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Abstract: As the demands for machining accuracy and stability continue to rise, thermal 

deformation of the feed system in machining centers during prolonged operation has 

become increasingly significant. This study employs a thermo-structural coupled finite 

element analysis method to model and simulate a representative machining-center feed 

system. First, a three-dimensional geometric model of the feed system is constructed, and 

an appropriate mesh, boundary conditions, and thermal loads are applied to obtain the 

operating temperature field. Next, based on the computed temperature distribution, a 

temperature–stress coupled analysis is performed to extract the thermal deformation 

characteristics, upon which a deformation-prediction model is developed. To validate the 

model’s accuracy, a series of experiments are designed and conducted, and the measured 

data are compared with the simulation results. The findings demonstrate that the proposed 

method can effectively predict the thermal deformation of the feed system under various 

operating conditions, with prediction errors within acceptable limits; moreover, the model 

exhibits good applicability and robustness. Finally, combining simulation and experimental 

results, improvement recommendations for feed-system thermal deformation are proposed, 

providing theoretical foundations and engineering guidance for optimizing the thermal 

stability of precision machining centers. 

1. Introduction 

With ever-increasing requirements for machining precision and stability, thermal deformation in 

the feed system of machining centers—arising from both cutting heat and the temperature rise of 

lubricating oil during prolonged, high-load operation—leads to positioning errors and dimensional 

offsets. Although empirical formulas and simplified models can qualitatively assess overall 

thermal-deformation trends, finite element thermo-structural coupled simulations have emerged as a 

research focus because of their high-fidelity representation of temperature-field distribution and the 

coupling between thermal stresses and structural response. However, for the feed system—a 

structurally complex subsystem with nonuniform heat sources—systematic studies and thorough 

validation of heat-exchange boundary conditions, contact nonlinearities, and online-prediction 

models remain lacking. This paper presents a strongly coupled finite element method that first uses 

Journal of Engineering Mechanics and Machinery (2025) 
Clausius Scientific Press, Canada

DOI: 10.23977/jemm.2025.100118 
ISSN 2371-9133 Vol. 10 Num. 1

171



quasi-one-dimensional isentropic flow and the Bartz correlation to obtain nonuniform 

heat-exchange fluxes, then iteratively solves the three-dimensional steady-state/transient 

heat-conduction problem with nonlinear contact boundary conditions. Based on these results, an 

online deformation-prediction algorithm that combines multi-input linear regression with a 

first-order dynamic filter is developed and validated through static heating and dynamic cutting 

experiments. This approach provides high-fidelity numerical support for thermal-error 

compensation and structural optimization of the feed system. 

2. Thermo-Structural Coupled Analysis Method 

To accurately predict the thermal deformation behavior of a precision-machining-center feed 

system under actual working conditions, a strongly coupled finite element–based simulation 

framework is proposed (Figure 1). It integrates fluid dynamics, heat conduction, structural 

mechanics, and nonlinear contact boundary conditions into a unified iterative solution, thereby 

capturing the essential interactions among fluid, thermal, and structural fields. The key steps and 

techniques are as follows[1]. 

 

Figure 1: Thermo-structural analysis modelling method. 

First, a three-dimensional fluid-flow model is combined with a quasi-one-dimensional 

isentropic-flow approximation to determine the pressure and temperature distributions of the 

cooling lubricating oil in the feed passages. Using the Bartz correlation, these fluid-side parameters 

are converted into local heat-flux boundary conditions on structural surfaces. The resulting 
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heat-flux distribution reflects the complex heat-transfer characteristics driven by fluid velocity, 

passage geometry, and pressure variations, and lays a high-accuracy foundation for subsequent 

thermal analyses[2].In the heat-conduction stage, three-dimensional steady-state and transient 

thermal simulations are performed for critical components—including the spindle, guideways, ball 

screw, and supporting frame—accounting for material thermal conductivity, specific heat capacity, 

convective cooling coefficients, and radiative heat-transfer effects. The resulting temperature field 

is then mapped to the structural analysis model; using material coefficients of thermal expansion 

and elastic moduli, the model computes internal thermal stresses and displacements with high 

precision. To simulate the coupled effects of assembly tolerances, preload forces, and surface 

conditions on thermomechanical performance, nonlinear contact boundary conditions are 

introduced: gap elements that update dynamically with thermal expansion, variable friction 

coefficients dependent on local temperature and sliding speed, thermal contact resistances capturing 

the effects of microscale roughness and contact pressure, and frictional heat generation feeding back 

into the thermal model. The strong-coupling iteration in Figure 1 proceeds as follows: (1) perform 

thermal conduction analysis with the current contact and heat-flux boundaries to obtain the 

temperature field; (2) map the temperature field to the structural model and compute thermal 

deformation, then update contact gaps and pressures; (3) recalculate frictional heat and thermal 

contact resistance based on the new contact state, and adjust heat-flux boundaries; (4) repeat the 

thermal–structural coupling simulation until changes in temperature, stress, and contact parameters 

converge below prescribed thresholds. This iterative scheme fully captures the interplay among 

fluid heat transfer, solid conduction, structural mechanics, and contact mechanics. Compared to 

weakly coupled or uni-directional approaches, this strongly coupled framework preserves detailed 

fluid-passage geometry and nonlinear contact behavior under assembly and operating conditions, 

achieving high-fidelity thermo-structural simulations without sacrificing computational efficiency. 

Sensitivity analyses of different heat-flux boundaries and contact parameters further inform choices 

for lubrication-cooling conditions and assembly processes, enhancing the machining center’s 

stability and accuracy [3]. 

In summary, the unified simulation platform—comprising fluid dynamics, thermal analysis, 

structural coupling, and nonlinear contact modules—provides a versatile, reproducible numerical 

method for predicting thermal deformation in machining center subsystems and guiding 

thermal-stability design in precision manufacturing. 

3. Modeling of the Feed System in a Precision Machining Center 

3.1. Geometry Creation and Mesh Generation 

Starting from the manufacturer’s 3D CAD drawings, the feed components were assembled in 

SolidWorks to accurately position the spindle slider, screw bearing housing, and guideway base 

relative to one another. The internal thread of the roller screw was idealized as an equivalent 

cylinder while retaining the nut contact surface detail along the axial direction, enabling precise 

calculation of contact pressure and thermal resistance in later analyses. The inner walls of the 

lubrication passages were defined as fluid–solid coupling surfaces and imported into the finite 

element software to ensure correct application of thermal boundary conditions. The simplified 

geometry was then imported into ANSYS Workbench, where a hybrid meshing strategy was 

employed. Rigid structural parts—such as the main frame and support plates—were meshed with 

hexahedral (Hex) elements to achieve high accuracy with fewer degrees of freedom[4]. Critical 

regions, including the thread-nut contact zone and the guideway slider–screw nut interface, were 

refined with tetrahedral (Tet) elements, and thin-walled cooling plates were modeled using SHELL 

elements. Local mesh sizes were adjusted dynamically based on feature dimensions and anticipated 
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thermal gradients: the minimum element edge length in the screw-nut interface was 0.2 mm, and the 

guideway contact surfaces were meshed at a density of at least four to six elements per square 

millimeter to capture fine-scale thermal and contact phenomena. Mesh quality metrics were 

controlled to maintain an aspect ratio below 5 and element skewness below 0.3, with smooth 

transitions between regions. Adaptive mesh refinement was applied to high-gradient zones 

identified in an initial thermal simulation, guaranteeing that no loss of fidelity would occur during 

the thermo-structural coupling iterations. The final model comprised approximately 1.2 million 

nodes and 0.9 million elements, of which about 15 percent lie on the fluid–solid coupling surfaces. 

This mesh balances solution accuracy and solver performance, providing a robust numerical 

foundation for the subsequent fluid heat-transfer, thermal-conduction, and structural-stress 

analyses[5]. 

3.2. Boundary Conditions and Thermal Load Application 

After establishing the geometry and mesh, precise thermal boundary conditions and loads were 

applied to ensure the simulation closely reflects real-world operating conditions. Figure 2 shows the 

feed system’s key component temperature and stress fields overlaid on the 3D technical drawing, 

illustrating how heat transfer and frictional heating combine to influence the lubrication passages, 

screw-guideway contacts, and supporting frame. First, convective and radiative heat-exchange 

boundary conditions were applied to all external surfaces. An ambient temperature of 25 °C was 

assumed. Exposed aluminum components were assigned a convective heat-transfer coefficient of 12 

W/(m²·K), while steel structures used 10 W/(m²·K). Surface emissivities of 0.3 and 0.7, respectively, 

modeled material-specific radiative cooling. These conditions were imposed via surface-flux source 

terms to fully capture ambient influences on the overall temperature field[6]. 

 

Figure 2: Thermal load distribution and stress cloud diagram of key components of the feed system 

Next, local heat-flux distributions computed in Section 3.1 by coupling CFD results with the 

Bartz correlation were applied to the inner walls of the lubrication passages and the screw-guideway 

interfaces. Under peak cutting conditions, the fluid temperature can reach 60 °C, corresponding to a 

maximum local heat flux of approximately 2×10^5 W/m²; during periods of no cutting, the flux 

drops to about 3×10^4 W/m². By using these spatially nonuniform, time-varying fluxes as thermal 

inputs, the model can capture rapid temperature transients and local heat buildup caused by changes 

in flow regime. For the contact interfaces between the screw and nut, and between the guideway 

and slider, frictional heating and thermal contact resistance were introduced in addition to the 
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convective and radiative boundaries. As shown in Formula 1, Frictional heat generation was 

calculated over each contact surface according to 

qf = μ(T, v) pnvrel                               (1) 

Where μ(T,v) is the temperature- and velocity-dependent friction coefficient, pnp_n the contact 

normal pressure, and vrel the relative sliding speed. Thermal contact resistance was modeled as a 

nonlinear function of contact pressure to reflect surface roughness and loading effects on interfacial 

conduction. In Figure 2’s stress field, the highest stress concentrations occur around these contact 

zones, illustrating the combined influence of frictional heating and thermal resistance[7]. 

Finally, structural boundary conditions were applied: the feed slider base was fixed to the 

machine bed, neglecting bed deformation, while the two screw bearing housings were constrained 

with elastic supports whose stiffness values were calibrated from bearing stiffness curves. All 

thermal loads and structural constraints were applied simultaneously and updated at each step of the 

strong-coupling iteration—adjusting heat-flux distributions, frictional heating, and contact 

resistance continuously until the temperature, stress, and contact state converged. By setting up the 

boundary conditions and thermal loads as shown in Figure 2, this study reproduces the feed 

system’s complex thermo-structural interactions under multiple operating scenarios and lays a firm 

numerical groundwork for subsequent deformation-prediction and compensation design[8]. 

4. Thermal and Structural Coupled Simulation 

With the geometry, mesh, boundary conditions, and thermal loads defined, a strongly coupled 

finite element method was used to simulate both the temperature field and structural response of the 

feed system. Figure 3 presents the transient temperature responses at four representative 

measurement points over the time interval 0–0.02 s, as well as the three-dimensional temperature 

field distributions at one-quarter and three-quarters of the simulation period T. The 

temperature-time curves in Figure 3(a) show that sensor Point 1, located near the lubrication inlet, 

exhibits a rapid temperature rise within the first 0.001 s, reaching a peak of approximately 332 K at 

about 0.003 s, then decaying quickly to a new steady-state around 306 K. Points 2 and 3 also 

experience transient peaks—312 K and 310 K, respectively—while Point 4, positioned in a 

low-heat-transfer region, shows the smallest increase, peaking at about 294 K and settling only 

slightly above ambient. The pronounced oscillations arise from the interplay of frictional heating 

and convective heat flux; the iterative thermo-structural coupling allows hot spots to dissipate 

energy rapidly and reestablish equilibrium within milliseconds. 

 

Figure 3: Transient temperature response of key measurement points of the feed system and 

temperature field distribution under different working conditions 

Figure 3(b) reveals that at T/4, the entire structure’s temperature exceeds 295 K, with a localized 
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hot band (~318 K) on the mid-section of the screw where frictional heating is strongest. By 3T/4, 

the overall temperature has dropped below 300 K and the high-temperature region has significantly 

shrunk. This behavior highlights how frictional heat generation locally elevates temperatures, which 

then diffuse through conduction and convection, producing distinct transient pulses followed by 

decay. The computed transient temperature fields were then mapped to the structural analysis 

module to perform thermo-mechanical coupling and stress analysis. Throughout the iterative 

coupling, thermal expansion, contact-gap closure or opening, and nonlinear updates to friction 

coefficients and contact resistance were all accounted for. After several iterations, displacements 

and stresses at each measurement point converged, yielding overall deformations on the order of 5–

20 μm, in close agreement with experimental measurements. Comparing responses across 

measurement points shows Point 1 with the largest peak vertical displacement (~18 μm), Points 2 

and 3 moderate responses (~12 μm and ~10 μm), and Point 4 negligible deformation (~3 μm), 

reflecting spatial variations in heat loading and contact-stiffness changes created by 

thermo-structural coupling. Experimental validation under representative feed conditions yielded a 

maximum measured deformation of 17.5 μm at Point 1 versus a simulated 18.1 μm (error < 3.5 %), 

with other points all within 5 % error—confirming the reliability of the strong-coupling approach 

under rapid, high-frequency transient conditions[9]. 

In summary, the transient temperature responses and steady-state distributions in Figure 3 reveal 

the feed system’s internal heat-transfer and friction-heating characteristics, while the coupled 

thermo-structural simulation accurately predicts location-dependent thermal deformations. These 

results provide robust numerical guidance for developing thermal-error compensation algorithms 

and optimizing machine-tool structures to enhance machining precision and stability. 

5. Feed-System Deformation Prediction 

Based on the preceding thermo-structural coupled simulations, this section establishes a 

framework for predicting the feed-system’s thermal deformation. By integrating the thermal-error 

model with real-time temperature and displacement measurements, feed accuracy can be corrected 

via online compensation signals. Figure 4 illustrates the overall control process: during machining, 

spindle and screw temperature and drift data are collected by temperature and displacement sensors 

and fed into a microcontroller–based thermal-error model, which computes the required feed 

compensation [10]. The compensation command is then sent back to the CNC controller, forming a 

closed-loop correction. 

 

Figure 4: Schematic of spindle thermal-error compensation and feed-system predictive control. 
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5.1. Thermal-Deformation Characteristics 

Coupled simulations under multiple operating conditions and experimental validation reveal 

several characteristic behaviors of thermal deformation in the feed system. First, the deformation 

amplitude is nearly linearly proportional to the local temperature rise. In the hottest regions of the 

spindle and ball screw, each 1 K of temperature increase produces approximately 0.6–0.8 µm of 

radial expansion and 0.9–1.1 µm/K of axial expansion. The fitted relationships can be expressed as 

shown in Formula 2: 

ΔLr = αrΔT, ΔLz = αzΔT                            (2) 

Where αr≈0.7 μm/K and αz≈1.0 μm/K.Second, the feed system’s thermal response divides into 

a transient phase and a steady-state phase. During the initial 0–0.005 s—when cutting begins or oil 

flow abruptly changes—frictional heating and convective flux cause a rapid local temperature rise 

and a sharp accumulation of displacement. From 0.005 to 0.02 s, temperature and displacement 

gradually approach a new equilibrium, governed by conduction and environmental cooling. This 

dynamic can be approximated by a first-order thermal-response model as shown in Formula 3: 

ΔL(t) = ΔL∞(1 − e−t/τ)                            (3) 

Where τ is the thermal time constant (approximately 0.004 s under typical conditions), and 

ΔL∞ is the steady-state deformation. Third, there is a measurable time lag between measurement 

points. Locations farther from the heat source begin to deform about 0.002 s after a condition 

change, and their peak deformation is 20–30 % lower than that of the hottest region. This lag 

provides a predictive window for the online compensation algorithm, enabling pre-emptive 

compensation as soon as the temperature begins to rise, which reduces overshoot errors. 

Finally, frequency-domain analysis shows that thermal deformation is concentrated in the 

low-frequency band (0–250 Hz), while higher frequencies have little effect on thermal error. 

Consequently, compensation strategies should prioritize low-frequency thermal behavior over 

high-frequency vibration signals to avoid undue interference with the servo loop. In summary, the 

feed system’s thermal-deformation characteristics include high linearity, distinct transient and 

steady-state phases, measurable time lag, and low-frequency dominance. Leveraging these features, 

a first-order lag predictor with proportional gain can be embedded in the thermal-error model of 

Figure 4 to deliver real-time deformation predictions and online compensation, thereby significantly 

improving machining accuracy and stability. 

5.2. Development of the Deformation-Prediction Algorithm 

Building on the identified deformation characteristics, a two-stage prediction algorithm is 

proposed, combining a first-order dynamic model with multi-input linear regression. The overall 

flow, shown in Figure 4, comprises model identification and online prediction phases. In the 

identification phase, simulation and experimental data are used to fit a multi-input linear regression 

model for each measurement point as shown in Formula 4: 

ΔLi(t) = β0,i ∑ βj,i
n
j=1 ΔTj(t) + εi(t)                      (4) 

Where ΔLi is the thermal displacement at point i, ΔTj is the temperature increment from sensor 

j, βj,iare regression coefficients, and εi is the residual error. Coefficients βj,i are calibrated via 

ordinary least squares (OLS) or recursive least squares (RLS) as shown in Formula 5: 

βi = arg min
β

∑ (ΔLi(k) − βi
TΔT(k))2N

k=1                    (5) 
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However, static regression alone cannot capture the transient dynamics of thermal deformation. 

To address this, a first-order dynamic filter is introduced, treating the predicted deformation as a 

linear first-order inertial system, as shown in Formula 6: 

τi
dΔ̂Li(t)

dt
+ Δ̂Li(t) = KiΔTeq,i(t)                        (6) 

Where τi is the thermal time constant, Ki is the static gain, and 

ΔTeq,i(t) = β0,i + ∑ βj,i
n
j=1 ΔTj(t)                       (7) 

As shown in Formula 7 is the equivalent temperature input from the regression model. 

Discretizing with sampling interval Δt yields the recursive form: 

Δ̂Li(k) = aiΔ̂Li(k − 1) + (1 − ai)KiΔTeq,i(k)                (8) 

Thus, as shown in Formula8 the algorithm consists of two layers: Static regression layer—maps 

multiple temperature inputs to a steady-state deformation estimate ΔTeq,i .Dynamic filtering 

layer—applies a first-order inertial filter to model transient behavior and outputs the real-time 

predicted deformation Δ̂Li .Key parameters { βj,i , Ki , τi } are initially calibrated offline using 

simulation and test data, then adaptively updated online (e.g., via RLS for regression coefficients or 

online estimation of τi to accommodate changing conditions. By combining spatial regression with 

temporal dynamics, the model achieves prediction errors within ±0.5 µm in typical tests, meeting 

the precision and responsiveness requirements for real-time thermal compensation in high-accuracy 

machining centers. The next section will discuss the implementation of the online compensation 

strategy based on this model. 

6. Experimental Validation and Comparative Analysis 

6.1. Experimental Design and Implementation 

A vertical five-axis CNC machining center was instrumented with high-precision displacement 

sensors and thermocouples at key feed-system measurement points. Thermocouples (0.1 K 

resolution) were mounted on the ball screw nut housing and guideway slider, while laser 

displacement sensors (±0.1 µm accuracy) were fixed to the machine bed using rigid mounts to 

isolate environmental vibrations. Ambient temperature was maintained at 23 °C ± 1 °C, and no 

external cooling fans were used to reflect typical workshop conditions. For the static 

thermal-loading tests, constant heat fluxes—corresponding to peak, intermediate, and ambient flow 

conditions in the simulation—were applied to the screw and guideway interfaces using electric 

heaters. Each heat-flux level was maintained for 120 s to capture steady-state responses. These tests 

served to calibrate the thermal time constants τ\tau and static gains K and to validate the 

temperature–displacement regression under no-cutting conditions. Dynamic cutting trials were then 

performed at the same ambient temperature. A 20 mm–diameter alloy-steel workpiece was cut 

under constant parameters (2 mm depth of cut, 500 mm/min feed, 4000 rpm spindle speed) using 

standard emulsion coolant to match the simulated lubrication conditions. Temperature and 

displacement signals were sampled synchronously at 1 kHz during cutting initiation, steady-state 

cutting, and cutting pause phases over a 30 s interval. This setup tested the model’s high-frequency 

transient response (~0.02 s) and long-term steady-state errors. Each condition was repeated three 

times to obtain means and standard deviations. Raw data were processed with a low-pass filter to 

remove high-frequency noise, and a Kalman filter smoothed the temperature signals to align with 

the equivalent input used by the prediction model. Finally, measured temperatures were compared 

against simulated temperature fields, and the dynamic model’s predicted displacement curves were 
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compared point-by-point with laser-measured results to compute maximum error, root-mean-square 

error (RMSE), and prediction-response times. Through this experimental program, both the 

calibration accuracy under static heating and the dynamic-prediction capability under actual cutting 

conditions were validated, providing comprehensive and reliable data for the comparative analysis. 

6.2. Comparison of Simulation and Experimental Results 

Under static thermal loading, steady-state temperatures obtained by simulation were compared 

with experimental measurements as shown in figure 5. Across all heat-flux levels, temperature 

errors remained within ±1 K, with a maximum deviation of 0.8 K under peak flux and an RMSE of 

0.45 K—demonstrating that the thermal-conduction model and heat-flux boundary settings 

accurately reproduce real temperature fields. 

 

Figure 5: Steady-State Temperature Comparison 

 

Figure 6: Dynamic Cutting Displacement Comparison 
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During dynamic cutting, peak and steady-state displacements at each measurement point were 

compared as the figure 6 shown. At Point 1, the simulated peak thermal displacement was 18.1 µm 

versus 17.5 µm measured (0.6 µm difference); steady-state errors were all within 0.5 µm. At Point 

4—farthest from the heat source—both simulation and measurements showed negligible 

deformation, validating the model’s spatial sensitivity to thermal gradients. 

To assess the prediction algorithm’s performance, the RMSE, maximum absolute error (MaxAE), 

and average response delay at each point were computed as the Table 1 shown. All RMSE values 

were below 0.5 µm, MaxAE under 0.8 µm, and average delays around 0.0018 s—consistent with 

the simulated time constant τ≈0.004 s. This confirms the online predictor’s high accuracy and rapid 

response. 

Table 1: Prediction Error and Response Performance 

Point RMSE (µm) MaxAE (µm) Avg. Delay (s) 

1 0.42 0.78 0.0019 

2 0.35 0.65 0.0017 

3 0.38 0.72 0.0018 

4 0.28 0.50 0.0016 

Collectively, these comparisons demonstrate that the strong coupling simulation and regression + 

first-order filter prediction algorithm deliver high precision and stability under both static and 

dynamic conditions—meeting the ±1 µm compensation requirement and furnishing robust 

numerical support for online thermal compensation and feed-system optimization. 

7. Conclusion 

This paper presents a strongly coupled finite element–based simulation and online prediction 

method for analyzing and compensating thermal deformation in the feed system of precision 

machining centers. By employing a quasi–one-dimensional isentropic-flow model combined with 

the Bartz correlation to define heat-transfer boundaries and integrating nonlinear contact models, a 

multi-physics iterative coupling of fluid, thermal, and structural fields is achieved, yielding accurate 

temperature and thermal-stress distributions. Building on these results, a deformation-prediction 

algorithm that combines multi-input linear regression with first-order dynamic filtering is developed 

to estimate local deformations in real time. Static and dynamic experiments demonstrate that the 

thermal simulation achieves temperature errors of no more than 1 K, while the deformation 

prediction yields maximum peak-displacement errors of ≤ 0.6 μm, RMSE ≤ 0.5 μm, and an average 

response delay of approximately 0.002 s—satisfying the requirements for high-precision 

compensation. The proposed method balances simulation accuracy with computational efficiency, 

providing a reliable numerical foundation for thermal-compensation strategy development and 

structural optimization of the feed system, and can be extended to thermal-stability design in other 

machine-tool subsystems. 
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