) with corresponding 95% confidence intervals was calculated for each 

biomarker (PITRM1, DSC2, DSC3, and CXCL9) to determine their ability to distinguish PDR cases 

from healthy controls. Biomarkers with an AUC greater than 0.7 were considered to have acceptable 

diagnostic accuracy, and those with an AUC above 0.8 were regarded as having strong performance. 

2.9 Immune cell infiltration analysis 

The CIBERSORT algorithm was applied to estimate the relative abundance of 22 immune cell 

subsets in PDR patients (n = 26) and healthy controls (n = 21) based on bulk gene expression data. 

This method uses a deconvolution framework together with the LM22 leukocyte signature matrix to 
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infer immune cell composition. 

Group comparisons for each immune cell type were conducted using appropriate statistical tests. 

Box plots were used to illustrate differences in immune cell proportions between the two cohorts, 

with statistical significance indicated as P < 0.01, P < 0.05, and “ns” for non-significant results. 

Additionally, a stacked bar plot was generated to depict the distribution of immune cell types in 

individual samples, with control samples shown on the left (blue) and PDR samples on the right (red). 

2.10 Biomarker–immune cell correlations 

Pearson correlation analysis was performed to investigate the relationships between the expression 

levels of the four top-ranked biomarker genes (CXCL9, DSC2, DSC3, PITRM1) and immune cell 

infiltration proportions. Only correlations with P < 0.05 were considered statistically significant. 

Results were visualized using dot plots, where dot size indicated correlation strength and color 

intensity represented statistical significance level. 

2.11 Statistical Analysis 

All statistical procedures were carried out in R (version 4.0 or later). For continuous variables, 

comparisons between groups were performed using either the Wilcoxon rank-sum test or Student’s t-

test, as appropriate. The Benjamini–Hochberg method was applied to control the false discovery rate 

for multiple comparisons. A threshold of P < 0.05 was considered statistically significant. Data 

analyses employed the following R packages: limma (differential expression), clusterProfiler 

(functional enrichment), WGCNA (co-expression network), glmnet (LASSO regression), xgboost 

(gradient boosting), pROC (ROC analysis), and e1071 (CIBERSORT). Data visualization was 

performed using ggplot2, ComplexHeatmap, and other relevant R packages. 

3. Results 

3.1 Differentially expressed genes in PDR 

To explore transcriptional alterations linked to proliferative diabetic retinopathy, we analyzed the 

GSE146615 dataset, which contains expression profiles from 26 PDR patients and 21 healthy controls. 

Using thresholds of |log₂FC| > 0 and adjusted P < 0.05, we identified 1,650 differentially expressed 

genes (DEGs) (Figure 1A). Of these, 939 were upregulated and 711 were downregulated in the PDR 

group compared with controls.  

3.2 KEGG pathway enrichment 

Figure 1B shows that DEGs were enriched in pathways related to immune regulation, vascular 

function, and infection. The most represented pathways included phagosome, vascular smooth muscle 

contraction, rheumatoid arthritis, type I diabetes mellitus, and viral myocarditis, along with intestinal 

immune network for IgA production, allograft rejection, and viral life cycle. 

3.3 GO functional enrichment 

Figure 1C shows that DEGs were enriched in key biological processes such as small GTPase–

mediated signal transduction, macroautophagy, and MHC protein complex assembly. In the cellular 

component category, enrichment was observed in secretory granule membrane, transport vesicle 

membrane, and MHC protein complexes. For molecular functions, the top terms included GTPase 

regulator activity, nucleoside-triphosphatase regulator activity, aminoacyltransferase activity, and 

108



 

 

various ubiquitin-related transferase activities. 

 

Figure 1: Overview of differential expression and functional enrichment analyses in proliferative 

diabetic retinopathy 

(A) Volcano plot of 1,650 DEGs between PDR (n = 26) and controls (n = 21); red = upregulated 

(n = 939), blue = downregulated (n = 711) (|log₂FC| > 0, adjusted P < 0.05). (B) KEGG enrichment 

showing top pathways; bar length = gene count, color = –log₁₀(P value). (C) GO enrichment for 

biological processes (BP), cellular components (CC), and molecular functions (MF); dot size = gene 

count, color = significance. 

3.4 Co-expression network and module associations 

To identify gene modules associated with proliferative diabetic retinopathy (PDR), we applied 

weighted gene co-expression network analysis (WGCNA) to the GSE146615 dataset. Prior to 

network construction, hierarchical clustering of samples was performed to detect potential outliers 

(Figure 2D). The dendrogram showed a clear separation between PDR and control samples, with no 

obvious outliers, indicating high data quality for subsequent analysis. 

The optimal soft-thresholding power (β) was determined by assessing scale independence and 

mean connectivity (Figure 2E). A power of β = 11 satisfied the scale-free topology criterion (R² > 0.8) 

while maintaining low mean connectivity, ensuring a biologically meaningful network structure. 

Gene clustering using a dynamic tree-cutting algorithm identified several distinct co-expression 

modules, each assigned a unique color (Figure 2A). Hierarchical clustering of module eigengenes 

(Figure 2C) revealed three major module groups: (1) MEblue and MEturquoise, which were highly 

similar, suggesting strongly correlated expression patterns; (2) MEbrown and MEyellow, which 

clustered together, indicating potential functional relatedness; and (3) MEgreen, MEblack, and MEred 

forming a tight subcluster, with MEgrey remaining more independent. 

Module–trait correlation analysis (Figure 2B) identified MEbrown as the most relevant to PDR, 
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showing a strong negative correlation (r = –0.82, P = 1.2×10⁻¹²), indicating that genes in this module 

were markedly downregulated in PDR patients. MEgreen (r = 0.42, P = 0.00307) and MEblack (r = 

0.46, P = 0.00123) showed significant positive correlations with PDR, while other modules exhibited 

weaker or non-significant associations. These findings highlight MEbrown, MEgreen, and MEblack 

as key modules potentially involved in PDR pathogenesis. 

 

(A)            (B) 

 

(C)                (E) 
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(D) 

Figure 2: Weighted gene co-expression network analysis (WGCNA) identifies PDR-associated gene 

modules. 

(A) Gene dendrogram and module identification. Seven modules were identified: turquoise, blue, 

brown, yellow, green, red, and black, with grey representing unassigned genes. (B) Module-trait 

relationship heatmap. The brown module shows strongest negative correlation with PDR (r = -0.82, 

P = 1.2×10⁻¹²), while green and black modules show positive correlations. (C) Hierarchical clustering 

of module eigengenes showing three main clusters at height threshold 0.4. (D) Sample clustering 

dendrogram showing clear separation between PDR patients and controls. Sample GSM4366605 

shows potential outlier behavior but was retained. (E) Soft-thresholding power selection. β = 11 was 

selected as optimal based on scale-free topology criteria. 

3.5 Core gene identification 

To identify the most biologically relevant genes associated with PDR pathogenesis, we performed 

an integrative analysis combining our differential gene expression results with the WGCNA-derived 

gene modules. We intersected the 1,650 DEGs identified from our differential expression analysis 

with the 147 genes from the brown module (the most PDR-relevant module identified by WGCNA) 

(Figure 3A). This intersection yielded 34 core genes that are both significantly differentially 

expressed in PDR and co-expressed within the most disease-relevant gene module.  

3.6 Hypoxia-related gene validation 

Given our hypothesis that hypoxia is a critical driving factor in PDR development, we further 

refined our gene set by intersecting the 34 core PDR-associated genes with a comprehensive database 

of hypoxia-related genes (Figure 3B). This analysis identified 13 genes that are simultaneously 

differentially expressed in PDR, co-expressed in the disease-relevant brown module, and functionally 

associated with hypoxic conditions.  
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3.7 Selection of diagnostic genes using LASSO regression 

To validate the differential expression patterns of the 13 identified hypoxia-related PDR genes, we 

performed comprehensive expression comparison analysis between PDR patients and healthy 

controls (Figure 3C). The box plot analysis revealed that 11 out of 13 genes showed statistically 

significant differential expression between the two groups. Specifically, PITRM1, TNK2, SESN3, 

DSC3, PTPN13, HEY2, CXCL9, and DSC2 demonstrated highly significant differences (P < 0.001), 

while PDLIM3, SH3BGRL2, and PTGER4 showed moderate significance (P < 0.05). Notably, 

KCNMB1 showed a trend toward significance, and only OTP did not reach statistical significance. 

The majority of genes showed consistent downregulation in PDR patients compared to controls, 

which aligns with the negative correlation observed for the brown module in our WGCNA analysis.  

 

Figure 3: Integration analysis identifies hypoxia-related genes associated with PDR development 

(A) Venn diagram showing intersection between DEGs (n=1,650) and brown module genes 

(n=147), yielding 34 core genes. (B) Venn diagram showing intersection between hypoxia genes 

(n=6,259) and core PDR genes (n=34), identifying 13 hypoxia-related PDR genes. (C) Box plots 

comparing expression of 13 genes between controls (blue, n=21) and PDR patients (red, n=26). 

Statistical significance: *** P < 0.001; ** P < 0.01; * P < 0.05; ns = not significant. 

3.8 Selection of diagnostic genes using LASSO regression 

To pinpoint the most informative genes for PDR diagnosis among the 13 hypoxia-related 

candidates, we applied the Least Absolute Shrinkage and Selection Operator (LASSO) method with 

tenfold cross-validation. This regularization approach efficiently selects relevant predictors by 

applying L1 penalties, thereby minimizing overfitting while preserving predictive performance.  

We first examined the coefficient paths of all 13 genes across different values of the regularization 

parameter lambda (λ) (Figure 4A). The coefficient profile plot demonstrates how the regression 

coefficients of individual genes change as the penalty parameter increases. As log(λ) increases from 

left to right, the coefficients gradually shrink toward zero, with different genes being eliminated at 

different lambda values. 

The optimal lambda parameter was determined using tenfold cross-validation, plotting binomial 

deviance against log(λ) (Figure 4B). The curve identified two vertical dashed lines: one for the lambda 

minimizing the cross-validation error (lambda.min) and another for the 1-SE lambda (lambda.1se), 

which favors a simpler model within one standard error of the minimum.  
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The final LASSO model selection results are presented through both coefficient visualization and 

importance ranking (Figure 4C-D). The dot plot shows the Mean Decrease Gini values for each of 

the 13 genes, which measures the contribution of each gene to node purity in the classification model 

(Figure 4C). DSC2 demonstrates the highest Mean Decrease Gini value (around 3.5), indicating its 

strongest discriminative power for PDR classification, followed by PITRM1, GHR, DSC3, CXCL9, 

and EDNRA with progressively lower but still substantial contributions. The remaining genes 

(KCNMB1, SESN3, HEY2, TNK2, PTGER4, SH3BGRL2, and PTPN13) showed lower Mean 

Decrease Gini values, suggesting reduced importance in the classification model. 

To further evaluate feature importance, we applied XGBoost algorithm to rank the selected genes 

based on their contribution to the classification model (Figure 4D). The feature importance plot 

reveals DSC2 as the most important gene, followed by PITRM1, CXCL9, DSC3, and GHR. The 

remaining genes (HEY2, SH3BGRL2, PTPN13, EDNRA, SESN3, and KCNMB1) showed minimal 

importance scores below 0.05, suggesting that the top 5 genes constitute the core biomarker panel for 

PDR diagnosis. This dual analytical approach consistently identifies DSC2, PITRM1, CXCL9, DSC3, 

and GHR as the most critical hypoxia-related genes for PDR classification. 

 

Figure 4: Machine learning-based feature selection and importance ranking of hypoxia-related PDR 

genes 

(A) LASSO coefficient paths showing how gene coefficients change with regularization parameter 

log(λ). Numbers at top indicate remaining features at each lambda value. (B) 10-fold cross-validation 

curve for optimal lambda selection. Vertical dashed lines indicate lambda.min and lambda.1se values. 

(C) Mean Decrease Gini analysis showing gene contribution to classification model node purity. 

DSC2 shows highest value (~3.5). (D) XGBoost feature importance ranking. DSC2 demonstrates 

highest importance (0.4), followed by PITRM1 (0.25), CXCL9 (0.15), DSC3 (0.1), and GHR (0.05), 
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establishing the core biomarker panel for PDR diagnosis. 

3.9 Diagnostic performance of biomarkers 

To assess the diagnostic utility of the top-selected genes, we performed ROC curve analysis 

(Figure 5). PITRM1 achieved the highest AUC (0.863, 95% CI: 0.76–0.965), indicating strong 

discriminative capacity. DSC2 showed comparable performance (AUC = 0.861, 95% CI: 0.746–

0.972). DSC3 also demonstrated high accuracy (AUC = 0.837, 95% CI: 0.722–0.952), while CXCL9 

exhibited moderate but significant predictive power (AUC = 0.749, 95% CI: 0.594–0.904). All four 

exceeded the AUC threshold of 0.7, with three surpassing 0.8. 

 

Figure 5: Individual biomarker ROC performance analysis 

(A) CXCL9 ROC curve: AUC = 0.749 (0.594-0.904). (B) DSC2 ROC curve: AUC = 0.861 (0.746-

0.975). (C) DSC3 ROC curve: AUC = 0.837 (0.722-0.952). (D) PITRM1 ROC curve: AUC = 0.863 

(0.76-0.965). All biomarkers demonstrate significant diagnostic potential for distinguishing PDR 

patients from controls. 

3.10 Immune cell infiltration in PDR 

To investigate the immune microenvironment changes associated with PDR development, we 

performed immune cell infiltration analysis using the CIBERSORT algorithm. This analysis 

estimated the relative proportions of 22 distinct immune cell types in both PDR patients and healthy 

controls. The comparative analysis revealed significant alterations in specific immune cell 
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populations between the two groups (Figure 6A). Among the 22 immune cell types analyzed, three 

showed statistically significant differences between PDR and control groups. Specifically, PDR 

patients demonstrated significantly increased infiltration of plasma cells (P < 0.01) and T cells CD8 

(P < 0.01) compared to healthy controls. Conversely, PDR patients showed significantly decreased 

levels of mast cells resting (P < 0.01) relative to controls. The increased plasma cell infiltration 

suggests enhanced antibody production and humoral immune responses in PDR pathogenesis.  

The stacked bar plot visualization of immune cell proportions across all individual samples 

revealed substantial heterogeneity in immune composition between patients (Figure 6B). Each 

vertical bar represents the complete immune profile of one sample, with different colors indicating 

various immune cell types according to the comprehensive legend. The analysis demonstrated clear 

differences in immune landscapes between control samples (left side, blue label) and PDR samples 

(right side, red label). PDR patients generally showed altered patterns of immune cell distribution, 

with notable increases in B cell populations and plasma cells, consistent with the statistical analysis.  

3.11 Biomarker–immune cell associations 

We examined the associations between the four key biomarkers and immune cell composition 

(Figures 6C–F). CXCL9 showed a strong positive correlation with activated CD4 memory T cells, 

consistent with its chemokine-mediated role in T cell recruitment. DSC3 exhibited negative 

correlations with follicular helper T cells, resting mast cells, and eosinophils, suggesting involvement 

in regulating specific immune responses. DSC2 was positively correlated with regulatory T cells, 

resting NK cells, M2 macrophages, and activated dendritic cells, pointing to a role in immune 

modulation and tissue homeostasis. PITRM1 correlated positively with plasma cells and moderately 

with activated CD4 memory T cells, but negatively with resting NK cells.  

(A)
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(B) 

(C) (D) 

(E) (F) 

Figure 6: Immune infiltration analysis reveals altered immune landscape and biomarker-immune 

cell correlations in PDR 

(A) Box plots comparing immune cell proportions between controls (blue, n=21) and PDR patients 

(red, n=26). Statistical significance: ** P < 0.01; * P < 0.05; ns = not significant. (B) Stacked bar plot 

showing immune cell composition across all samples. Controls (left) and PDR patients (right) show 

distinct patterns. (C-F) Correlation analysis between biomarkers and immune cells showing 

significant associations (P < 0.05). (C) CXCL9 correlations. (D) DSC3 correlations. (E) DSC2 

correlations. (F) PITRM1 correlations. Dot size indicates correlation strength, color represents 

significance. 

4. Conclusion 

In this study, we applied a comprehensive transcriptomic approach to examine hypoxia-associated 

genes in proliferative diabetic retinopathy (PDR). By integrating differential gene expression 

profiling, weighted gene co-expression network construction, and machine learning-based feature 

116



 

 

selection, we identified four candidate biomarkers—CXCL9, DSC2, DSC3, and PITRM1—

significantly linked to PDR. Among them, CXCL9 was elevated, while DSC2, DSC3, and PITRM1 

showed reduced expression. All four genes demonstrated notable correlations with patterns of 

immune cell infiltration. 

CXCL9 encodes a chemokine induced by interferon-γ that mediates T cell recruitment through 

binding to the CXCR3 receptor. Elevated CXCL9 levels have been reported in the vitreous of PDR 

patients, and retinal endothelial cells can produce CXCL9 under inflammatory stimulation[13-14]. 

Our findings are consistent with these reports, and the upregulation observed here may reflect 

hypoxia-driven inflammatory activation in PDR. Given the known role of CXCL9 in leukocyte 

chemotaxis, its increased expression could be linked to the enhanced immune cell presence observed 

in PDR tissues[15-17]. Further studies will be required to determine whether CXCL9 directly 

contributes to pathological angiogenesis or is a secondary marker of inflammation. 

DSC2 and DSC3 are members of the desmosomal cadherin family, which play a key role in cell–

cell adhesion and maintaining tissue integrity [18-19] Although their specific functions in the retina 

have not been described, reduced expression of adhesion molecules has been associated with barrier 

dysfunction in other vascular beds under pathological conditions [20]. The downregulation of DSC2 

and DSC3 in our dataset may indicate structural alterations in retinal endothelial junctions during 

PDR, potentially facilitating immune cell infiltration. This interpretation remains speculative and 

would need confirmation in experimental models assessing blood–retinal barrier function. 

PITRM1 encodes a mitochondrial matrix metalloprotease that degrades targeting peptides and 

contributes to mitochondrial proteostasis[21]. While its role in retinal disease has not been reported, 

mitochondrial dysfunction is a recognized feature of diabetic retinal pathology [22]. The lower 

PITRM1 expression observed in our analysis may be associated with impaired mitochondrial quality 

control under hypoxic stress, potentially leading to increased oxidative damage[23-24]. These 

possibilities warrant further mechanistic studies to clarify whether PITRM1 downregulation is a cause 

or consequence of PDR progression. 

Our results suggest that hypoxia in PDR may influence multiple biological processes, including 

immune cell recruitment, vascular adhesion, and mitochondrial homeostasis. CXCL9 appears to have 

a documented link to PDR inflammation, while DSC2, DSC3, and PITRM1 represent less explored 

candidates that could open new research directions. 

This study has several limitations. First, our findings are based solely on transcriptomic data from 

a single dataset and require validation in independent cohorts and experimental systems. Second, the 

functions of DSC2, DSC3, and PITRM1 in retinal tissue are not yet established. Third, the cross-

sectional nature of the data limits our ability to infer temporal changes or causality. 

In conclusion, we identified four hypoxia-related genes associated with PDR, of which CXCL9 

shows the strongest literature support for involvement in retinal inflammation, while DSC2, DSC3, 

and PITRM1 represent novel candidates for future study. These results expand the molecular 

landscape of hypoxia in PDR and may guide future efforts to develop diagnostic biomarkers and 

therapeutic targets. 
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