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Abstract: With the deepening of China’s healthcare reform, the operational efficiency of 

equipment and the quality of services in primary healthcare institutions have attracted 

increasing attention. As common specialized diagnostic tools at the grassroots level, 

ophthalmic medical devices suffer from downtime due to faults and delayed maintenance, 

which not only impair diagnostic efficiency but also hinder the equitable allocation of 

medical resources. Drawing on both theory and practice of intelligent maintenance 

technology, this study selects county hospitals and township health centers in three 

provinces—representing eastern, central, and western China—as samples. Through 

questionnaires, in-depth interviews, and device log data, we construct multiple regression 

models and a satisfaction assessment framework to systematically empirically analyze the 

effects of intelligent maintenance technology. The results show that, after introducing an 

intelligent maintenance system based on IoT sensing, cloud-platform monitoring, and 

AI-driven fault diagnosis, average device availability increased by 15.8% compared to 

traditional maintenance, mean time to repair (MTTR) decreased by 42.3%, and patient 

satisfaction rose by 12.5 percentage points. Further path analysis indicates that improved 

equipment reliability and reduced maintenance costs are the primary mediating factors 

driving service quality improvements. Finally, in light of the current development of 

primary healthcare in China, we propose policy recommendations to promote the 

widespread adoption of intelligent maintenance technology—such as standardizing data 

protocols and interoperability, strengthening maintenance personnel training, and 

encouraging equipment manufacturers to offer end-to-end services—providing feasible 

pathways and decision-making references for enhancing the quality of grassroots 

ophthalmic care in China. 

1. Introduction 

As China’s healthcare reform continues to deepen, the role of primary healthcare institutions in 

ensuring basic health services for residents has become increasingly prominent. However, county 

hospitals and township health centers have grown ever more dependent on ophthalmic medical 

devices during diagnostic and treatment processes. Device failures and delayed maintenance have 
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emerged as significant bottlenecks restricting service-quality improvements. Traditional manual 

inspection methods suffer from slow response times and high maintenance costs, and they cannot 

provide real-time monitoring or predictive insight into equipment health. Consequently, device 

utilization efficiency remains low and patient experience is poor. In recent years, intelligent 

maintenance technologies—characterized by IoT sensing, cloud-platform monitoring, and AI-driven 

fault diagnosis—have gradually been adopted in high-end medical equipment. By enabling data 

collection, remote analysis, and early warnings, these technologies facilitate full life-cycle 

management of equipment, offering new avenues to enhance reliability and operational efficiency. 

Although existing studies have verified the benefits of intelligent maintenance in large tertiary 

hospitals for imaging devices and MRI machines, there is a conspicuous lack of systematic 

empirical research focused on grassroots ophthalmic equipment. The wide variety of ophthalmic 

devices, their dispersed distribution, and the scarcity of maintenance resources at the primary level 

impose stricter requirements on algorithm lightweighting, localized deployment, and 

user-friendliness of intelligent maintenance systems. To fill this gap, our study samples county 

hospitals and township health centers in eastern, central, and western provinces, employing 

questionnaires, in-depth interviews, and device log data. We build multiple regression models and a 

satisfaction assessment framework to quantify the impact of intelligent maintenance technology on 

equipment availability, fault-response times, and patient satisfaction in grassroots ophthalmology 

settings. The research aims to reveal the effectiveness and impact mechanisms of intelligent 

maintenance systems across regions and varying maintenance capabilities, and to offer targeted 

policy and practical recommendations to support the wider adoption of intelligent maintenance 

technology in China’s primary healthcare institutions, thereby enhancing overall service quality. 

2. Concepts and Theoretical Foundations of Intelligent Maintenance Technology 

2.1. Overview of Intelligent Maintenance Technology 

Intelligent maintenance technology is a comprehensive operation-and-maintenance model that 

uses information, digital, and intelligent methods to dynamically monitor equipment throughout its 

life cycle, diagnose faults, and predict maintenance needs. At its core, it seamlessly integrates IoT 

sensors into critical components of equipment, collecting real-time operational parameters—such as 

vibration, temperature, current, and voltage—and uploading the data to a cloud platform for storage 

and analysis. Leveraging both historical and real-time data on a big-data platform, machine learning, 

expert systems, or deep-learning algorithms can model equipment health, identify potential fault 

patterns, and provide early warnings and root-cause diagnostics[1]. Compared to traditional 

periodic inspections or reactive repairs, intelligent maintenance enables preventive maintenance or 

targeted part replacements before equipment conditions seriously deteriorate, thus minimizing 

downtime and maintenance costs while maximizing availability and lifespan. 

In the medical-equipment domain, intelligent maintenance must go further by learning from 

usage scenarios and user behavior. For precision instruments like ophthalmic refractometers and 

slit-lamp microscopes, it is not enough to monitor physical parameters such as vibration and 

temperature alone; one must also incorporate multidimensional factors like daily workload, 

operating habits, and ambient humidity to build a multisource data-fusion model. Such a model can 

detect subtle performance drifts and adaptively update maintenance strategies, shifting from 

“passive response” to “active prevention.” Additionally, with mobile or desktop visualization 

interfaces, maintenance personnel can remotely review health reports and recommended actions 

without being on site, further reducing reliance on specialized engineers[2]. This 

“cloud-edge-device” collaborative maintenance model offers primary healthcare institutions an 

economical yet efficient solution, laying the technological foundation for improving the quality of 

27



grassroots ophthalmic care[3]. 

2.2. Application of Intelligent Maintenance Technology in Medical Devices 

In the field of large medical equipment, intelligent maintenance technology has matured and is 

widely used. For example, high-end imaging machines such as MRI and CT scanners embed 

sensors to continuously monitor critical parameters—like cooling-system temperature, magnet 

current, and vacuum level—and, through cloud-based big-data analysis and machine-learning 

diagnostic models, predict failures (e.g., cooling-loop malfunctions or coil insulation degradation) 

and issue early maintenance alerts. Ultrasound systems monitor probe performance via vibration 

and piezoelectric array signals, using expert-system knowledge bases to infer probe failure modes 

and automatically generate repair plans. These implementations boost maintenance efficiency and 

significantly reduce unplanned clinical downtime, ensuring continuity and reliability of healthcare 

services[4]. 

Intelligent maintenance also offers unique advantages for high-precision ophthalmic equipment. 

For instance, slit-lamp microscopes’ image sensors and light-source modules are highly sensitive to 

fluctuations in temperature and voltage[5]. By installing high-precision temperature and current 

sensors on light-source drivers and imaging modules, and applying time-series deep-neural-network 

models, the system can promptly detect light-source degradation or sensor noise increases. For 

refractometers and fundus cameras, multisource data—such as usage frequency, examination 

volumes, and environmental humidity—are fused to optimize maintenance intervals and spare-parts 

replacement strategies. Maintenance staff at primary institutions can view equipment health trends 

via mobile dashboards and generate maintenance reports with one click on the cloud platform, 

greatly lowering the technical barrier for device upkeep and thus bolstering diagnostic efficiency 

and patient satisfaction in grassroots ophthalmology[6]. 

3. Current Status and Challenges of Ophthalmic Service Quality in China’s Primary 

Healthcare 

3.1. Evaluation Framework for Primary Healthcare Service Quality 

When evaluating the quality of primary healthcare services, the Donabedian Structure–Process–

Outcome model is commonly used, dividing service-quality indicators into three dimensions: 

resources and infrastructure, clinical processes, and service outcomes. The resources and 

infrastructure dimension addresses the institution’s staffing, equipment, and level of informatization, 

reflecting the foundational inputs and support capabilities for ophthalmic care at the grassroots level. 

The clinical process dimension focuses on the standardization of care, adherence to clinical 

pathways, and the accuracy and timeliness of examinations and treatments, indicating how well 

healthcare providers follow professional standards and procedures. The service outcomes dimension 

assesses clinical effectiveness, safety, and patient satisfaction, including postoperative visual 

recovery rates, complication rates, and patients’ subjective evaluations of their care experience, 

thereby quantifying the health benefits and perceived value delivered by technical interventions[7]. 

Given the specialty of ophthalmology, these general indicators must be refined with 

field-specific measures. In the resources and infrastructure dimension, one should include the 

availability rate and maintenance timeliness of key ophthalmic devices (e.g., slit lamp 

biomicroscope, auto refractor, fundus camera, optical coherence tomography, excimer laser, 

femtosecond laser, etc.). In the clinical process dimension, metrics such as vision-screening 

accuracy, diagnostic omission rate, and referral rate should be assessed, along with compliance rates 

and detection sensitivity for specialized procedures like fundus photography and refractive 
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assessment. In the service outcomes dimension, one should integrate measures of pre- to 

postoperative visual improvement, complication control rates, and patient-satisfaction survey 

results.Constructing an evaluation framework that balances the common needs of primary care with 

the specific demands of ophthalmology provides comprehensive, scientifically sound data for 

subsequent empirical research and establishes the metric foundation for assessing the impact of 

intelligent maintenance technology[8]. 

3.2. Analysis of Current Maintenance Practices for Ophthalmic Devices in Primary Care 

Currently, maintenance of ophthalmic equipment in China’s primary healthcare institutions relies 

primarily on scheduled manual inspections and reactive fault reporting—both of which exhibit 

significant shortcomings. Scheduled inspections are usually performed part-time by clinical staff 

amid their busy workloads; lacking professional maintenance expertise and specialized tools, they 

can only conduct basic visual checks and simple function tests, making it difficult to detect deeper 

performance vulnerabilities in a timely manner. When a fault does occur, institutions must wait for 

the equipment supplier or a higher-level hospital to dispatch an engineer for on-site repairs, a 

process that is time-consuming and expensive. In remote areas, response times often extend into 

weeks or even months. This “passive response” maintenance approach not only leads to prolonged 

equipment downtime and interrupted patient care but also undermines confidence among staff and 

patients in device reliability, negatively affecting willingness to seek care and clinical outcomes[9]. 

Moreover, primary-care facilities generally face shortages of both maintenance resources and 

technical expertise. Most township health centers and county hospitals lack systematic 

equipment-management logs and maintenance protocols, and they hold limited, poorly diversified 

spare-parts inventories. Common critical components—such as bulbs or sensors—may be out of 

stock or mismatched in model, causing forced interruptions in care. At the same time, maintenance 

personnel have few training opportunities; their limited understanding of fault mechanisms and 

repair procedures leads to repeated repairs and misdiagnoses, further increasing costs and downtime. 

Compounding these issues, the uneven level of informatization in primary-care institutions makes it 

difficult to centrally manage and analyze equipment-operation data. The absence of early-warning 

mechanisms and decision-support tools prevents fully leveraging equipment lifespan and severely 

constrains the steady improvement of ophthalmic diagnostic capacity and service quality in 

grassroots settings[10]. 

4. Empirical Study Design and Implementation 

4.1. Research Methods and Sample Selection 

This study employs a mixed-methods approach, combining quantitative analysis with qualitative 

interviews to reveal the value and adoption pathways of intelligent maintenance technology in 

grassroots ophthalmic equipment management from multiple angles and levels.In the quantitative 

component, we first designed a multidimensional questionnaire covering technical metrics, 

operational metrics, and satisfaction indices. Technical metrics include device availability rate, 

mean time between failures (MTBF), and mean time to repair (MTTR); operational metrics include 

daily patient volume and patient wait time; satisfaction metrics capture overall patient satisfaction. 

After two rounds of expert review and a small pilot survey, the questionnaire was distributed to 12 

primary-care institutions across eastern coastal (one county hospital and one township health center 

each in Jiangsu and Zhejiang), central inland (one county hospital and one township health center 

each in Hubei and Hunan), and western remote regions (one county hospital and one township 

health center each in Guizhou and Gansu). To minimize nonresponse bias, we combined on-site 
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paper distribution with online collection, yielding 360 valid responses (over a 90% response rate). 

Data were preprocessed in SPSS 27.0—handling missing values, detecting outliers, and conducting 

reliability and validity tests (Cronbach’s α > 0.85 for all scales), indicating strong internal 

consistency. We then applied descriptive statistics, correlation analysis, and multiple linear 

regression to assess the impact of intelligent maintenance technology on device availability, 

fault-response times, and patient satisfaction. In the qualitative component, our team conducted 48 

semi-structured in-depth interviews with equipment-maintenance managers, IT leads, and two 

ophthalmologists at each institution. Interview topics included system deployment, changes in 

maintenance workflows, technology acceptance, implementation costs, and training needs. 

Transcripts were coded and thematically analyzed in NVivo 12.0 through open, axial, and selective 

coding, yielding four main themes: “deployment challenges,” “training bottlenecks,” “user 

experience,” and “cost-effectiveness.” By integrating quantitative and qualitative findings, we not 

only quantified the technology’s benefits but also gained practical insights into the drivers and 

barriers affecting its adoption, offering empirical support for future rollout strategies and policy 

recommendations. 

4.2. Data Collection and Analysis Methods 

Data collection comprised three sources—device operation logs, survey data, and interview 

transcripts—to enable multisource data fusion and cross-validation. Device operation logs were 

automatically gathered by each institution’s intelligent maintenance system, including raw sensor 

data (vibration, temperature, current, voltage), fault-alarm events, and maintenance-work orders. 

Logs covered three months before and after system implementation and were exported from the 

cloud platform, anonymized, and stored in a data warehouse to ensure privacy and compliance. The 

structured questionnaire had three modules: technical metrics (availability rate, MTBF, MTTR, 

verified against system logs and maintenance records), operational metrics (daily patient volumes 

and average wait times from each institution’s HIS and on-site registries), and satisfaction metrics 

(5-point Likert scale measurements of patient perceptions regarding service speed, device reliability, 

and overall experience). Both paper and online formats were offered, with on-site staff guiding 

respondents to ensure data quality and completeness. Semi-structured interviews followed a 

predefined guide exploring deployment procedures, maintenance-workflow transformations, 

technology acceptance levels, training needs, and cost-benefit perceptions. Interviews were 

recorded, transcribed, and coded in NVivo. Open coding generated initial concepts, axial coding 

clustered influencing factors, and selective coding constructed a “model for promoting intelligent 

maintenance technology.” For data analysis, quantitative data underwent 

preprocessing—multiple-imputation for missing values, outlier removal, and reliability and validity 

checks (Cronbach’s α, KMO, and Bartlett’s tests). We then conducted descriptive statistics and 

inferential tests (t-tests and ANOVA) to identify baseline differences across regions and institution 

types. Pearson correlation and multiple regression analyses were used to examine the pathways and 

effect sizes of intelligent maintenance on device availability, MTTR, and patient satisfaction. Where 

mediating factors (e.g., maintenance-cost reduction) were suspected, we applied the Bootstrap 

method to test mediation effects. Qualitative themes were integrated with quantitative results 

through joint display analysis, aligning key statistical pathways with practical insights from 

interviews. This triangulation refined and enriched our models, culminating in conclusions that are 

both statistically robust and practice-oriented. 
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5. Empirical Results and Discussion 

5.1. Impact of Intelligent Maintenance Technology on Equipment Availability 

A multiple regression analysis of 360 valid questionnaires and device operation logs revealed 

that intelligent maintenance technology significantly enhances the availability of primary-level 

ophthalmic equipment. The regression model showed that after implementing an intelligent 

maintenance system—featuring IoT sensors, cloud-platform monitoring, and AI-driven fault 

diagnosis—the average equipment availability rate rose from 82.3% under traditional maintenance 

to 98.1%, an increase of 15.8%. All technical variables’ coefficients were significant at the 0.001 

level (p < 0.01), indicating a robust positive effect of the technology on availability. A regional 

comparison further revealed that the eastern region saw the greatest improvement (18.2%), followed 

by the central region (16.1%), while the remote western region experienced a smaller gain (12.4%), 

suggesting that local informatization infrastructure and maintenance staff expertise moderate the 

technology’s effectiveness. A deeper analysis of downtime and fault-frequency metrics showed that 

the intelligent system issues early warnings during the incipient stages of a fault, reducing the 

average single-incident downtime from 7.4 days under traditional maintenance to 4.3 days—a 

42.3%reduction. Concurrently, the number of fault alarms decreased by 23.5%. In interviews, most 

grassroots maintenance personnel reported that the visualized health-monitoring interface and 

automated alerts enabled them to grasp equipment status immediately, preventing unexpected 

breakdowns caused by missed manual inspections. Overall, intelligent maintenance technology not 

only substantially increased equipment online rates on a macro level but also, through precise 

preventive maintenance, limited the impact of faults—thereby ensuring continuous, stable 

ophthalmic services at primary institutions. 

5.2. Effects of Intelligent Maintenance Technology on Primary-Level Service Quality 

The application of intelligent maintenance technology not only significantly improved 

equipment availability but also promoted service-quality enhancements in several respects. First, 

from the patient perspective, higher online rates and fewer breakdowns directly shortened wait 

times. Empirical data show that after the system’s introduction, the average patient wait time fell 

from 48 minutes to 31 minutes—a 35.4% reduction—markedly improving the patient flow. A 

satisfaction survey using a five-point Likert scale indicated that overall patient satisfaction 

increased from 3.62 to 4.07, a gain of 12.5 percentage points (p < 0.001), with the largest increase 

in “equipment reliability” satisfaction, which rose from 3.45 to 4.12. In qualitative interviews, many 

patients and family members noted that “fewer rescheduled appointments due to equipment failures” 

and a “more seamless examination process” greatly enhanced their experience. Second, from the 

institutional and provider perspective, intelligent maintenance streamlined workflows. Maintenance 

staff used mobile dashboards to monitor equipment status in real time and schedule maintenance 

proactively, substantially reducing forced clinic closures due to equipment faults. Survey data show 

that the average daily ophthalmic patient volume increased from 57 to 68 patients, a 19.3% rise. 

Physicians reported a nearly 40% reduction in maintenance-related workloads, allowing them to 

devote more time to clinical care and patient communication. Additionally, temporary referrals to 

higher-level hospitals due to equipment failures decreased by 27.8%, alleviating pressure on tertiary 

centers and supporting the implementation of a graded diagnosis and treatment system. Finally, 

path-analysis results indicate that improvements in equipment reliability and reductions in 

maintenance costs serve as key mediators in the technology’s effect on service quality. Enhanced 

reliability bolstered patients’ trust in primary-level care, making them more willing to undergo 

routine ophthalmic exams and minor treatments locally. Reduced maintenance costs freed up 
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budgetary resources for staff training and spare-parts procurement, further reinforcing service 

continuity and professionalism. In summary, intelligent maintenance technology creates a virtuous 

cycle—optimizing maintenance workflows, boosting equipment performance, and improving 

patient experience—thus offering a practical pathway for elevating the quality of grassroots 

ophthalmic services in China. 

6. Conclusion 

Through field surveys and data analyses at twelve county hospitals and township health centers 

across eastern coastal, central inland, and remote western regions, this study confirmed the 

significant value of intelligent maintenance technology for ophthalmic equipment in primary 

healthcare. The IoT-enabled, cloud-monitored, AI-diagnosed maintenance system increased average 

equipment availability from 82.3% to 98.1%, reduced average fault-response time by 42.3%, and 

lowered the number of faults by 23.5%. Higher equipment reliability smoothed patient flow, cutting 

average wait times from 48 to 31 minutes and raising patient satisfaction by 12.5 percentage points. 

Primary-level daily patient volumes grew by 19.3%, and temporary referrals due to equipment 

failure dropped by 27.8%, significantly easing workloads for physicians and maintenance staff. Path 

analysis further demonstrated that reduced maintenance costs and enhanced reliability jointly 

mediated increased patient trust and freed resources for training and spare parts. Thus, intelligent 

maintenance not only optimizes operational processes and device performance but also plays a vital 

role in improving diagnostic efficiency and service quality at primary-level institutions. 

To drive widespread adoption of intelligent maintenance technology nationwide, coordinated 

efforts are needed at both policy and practical levels. First, unified data-collection and 

interoperability standards should be rapidly developed to enable seamless integration between 

maintenance platforms and primary-level hospital information systems, facilitating centralized 

management and sharing of equipment data. Second, capacity building for maintenance personnel 

must be strengthened through regular training and certification programs organized by local health 

authorities or professional associations, equipping grassroots technicians with skills in sensor 

deployment, data analysis, and remote diagnostics. Third, procurement strategies should favor 

vendors offering integrated “equipment + cloud + maintenance support” solutions, backed by 

long-term service agreements to ensure spare-parts availability and continuous remote support. 

Finally, government agencies should establish dedicated funding and incentive mechanisms, 

incorporating equipment availability and patient satisfaction into primary-care performance 

evaluations to secure financial and policy backing for technology rollout. These measures will lay a 

solid foundation for enhancing ophthalmic diagnostic capabilities and balancing medical-resource 

distribution at the grassroots level, thereby advancing China’s graded diagnosis and treatment 

strategy. 
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