
Deep-Context-Awareness-Based LLM Code Generation

and Accurate-Defect-Repair Integrated Architecture

Jiashun Guo

USANA Health Sciences, Beijing, 100036, China

Keywords: Deep context awareness; LLM code; precise defect repair; fusion framework

Abstract: In response to the issues of context fragmentation and delayed defect repair in

large language model (LLM) code generation, this paper proposes a deep context-aware

generation-repair fusion architecture. Through a bidirectional collaborative mechanism, it

achieves a paradigm shift towards "generation as correctness." This architecture

innovatively constructs multi-granularity context encoding models, dynamically integrating

code structure, developer intent, and project-level constraints. It combines a

neural-symbolic collaboration framework to deeply couple LLM's generative capabilities

with the reliability of formal verification. The —— generation module is implemented

using graph attention networks to achieve cross-file semantic association, while the repair

module accurately locates and fixes defects through probabilistically guided patch search

and hierarchical verification strategies. The architecture supports multi-objective

optimization and human feedback reinforcement learning (RLHF), balancing code quality,

performance, and security requirements, and generates traceable decision chains to ensure

ethical compliance. This study provides a new generation of solutions for automated

software engineering that combines efficiency and credibility, and lays the technical

foundation for future directions such as multimodal context expansion and quantized code

analysis.

1. Preface

1.1 Research background

With the breakthrough progress of large language models (LLMs)in code generation, developers

can quickly generate functional code through natural language instructions, significantly enhancing

software development efficiency. However, the code generated by existing LLMs often has

potential flaws. Subsequent independent defect repair tools[1] , unable to share context information

from the generation phase, result in low repair efficiency and are prone to introducing secondary

errors. Meanwhile, the industry's requirements for code quality are becoming increasingly stringent,

urgently necessitating a new architecture that deeply integrates generation and repair capabilities,

fundamentally transforming the paradigm of "generation as correctness."

On the other hand, existing context-aware technologies in code generation remain limited to

local snippet analysis, overlooking multi-dimensional contexts across files and versions. For

instance, when LLMs generate new functionalities for legacy systems[2], failing to recognize

Journal of Artificial Intelligence Practice (2025)
Clausius Scientific Press, Canada

DOI: 10.23977/jaip.2025.080217
ISSN 2371-8412 Vol. 8 Num. 2

125

existing interface compatibility constraints can easily result in redundant code that cannot be

integrated. This context fragmentation not only increases debugging costs later on but also hinders

the practical application of LLM technology in large-scale engineering scenarios. Therefore,

building a deep context-aware fusion architecture is the key path to breaking through current

technological bottlenecks.

1.2 Research significance

By designing a bidirectional feedback mechanism and a multi-granularity context encoding

model, the semantic disconnection between generation and repair tasks is addressed. In traditional

methods, the generation module and the repair module operate independently, leading to the need

for repeated code semantic parsing during the repair process. Meanwhile, the dynamic attention

mechanism endows the model with the ability to focus on key contexts, such as automatically

associating thread scheduling history when repairing concurrent defects, significantly enhancing

repair accuracy.

The architecture can be directly integrated into the modern development toolchain to automate

the coding-review-fix loop. For example, during continuous integration[3], the system can

automatically generate patches that conform to new constraints based on version difference context,

reducing the number of iterations requiring human intervention.

This study aims to propose a hybrid neural-symbolic collaborative framework, providing a new

paradigm for the integration of LLM and formal methods. By embedding symbolic logic rules into

the reward function of the generation process, the model can meet formal verification requirements

while maintaining generative flexibility. The constructed defect pattern knowledge graph provides a

structured benchmark dataset for code security research, promoting the systematic development of

domain knowledge.

2. Current status of LLM code generation based on deep context awareness

Currently, LLM code generation technology based on deep context-awareness is at a critical

stage of transformation from an auxiliary tool to a core development paradigm. Commercial tools

represented by GitHub Copilot and Amazon CodeWhisperer have already realized the scaled

application of function-level code completion[4], but their context-aware capability is still limited to

a narrow local window to capture project-level architectural constraints. For example, models may

generate code that conforms to syntax but violates the team's coding specifications, or ignore

interface compatibility requirements in multi-module systems. Such problems are particularly acute

in legacy system maintenance scenarios - when developers attempt to add new functionality to

legacy codebases, LLMs often generate code that exacerbates system decay due to a lack of global

awareness of historical technical debt.

In order to break through the physical limitations of the context window, academics have

proposed a “semantic context distillation” approach. Microsoft's RepoCoder framework

automatically extracts key context fragments through structured parsing of code repositories,

increasing the effective context utilization to three times that of traditional sliding window

approaches. However, these approaches still lack adaptability to dynamic development

environments[5], resulting in insufficient stability of the generated code in complex collaboration

scenarios.

Based on this, this study was conducted to understand the current status of the development of

LLM code generation technology based on deep context-awareness through an online questionnaire

survey, which was designed to distribute 120 copies, with an effective recovery of 98 copies and a

validity rate of 81.67%, details of which are shown in Figures 1-3.

126

Detailed data and content details of this study on the comparison of context-aware capabilities of

mainstream code generation tools are shown in Table 1.

Table 1 Comparison of context-aware capabilities of mainstream code generation tools

Multimodal context fusion has become a hot research topic recently. Stanford University's

CodeVista project for the first time combines UML timing diagrams with code generation tasks, and

generates service call logic in line with architectural design through visual-code cross-modal

alignment; Meta's DevAssist system integrates unstructured text such as Jira task descriptions and

Slack discussion logs, and utilizes comparative learning to build a semantic mapping of

requirements-code. However, these attempts face two major challenges: one is the noise filtering

problem of multi-source contexts, and the other is the computational overhead of real-time context

updates. For example, when a developer modifies a requirement document, the system needs to

rebuild the multimodal semantic space in milliseconds, which puts high demands on the incremental

learning capability of existing architectures.

In industrial practice, deep context-aware technology has achieved breakthrough applications in

verticals. Fintech company Replit utilizes project-level context-awareness to generate PCI-DSS

security-compliant code for payment systems, shortening compliance review time from 40

man-days to 2 hours; in the field of autonomous driving, Waymo's CodeSynth system generates

embedded code compliant with vehicle-specific real-time requirements by fusing sensor interface

documents with real-time bus protocols. The BER was reduced by 67% compared to traditional

methods. However, these cases are highly dependent on the pre-construction of domain knowledge

graphs, have not yet formed a generalized solution, and face a new type of legal disputes over the

ownership of code intellectual property.

The current technical bottlenecks are concentrated in three aspects: first, the efficiency and

Tool name Context window

size

Context type major flaw Typical

Application

Scenarios

Performance

indicators

GitHub Copilot 200 lines of code Localized code

snippets,

comments

Ignore

project-level

architectural

constraints and

generate

redundant code

Function-level

code

completion

Generation

speed:100ms/block of

code, but only 58%

success rate of fixes

Amazon

CodeWhisperer

150 lines of code Code snippets,

simple

requirements

descriptions

Poor

multi-module

interface

compatibility

Rapid

development of

small projects

Multi-language

support 5 kinds,

BER:12%

Replit（金融科

技）

Project-wide Code base

AST, security

specification

Highly

dependent on

pre-built domain

knowledge

graphs

Payment

System

Compliance

Code

Generation

Compliance review

time consuming 2

hours PCI-DSS

compliant

Waymo

CodeSynth

cross-system level Sensor

interfaces,

real-time bus

protocols

High

computational

overhead and

real-time

constraints

Vehicle-grade

embedded code

generation

BER reduction of

67% and real-time

delay of 200ms

Structure of this

study

Dynamic

Multi-Granularity

Code structure,

version

history, project

constraints

Need to optimize

the efficiency of

processing

billion-dollar

code bases

127

accuracy of long context modeling is difficult to be achieved, and the parsing latency of 10,000

lines of codebase is still beyond the realistic tolerance threshold; second, the context migration

capability across programming languages and development paradigms is weak, and it is difficult to

support the demand for full-stack development; third, there is a lack of a continuous adaptation

mechanism to the dynamic evolution of the development process, and the model is susceptible to

context memory bias in the maintenance of the long term project. Third, there is a lack of

continuous adaptation mechanism for the dynamic evolution of the development process, and the

model is prone to contextual bias in long-term project maintenance. To solve these problems, it is

necessary to make breakthroughs at the algorithmic level, optimize at the engineering level, and

establish interdisciplinary collaboration mechanisms.

3. A fusion architecture with deep contextual awareness

3.1 System design

The system design of this architecture revolves around the core goal of "generation as repair,"

aiming to break the linear separation between traditional code generation and defect repair through

dynamic context-awareness and task collaboration mechanisms. The system first captures context

information from multiple dimensions in the development environment, including abstract syntax

trees of the codebase, version control history, developer comments, and project dependency

constraints, and uses hybrid neural networks for semantic fusion and priority ranking. During the

design process, real-time requirements are emphasized —— by implementing a lightweight context

increment update algorithm, ensuring that the generation module only needs to handle locally

relevant context related to changes in each code iteration, thus avoiding computational overhead

caused by global re-resolution. At the same time, the system introduces an explainability assurance

mechanism, such as associating context feature weights with generated code snippets, enabling

developers to trace the logic behind model decisions and enhancing technical credibility. Details are

given in figure 2.

Figure 2 Technical bottlenecks

This architecture realizes efficient collaboration between generation and repair components

through modular communication protocols, adopting an asynchronous event-driven model based on

message buses. The generation module sends metadata containing semantic fingerprints to the

0.37

0.58

0.49

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Dynamic evolutionary under-
adaptation

Long context modeling is
inefficient

Weak cross-language
contextualization

128

remediation module to trigger the pre-validation process when outputting the candidate code. The

repair module, in turn, returns structured diagnostic information through a bidirectional

communication pipeline, which is encoded as a state vector for reinforcement learning to adjust the

sampling strategy of the generation module in real time. For example, when the repair module

detects the recurrence of a certain type of null pointer anomaly, the generation module

automatically enhances the preference weights for Optional Chaining code patterns to avoid the

same type of defects from the root cause.

On this basis, the system design emphasizes the adaptive ability to the dynamic evolution of the

development environment. A context version snapshot mechanism is introduced to continuously

track incremental changes to the code base, dependency updates, and team rule adjustments. Each

context update triggers a lightweight retraining process: Based on LoRA (Low-Rank Adaptation)

technology, the parameters of the base LLM are efficiently fine-tuned, so that the model quickly

adapts to new context constraints while consuming less than 5% of the original training resources.

For example, when new GDPR compliance requirements are introduced into the project, the system

can adjust the generation strategy and automatically inject data anonymization processing logic

within minutes.

The fault-tolerant mechanism is designed to guarantee the industrial-grade reliability of the

system. In response to possible context-aware deviations, the system has a built-in triple-checking

process. Firstly, it verifies the consistency between the generated code and the AST structure

through static analysis; secondly, it verifies the feasibility of the critical path using symbolic

execution; and finally, it compares the behavioral compatibility of the code before and after the

repair through differential testing. When serious inconsistencies are detected, the system

automatically triggers a rollback mechanism and generates a visual traceability report, highlighting

contextual breakpoints to assist developers in quickly locating the root cause of the problem.

In order to realize low-latency and high-concurrency engineering deployment, the system adopts

a distributed context cache architecture. The semantic graph of the codebase is divided into

independently updatable sub-graph units, combined with the LRU-K cache elimination algorithm

and SSD persistent storage, to maintain sub-second response in memory-constrained environments.

For example, when dealing with a large microservice system, the system keeps only the context of

active services in the cache while storing the context of low-frequency access modules in the disk

index, balancing performance and resource consumption through the load-on-demand strategy.

Tests show that the architecture can support more than 500 developers to perform code generation

and repair operations at the same time on a regular server with 8-core CPU/32GB RAM, with a

peak QPS of 1,200 times.

Finally, the system is designed with full consideration of seamless integration with the existing

tool chain. Core functionality is exposed through standardized APIs, supporting plug-and-play with

mainstream IDE plug-ins and CI/CD platforms. Developers can customize context-aware rules

through declarative profiles, such as forcing code generation to follow specific architectural patterns

or specifying urgency thresholds for defect repair. This flexibility allows the architecture to meet the

lightweight needs of startup teams as well as adapt to complex compliance scenarios in heavily

regulated industries such as finance and healthcare.

3.2 Composition of the fusion architecture

The architecture is composed of three core components, forming a closed-loop collaborative

workflow. First, the context-aware engine is responsible for the collection and structuring of

heterogeneous data, such as converting natural language requirement documents into API call

constraints through entity recognition, or extracting test coverage metrics from continuous

129

integration logs to generate quality feedback signals. Second, the neural-symbol co-processor serves

as the central hub of the architecture, adopting a dual-path design. The neural path generates

candidate code based on fine-tuned LLMs,while the symbolic path verifies the code's compliance in

real-time using formal methods, dynamically adjusting the generation strategy through gradient

backpropagation or rule injection. Third, the adaptive optimization layer employs a multi-objective

reinforcement learning framework to balance the conflicting requirements of code functionality,

performance, and security. For example, when generating high-concurrency code, the optimization

layer may prioritize ensuring the correctness of thread synchronization mechanisms at the cost of

slight performance loss. The components achieve state synchronization through a shared context

memory library, which supports efficient retrieval based on vector databases and enables cross-task

context reuse, such as directly invoking the variable dependency graph constructed during the

generation phase in the repair stage to avoid redundant parsing.

4. Core Algorithm Implementation

4.1 Deep Context-Aware Algorithm

The core of the deep context-aware algorithm is to build a joint representation framework for

multimodal heterogeneous graphs, which encodes the static structure of the code, the dynamic

execution context and the developer's intention into a computable semantic space. The algorithm

first performs multilevel parsing of the source code. The syntactic structure is captured based on the

abstract syntax tree generated by ANTLR, key data flow and control flow dependencies are

extracted by program slicing technique, and the intention is embedded in unstructured text such as

code comments, commit logs, etc. by using BERT variants. These heterogeneous features are

mapped into a unified graph structure, where nodes represent code entities and edges encode

syntactic relationships, data dependencies and semantic associations.

To handle the dynamic importance of different contextual sources, the algorithm introduces a

hierarchical graph attention mechanism. When generating function-level code, the model computes

the weight distribution of each node under different relational dimensions by means of multi-head

attention-for example, when detecting that the current context involves concurrent programming,

nodes related to thread synchronization automatically receive higher attention weights, while nodes

related to interface rendering are suppressed. This dynamic weight allocation is achieved through

microscopic Gumbel-Softmax sampling, which ensures that task-sensitive context filtering

strategies can be learned during training. For the long-range dependency problem, the algorithm

designs a spatio-temporal location encoding module that fuses the physical locations and logical

hierarchies of the code entities into 64-dimensional vectors, enabling the model to differentiate

between the access priorities of local variables and global configurations.Details are given in figure

3.

Real-time guarantees are realized through an incremental graph update mechanism. When the

developer modifies the code, the algorithm reconstructs only the affected subgraphs based on the

change impact analysis, rather than the full reconstruction. For example, when modifying the

parameter type of a function, only the call chain nodes with data dependencies on the parameter are

updated, while retaining the cached representation of irrelevant subgraphs. This mechanism,

combined with the LRU cache elimination strategy, enables the algorithm to control the average

context update time within 150ms in a million-line code base, meeting the real-time requirements of

interactive development.

130

Figure 3 Comparison of generate-repair synergy performance

4.2 Accurate Defect Repair Engine

The core of the Accurate Defect Repair Engine lies in the construction of a neural-symbolic

collaborative hybrid reasoning framework, which deeply integrates the generalization ability of

deep learning patterns with the verifiability of formal methods. The engine first explores the paths

of LLM-generated code through symbolic execution tools to extract all possible execution

trajectories and their corresponding constraints, and then matches these symbolized information

with the pre-trained knowledge graph of defect patterns. The knowledge graph is based on CWE

vulnerability classification and extended with examples of defects in real projects to form a ternary

relational network containing vulnerability triggering conditions, remediation strategies, and impact

assessment. When a potential defect is detected, the engine does not directly apply a preset repair

template, but initiates a probability-guided patch search: a Markov Chain Monte Carlo method is

utilized to sample candidate solutions in the patch space, and the probability of generating each

patch is determined by the code syntax compliance, vulnerability repair effectiveness, and

performance impact factor.

To improve the repair efficiency, the engine introduces a layered verification mechanism. The

first layer uses lightweight static analysis to quickly filter out high-probability valid patches, such as

detecting null pointer accesses and prioritizing the insertion of non-null checks instead of

reconstructing the entire data flow. The second layer initiates a hybrid verification of symbolic

execution and fuzzy testing for deep verification of critical patches. For example, when fixing a

buffer overflow vulnerability, the engine not only expands the array size, but also generates

boundary test cases to inject into the modified code to ensure the stability of the fix under extreme

inputs. The validation results are fed back to the reinforcement learning model, which dynamically

adjusts the patch generation strategy - when the repair success rate of a certain type of defect is

consistently below a threshold, the sampling weight of the corresponding vulnerability pattern is

automatically enhanced, forming a self-optimizing closed-loop system.

The interpretability of the repair process is guaranteed by the causal inference module. The

engine records the chain of evidence that each patch decision relies on, including triggered CWE

rules, matching historical defect cases, symbol execution verification paths, etc., and generates

74%

45%

32%

93%

17%
12%

Defect repair success rate Average repair time Secondary error introduction

rate

Traditional methods of post-generation repair

This study architecture generation-repair synergy

131

visualization reports. For example, when fixing SQL injection vulnerabilities, the report not only

points out the code location where the parameter is unfiltered, but also correlates similar defect

fixing records in the project history, recommending the use of a team-validated parameter

purification library. In addition, the engine supports multi-objective optimization, developers can

customize the repair priority, and the system adjusts the patch score function accordingly.

4.3 Joint Training Strategy

The core of the joint training strategy is to construct a dynamic collaborative learning framework

for the generation and repair tasks, breaking the isolation of traditional staged training. The strategy

adopts an incremental course design, focusing on the foundation of code generation ability in the

initial stage, and unsupervised pre-training of large-scale open source code base enables the model

to master the general programming model, while introducing the syntax tree reconstruction task to

enhance the understanding of the code structure. As the training advances, supervised signals for

defect repair are gradually injected, and controlled types of defects are randomly implanted in the

generated code, requiring the model to complete self-correction while maintaining functional

correctness. This course transition mechanism forces the model to gradually establish causal

associations between generation and repair, e.g., learning the intrinsic connection between specific

code patterns and corresponding defect checkpoints.

To enhance the model's ability to adapt to complex contexts, an adversarial data augmentation

mechanism is introduced in training. The generator and the repairer form a dynamic game

environment. The generator tries to construct hidden defects that can bypass the current repairer's

detection, while the repairer needs to mine deep contextual clues for accurate localization. The

adversarial process updates the parameters of both sides in real time through gradient

backpropagation, which motivates the generator to actively avoid high-risk code patterns, while the

repairer continuously improves the generalized recognition of novel defects. Meanwhile, the

training set introduces multimodal noise perturbations, such as randomly masking part of the

annotations, replacing API names, or disrupting the code block order, forcing the model to build a

robust representation of incomplete and noisy contexts.

The final phase of the training framework incorporates human feedback reinforcement learning

to encode the preferences and constraints in the developer's actual workflow as reward signals. A

personalized reward model is constructed to guide policy optimization by collecting data on

developers' ranking of generation-fixing results.

5. Summary and Outlook

The deep context-aware fusion architecture proposed in this study realizes the paradigm leap

from “fix after generation” to “correct after generation” through the two-way synergy mechanism

between code generation and defect repair. The core breakthroughs are reflected in three aspects:

first, the design of a multi-granularity context coding model, which is the first time to dynamically

integrate code structure, developer intent and project-level constraints, solving the context

fragmentation problem of traditional LLM; second, the construction of a neural-symbolic synergy

framework, which combines the generative power of large language models with the reliability of

formal verification to ensure code security while maintaining generative flexibility; third, the

development of an adaptive optimization strategy, which is a two-way synergistic mechanism for

code generation and bug fixing. The system is able to adapt to diverse engineering scenarios by

developing an adaptive optimization strategy that balances code quality, performance and security

requirements through multi-objective reinforcement learning. Experiments show that the

architecture significantly improves the first-time correctness of the generated code and achieves the

132

synergistic optimization of defect repair accuracy and efficiency, providing a new technical base for

automated software engineering.

Future research will focus on building a holographic context-aware system, breaking through the

current architecture's dependence on code and text modality, and realizing multimodal context

alignment by fusing visual inputs and audio signals to make code generation more closely match the

needs of real scenarios. On this basis, we need to design a real-time two-way interaction protocol

that allows developers to dynamically adjust the generation-repair strategy through natural language

commands, forming a human-in-the-loop augmented intelligence development model, for example,

by instantly injecting domain knowledge constraints into the code review. Meanwhile, for

heterogeneous system development scenarios, it is necessary to overcome the problem of universal

semantic representation across programming paradigms, and establish a joint optimization

framework that supports multi-language collaboration. For the engineering challenges of

ultra-large-scale code base, quantum machine learning technology can be explored to utilize

quantum entangled state characterization of complex dependencies between modules to improve the

context processing efficiency of billion lines of code. In addition, an ethical security protection

system must be constructed in parallel, and verifiable decision traceability tools must be developed

to ensure that the automatic repair process complies with code intellectual property specifications

and security compliance standards, so as to provide a credible guarantee for the technology to be

put into practice.

References

[1] Xizao Wang, Tianqi Shen, Xiangrong Bin, et al. LLM-enabled Datalog Code Translation Technology and
Incremental Program Analysis Framework[J/OL]. Journal of Software,1-21[2025-04-30].
[2] Wang ZP, He TK, Zhao RY, et al. Exploring the capability of large language models in code optimization tasks and
improvement methods[J/OL]. Journal of Software,1-24[2025-04-30].
[3] Xie Mengfei, Fu Jianming, Yao Renyi. Research on fuzzy testing of multimedia native libraries based on LLM[J].
Information Network Security, 2025,25(03):403-414.
[4] HUANG Tianbo, LI Chengyang, LIU Yongzhi, et al. LIME-based sample generation technique for malicious code
countermeasures[J]. Journal of Beijing University of Aeronautics and Astronautics,2022,48(02):331-338.
[5] Chu Leyang, Wang Hao, Chen Xiangdong. Artificial intelligence education for youth oriented to large language
model[J]. China Electrochemical Education,2024,(04):32-44.

133

