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Abstract: Digital technology innovation has reshaped the underlying logic of enterprise 

financial management, and the financial sharing model is gradually leaping from process 

integration to data-driven. The traditional decision-making mechanism is limited by 

information silos and experience dependence, making it difficult to cope with the dynamic 

risks in the complex market environment. Big data analytics opens a new path to solve the 

pain points of inefficient resource allocation and lagging risk identification by integrating 

heterogeneous data from multiple sources and constructing a quantifiable decision support 

framework. This paper focuses on the intersection of algorithm design and governance 

system, exploring how to combine unstructured data features with dynamic optimization 

models to form an intelligent financial hub with real-time response capability. The 

breakthrough point of the research is the establishment of a decision-making system 

covering the whole chain of fund deployment, risk warning and budgeting, and the 

validation results are of demonstrative significance in promoting the transformation of the 

financial sharing center into a strategic value unit. 

1. Introduction 

Enterprise financial management is undergoing a deep transformation from decentralized 

operations to shared services, and the complexity of decision-making is increasing exponentially 

with the intensification of global competition. Traditional financial modeling relies on static reports 

and manual experience, and there are systematic deviations when facing non-linear variables such 

as supply chain fluctuations and exchange rate risks. Big data technology not only broadens the 

dimension of data collection, but also reconfigures the spatial and temporal boundaries of 

decision-making analysis - real-time cash flow monitoring, textual public opinion analysis, supply 

chain mapping and other technological means, which enable financial sharing centers to have a 

panoramic insight capability. This paper starts from the data governance system, focuses on 

analyzing the feature engineering method under the heterogeneous data fusion framework, and 

proposes a hybrid algorithm model based on dynamic planning and machine learning. A closed-loop 

decision-making link is formed by designing a fund allocation optimizer, a risk prediction network 

and an intelligent budget engine. The experimental part verifies the advantages of the algorithm in 

terms of efficiency improvement and error control, and the research conclusions provide a landable 

technical solution for enterprises to build a resilient financial system [1]. 
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2. Financial Shared Decision Making Data System Construction 

2.1 Data Source Classification and Governance 

The data source classification of the financial shared decision-making system needs to take into 

account the collaborative governance of structured and unstructured data. Structured data is 

centered on the Enterprise Resource Planning (ERP) system (Figure 1), covering accounts payable 

details, cash flow timing records and other financial transaction information, with standardized 

fields and time-stamped attributes providing the basis for fund liquidity analysis. The real-time 

synchronization of account balances and transaction flow data through the direct interface between 

banks and enterprises strengthens the granularity and timeliness of fund monitoring and supports 

the input requirements of dynamic deployment algorithms [2]. In the dimension of unstructured data, 

the semantics of the terms and conditions of the contract text, the dynamics of public opinion in the 

upstream and downstream of the supply chain, and the compliance constraints of the industry policy 

documents constitute the key supplement. Contract parsing relies on natural language processing 

technology to extract entity relationships such as payment terms and breach of contract 

responsibilities, while supply chain public opinion needs to be combined with sentiment analysis 

models to quantify market risk signals. 

 

Figure 1 Enterprise Resource Planning (ERP) Systems 

The technical difficulty of the governance system lies in balancing data quality and 

computational efficiency. The high-frequency updating of bank-enterprise direct data requires the 

design of a streaming processing framework to avoid the decision lag caused by batch processing; 

the noise filtering of supply chain public opinion relies on graph neural networks to mine key nodes 

in the propagation path to enhance the confidence of risk signals. The cross-validation mechanism 

of structured and unstructured data further optimizes the governance effect, for example, the 

deviation analysis of the contractual payment cycle and the actual payment record of ERP, which 

can reverse correct the entity extraction logic of the text parsing model [3]. The framework lays the 

technical foundation for enterprises to build a highly credible financial shared data base. 

2.2 Characterization Project 

2.2.1 Financial Risk Indicators 

Characterization engineering of financial risk indicators aims to quantify the solvency and 

operational stability of a firm.The Z-Score model constructs bankruptcy early warning signals by 

linearly combining key financial ratios, which can be formulated as (1):  
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Where Xi denotes standardized variables such as working capital ratio and retained earnings 

share, and wi is the industry-calibrated weighting coefficient. Cash flow volatility is calculated 

using conditional variance model as in equation (2):  
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The Z-Score model is used to capture the heteroskedasticity of cash flow time-series data, and 

exogenous variables are constructed to enhance the interpretability by combining with supply chain 

public opinion events [4]. 

In the technical implementation, the Z-Score model needs to solve the problem of cross-system 

data standardization, and the accounts payable turnover rate of ERP system needs to be aligned with 

the cash flow data of direct linkage between banks and enterprises in order to avoid the distortion of 

features caused by the mismatch of accounting cycles. Cash flow volatility feature extraction relies 

on sliding window statistics and frequency domain analysis, such as the use of wavelet transform to 

separate seasonal trends and sudden fluctuations. Unstructured data are supplemented with risk 

signals through semantic parsing, e.g., default clauses on account period in the contract text can be 

mapped as correction factors of Z-Score model.  

Indicator robustness in dynamic environments is critical. Industry policy changes may alter the 

validity of Z-Score weighting coefficients, and an online learning mechanism needs to be 

introduced to update wi parameters. The cash flow volatility model needs to integrate causal 

inference techniques to identify the transmission path between supply chain disruption events and 

cash flow breaks [5]. 

2.2.2 Unstructured data characteristics 

Feature engineering for unstructured data needs to address semantic understanding and risk 

quantification challenges. Risk feature extraction of contract text relies on topic modeling 

techniques, LDA (Latent Dirichlet Distribution) identifies potential topics by analyzing the 

co-occurrence probability of lexical items, as shown in Fig. 2, and combines with customized 

dictionaries to strengthen the semantic weight of key terms. Sentiment analysis of supply chain 

public opinion uses the pre-trained language model BERT, whose bidirectional attention mechanism 

captures the contextual associations of negative supplier events in the news text, outputs the 

sentiment polarity score and calculates the risk impact value, e.g., the attenuation effect of the 

negative report on the supplier's credit rating. 

 

Figure 2 LDA theme model 

In the technical implementation, the entity relationship of the contract text should be aligned 
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with the structured financial data, and the contract risk labels generated by the LDA model should 

be mapped to the accounts payable records in the ERP system to verify the consistency of the 

performance status of the terms and conditions with the risk themes. Knowledge mapping 

technology is used to assist in the construction of the “supplier-contractual terms-opinion events” 

association network to identify the common characteristics of high-risk suppliers, and 

industry-specific corpus is introduced in the fine-tuning stage of the BERT model to improve the 

parsing accuracy of supply chain finance terms, as shown in Figure 3. 

 

Figure 3 BERT model 

The feature fusion session faces cross-modal data alignment challenges. Contractual risk themes 

need to establish dynamic correlation rules with financial metrics of the Z-Score model, such as the 

synergistic trend of the frequency of occurrence of specific risk keywords and the working capital 

ratio. Public opinion sentiment scores need to be time-series aligned with cash flow volatility 

features to capture the lagged effect of negative events on financial chain stress. Experiments show 

that the introduction of unstructured features can enhance the recall of the financial risk early 

warning model, especially in the scenarios of sudden changes in industry policies or sudden supply 

chain crises, which exhibit stronger robustness [6]. 

3. Core Algorithm Design 

3.1 Funds dynamic deployment optimization algorithm 

The core of the dynamic fund allocation algorithm is to solve the problem of balancing the 

utilization rate and risk of funds under the scenario of multi-subsidiary collaboration. The problem 

modeling takes the group capital pool as the object, and the objective function needs to 

synchronously optimize the minimization of idle capital cost and the maximization of investment 

return, and at the same time satisfy the minimum retained capital threshold required for subsidiary 

operation, the foreign exchange control policy of cross-border capital flow and other hard 

constraints. Among the constraints, the minimum threshold of retained funds of subsidiaries needs 

to be dynamically calibrated according to the historical cash flow volatility, and the foreign 

exchange control rules need to be embedded in the country-specific policy knowledge base to 

realize real-time compliance calibration.  
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The algorithm design adopts the improved genetic algorithm NSGA-II, whose non-dominated 

sorting mechanism and congestion comparison operator can effectively handle the Pareto frontier 

search for multi-objective optimization problems, as shown in Fig. 4. The technical realization 

needs to be deeply coupled with real-time data flow [7]. The cash flow time series data provided by 

the direct interface between banks and enterprises triggers the iterative updating of the algorithm, 

and the sliding window mechanism ensures that the fund allocation scheme is adapted to the 

fluctuation of market interest rates and exchange rate changes. Supply chain public opinion events 

are transformed into risk coefficients through the BERT sentiment analysis model, which 

dynamically adjusts the slackness of the minimum retained funds constraint of subsidiaries. 

 

Figure 4 Improved genetic algorithm NSGA-II flow 

3.2 Financial risk prediction algorithm 

The financial risk prediction algorithm needs to integrate multimodal data to capture the early 

signals of financial chain breakage. The input layer integrates historical financial data, contractual 

risk features and supply chain public opinion indices, where contractual risk features are 

represented by a vector of “probability of default” keyword weights extracted from the LDA topic 

model, and the public opinion indices are quantified by the impact values of negative events output 

from the BERT sentiment analysis model. The model architecture is designed as a two-channel 

structure: 

Graph Convolutional Network (GCN) modeling subsidiary affiliation transaction network, node 

features are defined as financial indicators of each subsidiary, neighbor matrix is constructed based 
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on the transaction amount and frequency, and the propagation formula is (3), which is used to 

capture the risk diffusion path within the group. 
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The LSTM-Attention module (Fig. 5) handles time-series financial data and unexpected events, 

the time-step feature vector is composed of cash flow volatility, public opinion index splicing, and 

the attention weight is calculated as formula (4), which screens the key event nodes that affect the 

stability of the capital chain [8].  
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Figure 5 Lstm-attention module 

The edge weights of GCN need to be dynamically updated to adjust the risk transmission 

intensity based on the health of the financial reports of the related counterparties. The LSTM hidden 

states and GCN node embeddings are fused through a gating mechanism to generate a joint feature 

representation. The output layer adopts a sigmoid function to map to the probability of capital chain 

breakage in the next 6 months, and the loss function is defined as weighted cross-entropy, which 

strengthens the penalty weight of high-risk samples. Adversarial sample enhancement technique is 

introduced in the training phase to simulate the extreme scenario of exchange rate fluctuation and 

supply chain disruption to improve the model robustness. 

4. Enterprise Financial Management Insights and Application Recommendations 

4.1 Technology Implementation Path 

The construction of enterprise-level financial big data platform needs to address the integration 

of heterogeneous data sources and real-time analysis needs. The technical architecture adopts 

Lambda layered design, and the batch-flow integrated processing engine synchronizes the 

transactional data of ERP system, structured approval records of OA process and unstructured text 

flow of public opinion system. Data silos are bridged by relying on a standardized data governance 

framework, establishing a unified metadata catalog based on the DCMM (Data Management 

Capability Maturity) model, and realizing semantic alignment between multiple systems at the field 

level through an API gateway, e.g., mapping “Purchase Requisition No.” in the OA system to 
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“Accounts Payable Voucher No.” in the ERP system.  The “accounts payable voucher number” in 

the OA system is mapped to the “accounts payable voucher number” in the ERP system. The data 

cleaning phase introduces a dynamic quality rule engine to automatically repair missing fields and 

formatting anomalies, and flag low-confidence data for manual review [9].  

Visual decision dashboard development needs to be deeply coupled with the underlying 

algorithms. The Power BI embedded analytics module calls the Pareto frontier solution set of the 

funds dynamic allocation optimization algorithm to show the funds allocation scheme under 

different risk preferences in the form of a heat map, as shown in Figure 6. the Tableau Early 

Warning Watchdog integrates the financial risk prediction algorithm's LSTM-Attention weights to 

visualize the risk transmission paths and key influencing factors. In the technical realization, the 

front-end components and distributed computing engine using microservice communication 

protocols, real-time rendering of data updates to enable cache degradation strategy to protect the 

response speed.  

 

Figure 6 Power BI Embedded Analytics Module 

A progressive iterative mechanism needs to be established in the implementation stage. At the 

initial stage, focusing on the data access of core business units, the containerized deployment mode 

is used to quickly verify the validity of the ETL process; at the mid-term, it is expanded to complex 

scenarios such as supply chain finance, and the time zone differences in cross-border capital flows 

are dealt with through the Flink state management function; and at the later stage, it builds a 

self-service analytical portal, embeds a natural language query module, and supports the generation 

of dynamic reports by non-technical personnel through semantic parsing. The security system 

adopts zero-trust architecture, based on RBAC model to control data column access rights, 

combined with homomorphic encryption technology to ensure the computing security of sensitive 

financial data in the cloud.  

4.2 Organizational change challenges 

The transformation of financial personnel's capabilities requires the reconstruction of the 

traditional accounting skills system and the establishment of a dual-core capability model of “data 
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interpretation - strategy optimization”. The ability assessment formula can be quantified as formula 

(5): 

AlignmentStrategicLiteracyDataC  
 
(5) 

Among them, Data Literacy covers SQL query and machine learning model interpretation 

capabilities, and Strategic Alignment is assessed through the contribution of business goal 

disassembly and budget optimization. In the technical realization, the embedded learning platform 

integrates the Jupyter Lab interactive environment, provides sandbox training modules for cash 

flow forecasting, risk scoring and other scenarios, and strengthens the causal reasoning ability 

between algorithm results and business decisions [10].  

The data governance committee needs to build a cross-departmental collaboration mechanism, 

and its core function consists of data quality standard definition and permission rule design. The 

data quality scoring model is equation (6):  
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The weights wi be dynamically adjusted based on the business importance of the fields, and the 

compliance indicator verifies whether the data complies with IFRS or local accounting standards. 

Permission rules use the Attribute Based Access Control (ABAC) model to encapsulate roles, data 

sensitivity levels, and business scenarios into policy decision points, e.g., Subsidiary Finance only 

has access to the Linked Transactions data subgraph.  

5. Experimental Design and Validation 

5.1 Experiment 1: Validation of capital deployment optimization 

The experimental design is based on six years of fund flow data from 12 subsidiaries of a 

multinational group to verify the effectiveness of the multi-objective optimization algorithm in the 

dynamic deployment of funds. Three types of features are extracted in the data preprocessing stage: 

transaction amount, account balance, and payment timeliness, and the nodes are defined as 

subsidiary accounts when constructing the fund flow mapping, and the edge weights are jointly 

determined by the average daily transaction amount and the urgency coefficient. Comparison 

experiments are set up with two baseline methods: traditional linear programming method (the 

objective function is liquidity maximization), and manual empirical provisioning (relying on 

historical rule base), and the optimization algorithm adopts the improved NSGA-II, whose fitness 

function is defined as Equation (7):  

coreLiquiditySreRiskExposuROIF  321   (7) 

The weighting coefficients λ1, λ2, and λ3 are dynamically optimized by Pareto frontier analysis.  

The experimental results are shown in Table 1.The NSGA-II algorithm significantly outperforms 

the baseline method in the three dimensions of capital utilization, annualized return and response 

timeliness. The Pareto solution set generated by the algorithm reveals the equilibrium relationship 

between return and risk in the fund allocation scheme, and the decision maker can choose the 

nondominated solution according to the risk preference. Anomalous scenario tests show that 

NSGA-II completes cross-region fund dispatch within 2 hours through topology reconfiguration 

when a subsidiary has a sudden large amount of payment demand, while the traditional method has 

an average delay of 8 hours due to the fixed allocation ratio.  
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Table 1 Comparative results of optimization of funds deployment 

Comparative Indicators Traditional Linear 

Programming 

Manual Empirical 

Blending 

NSGA-II 

algorithm 

Capital Utilization Rate 68% 62% 90% 

Annualized return (million yuan) 6500 5800 8300 

Response time (hours) 6.8 8.2 2.1 

Experiments verify the practicality of the multi-objective optimization algorithm in complex 

funding networks. The constraint violation rate analysis shows that the feasible solution share of 

NSGA-II reaches 98.7%, which is 23 percentage points higher than the linear programming method. 

The algorithm needs to be deployed with a real-time monitoring module embedded, which triggers 

the model retraining when the sudden change of the structure of the money flow mapping exceeds 

the threshold value, and guarantees the dynamic adaptability. 

5.2 Experiment 2: Financial risk prediction accuracy test 

The experiment verifies the effectiveness of the fusion model of graph convolutional network 

and long and short-term memory network in the early warning of the risk of capital chain breakage. 

Positive samples cover 50 enterprises with the history of financial chain breaks, negative samples 

are selected from 200 enterprises with healthy financial status, and feature engineering extracts key 

indicators such as cash flow volatility, related party transaction ratio, and interest coverage multiple. 

The model compares logistic regression, random forest and pure LSTM baseline, and the evaluation 

dimensions contain precision rate, recall rate and F1-score.  

Table 2 shows the results of the model performance comparison: the F1-score of the 

GCN-LSTM fusion model is 22% higher than the optimal traditional model, and the false alarm rate 

is controlled within the industry benchmark. The case retrospective validation shows that the model 

identifies the risk signal of a group subsidiary 3 months in advance, and when the early warning is 

triggered, the accounts payable turnover days of the enterprise is already significantly higher than 

the industry average, and a substantial debt default occurs 3 months later.  

Table 2 Comparison of financial risk prediction model performance 

Model Precision Rate Recall rate F1-score ROC-AUC 

logistic regression 0.71 0.68 0.69 0.73 

Random Forest 0.82 0.74 0.78 0.85 

Pure LSTM 0.76 0.80 0.78 0.83 

GCN-LSTM fusion model 0.89 0.93 0.91 0.94 

The validation process introduces SHAP value analysis, and supplier concentration and quick 

ratio have the highest contribution to the model decision. During the deployment phase, a dynamic 

feature monitoring module is built to trigger model retraining when the structure of the enterprise's 

network or financial indicators change abruptly, ensuring the stability of the prediction. The 

algorithm output should be integrated with the audit system to automatically generate risk response 

plans for management decision-making. 

5.3 Experiment 3: Smart budgeting efficiency assessment 

The experiment was designed to validate the improved efficiency and quality of the smart 

budgeting algorithm. The control group adopts manual preparation mode, and the 10-member team 

completes the budget preparation based on historical templates and spreadsheet tools; the 

experimental group deploys the smart algorithm to generate the first draft, and the 2-member team 
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performs the calibration of strategic priorities and fine-tuning of constraints. The evaluation indexes 

introduce budget deviation rate and strategy matching degree, the former measures the degree of 

deviation between budget allocation and actual resource consumption, and the latter quantifies the 

consistency between the budget program and strategic plan through expert scoring.  

The smart budget algorithm integrates Prophet time series prediction and deep reinforcement 

learning strategies. The budget deviation rate is calculated using the standardized formula (8):  
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Where 
i
allocB  is the budget allocated by the algorithm and 

i
actualB  is the actual expenditure 

after audit. The strategy matching score parses the strategy document keywords through the 

semantic similarity model and generates quantitative indicators by combining the departmental 

budget share. The manual fine-tuning phase deploys an interactive decision support system to 

visually display the Pareto frontier solution set of the algorithmic recommendation scheme with risk 

sensitivity analysis results.  

Figure 7 presents the core results of the experiment. The budget deviation rate of the intelligent 

algorithm group is 61% lower than that of the manual group, and the strategy matching degree is 

19.4% higher. The efficiency improvement stems from the fact that the algorithm automatically 

generates 80% of the base budget framework, and the manual team focuses on dealing with 

resource tradeoffs for strategic-level projects. Anomalous case tests showed that when the market 

environment changed suddenly, resulting in a revenue forecast error of more than 15%, the 

algorithm reallocated the budget within 4 hours through an online reinforcement learning module, 

while the manual team had to restart the whole process of revisions.  

 

Figure 7 Smart budgeting efficiency comparison 

The validation process uses a combination of cross-validation and stress testing. The dataset was 

divided to reserve 20% as a test set for unexpected events, simulating scenarios such as supply 

chain disruptions and policy adjustments. The expert scoring team consists of strategy department, 

finance department, and business line leaders, and the scoring consistency is verified by 

Krippendorff's alpha coefficient up to 0.82. Algorithm deployment needs to be accompanied by 
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revision of the approval workflow, and manual fine-tuning of the operation traces of the blockchain 

deposits in order to meet the audit compliance requirements. 

6. Conclusion 

The deep embedding of big data analytics into financial shared decision-making system marks 

the paradigm shift of financial management from rearview mirror recording to navigational ritual 

prognosis. Research confirms that feature engineering's ability to extract value from unstructured 

data directly affects the sensitivity of risk early warning models; dynamic deployment algorithms 

show resilience advantages beyond traditional rule engines in fund liquidity management. The 

technology implementation path needs to take into account the maturity of data governance and 

organizational change tolerance to avoid falling into the misconception of technological 

determinism. The experimental validation session reveals the adaptation law of algorithm iteration 

and actual business scenarios, providing differentiated solution references for enterprises of 

different sizes. With the fusion of edge computing and privacy computing technology, the future 

financial decision-making system will evolve in the direction of distributed intelligence, which will 

have a far-reaching impact on reconfiguring the enterprise value creation chain. 
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