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Abstract: The global incidence of papillary thyroid carcinoma has been exhibiting an 

upward trend, with the BRAF gene serving as a specific molecular marker that is closely 

associated with the aggressiveness and lymph node metastasis of this malignancy. In recent 

years, radiomics and deep learning methodologies based on medical imaging have emerged 

as innovative approaches for predicting molecular markers, enabling the extraction of 

subvisual information that transcends human perceptual capabilities. These advanced 

techniques provide novel predictive tools for identifying BRAF gene mutations in papillary 

thyroid carcinoma. This article aims to comprehensively review the applications and 

research advancements of machine learning and deep learning approaches based on 

medical imaging in predicting BRAF gene mutations in papillary thyroid carcinoma. 

1. Introduction 

Papillary thyroid carcinoma (PTC) is the most common pathological type of thyroid tumors, 

accounting for approximately 80-90% of all thyroid tumors. Its incidence has been increasing 

globally year by year, while the mortality rate remains stable. The 10-year survival rate is greater 

than 90%[1]. The pathogenesis of PTC involves the interaction between genetic and environmental 

factors, mainly including ionizing radiation, high-iodine diet, genetic factors, hormonal influences, 

etc[2]. 

At the molecular mechanism level, abnormal activation of the MAPK signaling pathway is a 

core driving factor of PTC. As a key molecular event in this pathway, BRAF mutation promotes cell 

proliferation, inhibits apoptosis, and induces tumor dedifferentiation by persistently activating ERK 

protein. Studies have shown that BRAF mutations are significantly associated with the invasiveness 

of PTC (such as lymph node metastasis and extrathyroidal invasion) and poor prognosis (increased 

recurrence rate and iodine therapy resistance). The BRAF gene is an important tool for the 

diagnosis and prognostic evaluation of this disease[3, 4]. Traditional methods for BRAF gene 

detection include detecting tissues obtained by fine-needle aspiration biopsy (Fineneedle Aspiration 

Biopsy, FNAB) or surgical resection through methods such as PCR sequencing and FISH detection 

of rearrangements[5]. However, the above-mentioned procedures have limitations such as high cost 
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and long time consumption, and are invasive operations that may require anesthesia when 

necessary, carrying risks of injuring surrounding blood vessels and nerves and leaving 

complications. In addition, due to the small amount of tissue samples obtained by some methods, 

molecular information in important areas may be lost, so they cannot fully represent the biological 

characteristics of the entire tumor. In recent years, many studies have confirmed the correlation 

between BRAF gene mutations in PTC and imaging features, with the hope of providing a new 

non-invasive molecular marker examination method. Artificial intelligence (AI) has recently risen 

rapidly and become widely popular in medical image analysis, prediction of molecular markers, and 

other aspects, playing an important role in the medical field. It can achieve non-invasive and 

efficient prediction by integrating multimodal data (ultrasound, CT, MRI)[6]. This article mainly 

summarizes the research progress of artificial intelligence based on medical imaging in predicting 

BRAF gene mutations in papillary thyroid carcinoma, so as to achieve precision medicine. 

2. Principles of BRAF Gene Mutation in Papillary Thyroid Carcinoma 

PTC is a mitogen-activated protein kinase (MAPK)-driven cancer, with over 80% of PTC cases 

exhibiting alterations in genes related to the MAPK signaling pathway, including BRAF, RAS, and 

RET rearrangements. The mutation rate of BRAF in PTC ranges from 45% to 60%, making it the 

most common and critical molecular marker. The BRAF gene is located on chromosome 7 (7q34) 

and encodes a serine-threonine kinase, serving as a core member of the RAS/MAPK signaling 

pathway. This pathway regulates cell proliferation, differentiation, migration, and apoptosis through 

a cascade reaction (RAS→RAF→MEK→ERK)[7, 8]. Most BRAF gene mutation sites are point 

mutations at BRAF T1799A, which lead to the substitution of glutamic acid for valine at residue 

600 of the BRAF protein, causing a conformational change in the BRAF kinase, known as the 

BRAF V600E mutation[9]. It can make extracellular regulated protein kinases insensitive, thereby 

leading to continuous and highly activated MAPK signaling, resulting in abnormal cell proliferation 

and differentiation disorders. Therefore, BRAF V600E is associated with the malignant phenotype, 

invasiveness, iodine refractoriness, and recurrence risk of PTC. 

3. Correlation between medical imaging features and BRAF mutation in papillary thyroid 

carcinoma  

Different medical imaging modalities play a role in predicting BRAF gene mutations in papillary 

thyroid carcinoma (PTC).  

Ultrasound, characterized by low cost, non-invasiveness, and radiation-free properties, serves as 

the first-line examination for thyroid nodules[10]. Numerous studies have explored the relationship 

between the ultrasonic manifestations of lesions and BRAF gene mutations in PTC. For example, 

extremely hypoechoic lesions, microcalcifications, an aspect ratio >1, irregular margins, and the 

absence of a hypoechoic halo are recognized as predictive ultrasonic features of BRAF V600E 

mutation[11].Russell et al.[12] proposed that the reason might be that BRAF mutations lead to 

dense proliferation of tumor cells with less stromal components, forming uniform cell masses that 

reduce the acoustic wave reflection interface, thus appearing as hypoechoic or extremely 

hypoechoic on ultrasound. Microcalcifications may be related to calcium salt deposition after rapid 

cell proliferation and apoptosis driven by BRAF mutations. Vertical tumor growth (aspect ratio >1) 

and blurred or irregular margins may be associated with BRAF mutations promoting changes in cell 

polarity and invasive growth through activating the MAPK pathway. Studies have also found that 

PTC patients with BRAF V600E mutations have higher scores in ultrasound elastography, and this 

score is highly correlated with the diagnosis of BRAF V600E mutations[13].This is because 

BRAF-mutated tumors exhibit increased hardness in elastography due to fibrous stromal 
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hyperplasia and high cellular density[12].However, the evaluation of ultrasound images relies too 

heavily on the personal experience of ultrasound physicians, which is highly subjective and places 

high demands on the professional capabilities of ultrasound physicians. 

There are fewer studies on the relationship between CT features and BRAF gene mutations in 

papillary thyroid carcinoma (PTC) compared with ultrasound. However, some studies have shown 

that the maximum tumor diameter on contrast-enhanced CT, normalized iodine concentration (NIC) 

in the venous phase, spectral curve slope, NIC in the arterial phase, and normalized effective atomic 

number are independent predictors of BRAF V600E mutation. Among them, NIC in the arterial 

phase has the highest diagnostic efficiency[14].Tumor size is positively correlated with proliferative 

activity and invasiveness. For example, papillary thyroid carcinomas with a diameter >1 cm are 

more likely to be malignant or highly invasive. BRAF mutations promote cell proliferation through 

the MAPK pathway, leading to rapid tumor growth and an increase in maximum diameter. NIC 

(normalized iodine concentration) reflects tumor blood supply and iodine metabolism capacity. 

Venous-phase NIC is associated with microvascular density (MVD), while arterial-phase NIC 

reflects early tumor blood supply and neovascularization capacity. On one hand, BRAF mutations 

increase angiogenesis through VEGF (thereby increasing NIC), and on the other hand, they inhibit 

NIS (sodium-iodide symporter), leading to iodine metabolic disorders (potentially decreasing NIC). 

The comprehensive effect is heterogeneity in venous-phase NIC. BRAF mutations promote 

angiogenesis through factors such as VEGF, resulting in elevated arterial-phase NIC. Studies have 

shown that arterial-phase NIC is significantly associated with microvascular invasion in 

BRAF-mutated liver cancer[15].The slope of the spectral curve reflects the heterogeneity of tissue 

components. A high slope indicates dense tissue or rich in high atomic number elements (such as 

calcification or high cellular density). BRAF mutations lead to disordered arrangement of tumor 

cells and increased nuclear atypia, which may be manifested as an increase in the slope of the 

spectral curve. In addition, BRAF mutation-related abnormal angiogenesis may affect tissue 

perfusion and further alter the curve morphology[16].The normalized effective atomic number 

reflects the elemental composition of tissues (such as iodine, calcium, and proteins). Tumors with 

lower differentiation have a higher normalized effective atomic number. BRAF mutations lead to 

increased cellular atypia and enlarged cell nuclei, which may increase the normalized effective 

atomic number. In addition, BRAF mutation-related abnormal angiogenesis (such as hemorrhage 

and calcification) may further affect the value of the normalized effective atomic number[17].CT 

can examine retrosternal thyroid lesions that are difficult to detect by ultrasound and some cervical 

lymph nodes, and can provide a more comprehensive observation of the relationship between the 

thyroid gland and surrounding tissue structures. In addition, CT examination is less dependent on 

the operator's experience and has stronger reproducibility[18].However, affected by its resolution, 

CT is only suitable for larger nodules. 

Compared with the first two imaging examinations, MRI has higher soft tissue resolution and 

includes multiple imaging modes that reflect different characteristics of lesions. Among them, 

diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) can also reflect the 

microstructure of lesion tissues, such as cell density and membrane integrity, which have significant 

advantages for the diagnosis of PTC[19].BRAFV600 mutations in papillary thyroid carcinoma are 

associated with MRI manifestations such as delayed enhancement morphology, ADC signal, and 

delayed enhancement in enhancement curve types[20].Delayed enhancement typically reflects 

tumor stromal fibrosis or abnormal vascular maturity. Activation of the MAPK pathway causes 

uneven distribution of microvessels and incomplete basement membranes of new blood vessels, 

leading to slow extravasation of contrast agents and manifested as delayed enhancement. The ADC 

value reflects the degree of water molecule diffusion restriction. BRAF mutations promote cell 

proliferation, resulting in close arrangement of tumor cells that restrict water molecule diffusion, 
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thereby reducing ADC signal values. Delayed enhancement occurs because fibrosis and 

extracellular matrix remodeling delay the outflow of contrast agents, forming sustained 

enhancement[21]. 

4. The Current Application Status of Artificial Intelligence in Medical Imaging Analysis 

Artificial Intelligence (AI) aims to develop systems that can simulate, expand, or extend human 

intelligence, enabling them to perceive the environment, acquire knowledge, reason and make 

decisions, and complete complex tasks just like humans[22].Machine learning (ML), an important 

branch of AI, learns patterns from data through algorithms and makes predictions. Its core lies in 

feature engineering, which requires manually extracting data features (such as shape and texture), 

and then completing tasks through classification or regression models. Core algorithms include 

support vector machines (SVM), random forest, K-means clustering, etc[23]. 

In medical imaging, ML is widely used in basic tasks such as image segmentation and object 

detection. Its advantages include strong adaptability to small sample sizes, low hardware 

requirements, and high model interpretability. However, it requires manual segmentation of lesions, 

and model performance may suffer due to labeling errors or biases. Additionally, it faces issues such 

as poor interpretability and limited generalization capabilities. Deep Learning (DL), an advanced 

form of ML, primarily includes Convolutional Neural Networks (CNN), Recurrent Neural 

Networks (RNN), etc. Its core lies in constructing multi-layered Artificial Neural Networks (ANN) 

to automatically learn and extract more complex features from data. Compared with traditional 

machine learning, DL is more intelligent in feature extraction: it does not rely on manual 

delineation but can automatically filter and obtain more relevant imaging features meaningful for 

research[24].Its advantages lie in processing complex, high-dimensional data (such as CT and MRI 

images), being able to capture subtle lesions and global features, and achieving high-precision 

disease monitoring (such as breast cancer, thyroid cancer screening, and pulmonary nodule 

identification, etc.)[25, 26],and Integrating multimodal data to predict patient prognosis, provide 

personalized treatment plans, and achieve precision medicine.[27], However, it requires a large 

number of samples to train models, has high requirements for hardware facilities, and model 

decisions are not transparent. Through the dual-track development of ML and DL, artificial 

intelligence is bringing revolutionary changes to the medical industry. In the future, with algorithm 

optimization, multidisciplinary integration, and policy support, AI in medical imaging will unleash 

greater potential in fields such as early disease screening and personalized treatment. 

5. Research Progress of Artificial Intelligence Based on Medical Imaging in Predicting BRAF 

Gene Mutation in Papillary Thyroid Carcinoma 

5.1 Ultrasound 

Scholars such as Kwon[28] were among the first to conduct research in this field. They 

retrospectively included 96 thyroid nodules from papillary thyroid carcinoma patients, dividing 

them into BRAF mutation-positive and negative groups. After manually delineating the regions of 

interest (ROI) of the nodules, extracting effective features, and constructing three different machine 

learning models, they evaluated the performance of these models, including accuracy, sensitivity, 

specificity, positive predictive value, negative predictive value, and the area under the receiver 

operating characteristic curve (AUC). The results showed that all classification models exhibited 

moderate performance in predicting the presence of BRAF mutations in papillary thyroid 

carcinoma, with an AUC of 0.651, an accuracy of 64.3%, a sensitivity of 66.8%, and a specificity of 

61.8%. This confirms the feasibility of using ultrasound images for analysis.Yoon et al.[29] 
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analyzed ultrasound images using a CAD program developed with deep learning CNN and 

calculated the malignant risk degree of each thyroid nodule based on the ultrasound images. 

Although the performance was moderate (AUC=0.706), it also demonstrated the potential of such 

research. 

Wu et al.[30] established machine learning models, deep transfer learning models, and a 

combined machine learning-deep transfer learning model using two-dimensional ultrasound images, 

and compared the performance of these three models. The results showed that the AUC value of the 

combined model was higher than that of the deep transfer learning model and the machine learning 

model, with AUC, accuracy, sensitivity, and specificity reaching 0.833, 80.6%, 76.2%, and 81.7%, 

respectively. It can be seen that in terms of two-dimensional ultrasound images, the deep learning 

combined with machine omics model performs better than standalone deep learning or machine 

learning models in predicting BRAFV600E gene mutations in papillary thyroid carcinoma, and 

deep learning performs slightly better than machine learning. 

Agyekum et al.[31] utilized ultrasonic elastography to create six different machine learning 

algorithms for predicting BRAFV600E mutations. The results showed that the AUC values of all 

six machine learning models were higher than 0.8, with the best performance achieved by the 

SVM_RBF algorithm, reaching an AUC of 0.98. This further indicates that the novel ultrasonic 

imaging technique of elastography also has good value for predicting BRAF V600E mutations. 

Wang et al.[32] also demonstrated high value in predicting BRAF V600E mutations using a 

combined imaging model of ultrasonic elastography and grayscale ultrasound images. The AUC 

values of the training set and test set were 0.985 and 0.931, respectively. It can be seen that the 

performance of a single ultrasound image model is comparable to that of the combined model. 

5.2 CT 

Dong Yongxiu et al.[33] included 52 patients with papillary thyroid carcinoma confirmed by 

surgery and with BRAFV600E mutation results. They used MaZda software to perform texture 

analysis on the venous phase images of preoperative contrast-enhanced CT scans of the patients, 

and then used three feature selection algorithms to predict BRAFV600E mutations. The results 

showed that among the three feature selection algorithms, NDA had very high diagnostic 

performance, with misjudgment rates all below 10%; multiple combinations had misjudgment rates 

<20%, indicating good diagnostic performance; the combination with the lowest misjudgment rate 

was POE+ACC+NDA, with an area under the ROC curve (AUC) of 0.969. Although this study did 

not use artificial intelligence, it further demonstrates that BRAFV600E mutations can be analyzed 

using CT images.Ge Zhao et al.[34] retrospectively collected enhanced CT imaging data and 

pathological results of 84 PTC patients. After feature engineering and feature selection, four 

machine learning models were established. Finally, 16 features were extracted from enhanced CT 

images to predict BRAFV600E mutations in papillary thyroid carcinoma. The results showed that 

the mLP model performed most prominently, with an accuracy of 0.882 and an AUC of 0.883. In 

summary, in terms of CT images, radiomics and texture analysis have both demonstrated good 

performance in predicting BRAFV600E mutations. 

5.3 MRI 

Zheng et al.[35] extracted texture features from T2-weighted imaging (T2WI) and 

contrast-enhanced T1-weighted imaging (CE-T1WI), and constructed three models (T2WI, 

CE-T1WI, and combined model) to predict BRAFV600E mutations. The results showed that the 

AUC values of the T2WI model, CE-T1WI model, and combined model were 0.83 (95% CI: 

0.75-0.91), 0.83 (95% CI: 0.73-0.90), and 0.88 (95% CI: 0.81-0.94), respectively. At a cutoff value 
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of 0.674, the T2WI model had an accuracy, sensitivity, specificity, positive predictive value, and 

negative predictive value of 0.776, 0.679, 0.905, 0.905, and 0.679, respectively; the CE-T1WI 

model had values of 0.755, 0.750, 0.762, 0.808, and 0.696 at a cutoff value of 0.573; and the 

combined model had values of 0.816, 0.893, 0.714, 0.806, and 0.833 at a cutoff value of 0.420. 

These findings indicate that MRI-based texture analysis may be a potential method for 

preoperatively predicting BRAFV600E mutations in PTC. 

6. Future Challenges and Prospects 

In summary, the application of artificial intelligence (AI) for preoperative prediction of BRAF 

V600E mutation in papillary thyroid carcinoma (PTC) using medical imaging is becoming 

increasingly prevalent. Both machine learning (ML) and deep learning (DL) demonstrate 

considerable development potential and clinical value; however, several limitations persist in this 

field. Regarding AI: both ML and DL require extensive datasets for training, with model 

performance significantly declining when data is insufficient. In ML, manual data annotation and 

region of interest (ROI) delineation inevitably introduce inter-operator variability and subjectivity, 

while DL models suffer from opaque decision-making ("black box" nature), poor interpretability 

compromising trustworthiness, and limited generalizability, necessitating validation through 

prospective multi-center studies. Furthermore, AI technology presents high technical barriers and 

rapid obsolescence, demanding high-performance computing hardware and interdisciplinary 

expertise in mathematics and programming. For medical imaging: current ultrasound applications 

remain confined to static single-layer images, though future integration of dynamic videos could 

optimize AI model performance. Additionally, research should explore novel ultrasound techniques 

(e.g., contrast-enhanced ultrasound) or multimodal ML/DL models to predict BRAF mutation. 

Studies utilizing CT or MRI for BRAF mutation prediction in PTC remain scarce, representing 

significant research opportunities. Beyond BRAF, other molecular markers (e.g., RAS mutations, 

RET rearrangements) contribute to PTC pathogenesis; future studies should investigate whether 

these influence tumor morphology and if AI can predict their expression. Despite existing 

limitations, AI demonstrates superior diagnostic accuracy over traditional methods and is expected 

to provide a cost-effective solution for precision medicine. 
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