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Abstract: In response to the issues of context fragmentation and delayed defect repair in 

large language model (LLM) code generation, this paper proposes a deep context-aware 

generation-repair fusion architecture. Through a bidirectional collaborative mechanism, it 

achieves a paradigm shift towards "generation as correctness." This architecture 

innovatively constructs multi-granularity context encoding models, dynamically integrating 

code structure, developer intent, and project-level constraints. It combines a 

neural-symbolic collaboration framework to deeply couple LLM's generative capabilities 

with the reliability of formal verification. The —— generation module is implemented 

using graph attention networks to achieve cross-file semantic association, while the repair 

module accurately locates and fixes defects through probabilistically guided patch search 

and hierarchical verification strategies. The architecture supports multi-objective 

optimization and human feedback reinforcement learning (RLHF), balancing code quality, 

performance, and security requirements, and generates traceable decision chains to ensure 

ethical compliance. This study provides a new generation of solutions for automated 

software engineering that combines efficiency and credibility, and lays the technical 

foundation for future directions such as multimodal context expansion and quantized code 

analysis. 

1. Preface 

1.1 Research background 

With the breakthrough progress of large language models (LLMs)in code generation, developers 

can quickly generate functional code through natural language instructions, significantly enhancing 

software development efficiency. However, the code generated by existing LLMs often has 

potential flaws. Subsequent independent defect repair tools[1] , unable to share context information 

from the generation phase, result in low repair efficiency and are prone to introducing secondary 

errors. Meanwhile, the industry's requirements for code quality are becoming increasingly stringent, 

urgently necessitating a new architecture that deeply integrates generation and repair capabilities, 

fundamentally transforming the paradigm of "generation as correctness." 

On the other hand, existing context-aware technologies in code generation remain limited to 

local snippet analysis, overlooking multi-dimensional contexts across files and versions. For 

instance, when LLMs generate new functionalities for legacy systems[2], failing to recognize 
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existing interface compatibility constraints can easily result in redundant code that cannot be 

integrated. This context fragmentation not only increases debugging costs later on but also hinders 

the practical application of LLM technology in large-scale engineering scenarios. Therefore, 

building a deep context-aware fusion architecture is the key path to breaking through current 

technological bottlenecks. 

1.2 Research significance 

By designing a bidirectional feedback mechanism and a multi-granularity context encoding 

model, the semantic disconnection between generation and repair tasks is addressed. In traditional 

methods, the generation module and the repair module operate independently, leading to the need 

for repeated code semantic parsing during the repair process. Meanwhile, the dynamic attention 

mechanism endows the model with the ability to focus on key contexts, such as automatically 

associating thread scheduling history when repairing concurrent defects, significantly enhancing 

repair accuracy. 

The architecture can be directly integrated into the modern development toolchain to automate 

the coding-review-fix loop. For example, during continuous integration[3], the system can 

automatically generate patches that conform to new constraints based on version difference context, 

reducing the number of iterations requiring human intervention. 

This study aims to propose a hybrid neural-symbolic collaborative framework, providing a new 

paradigm for the integration of LLM and formal methods. By embedding symbolic logic rules into 

the reward function of the generation process, the model can meet formal verification requirements 

while maintaining generative flexibility. The constructed defect pattern knowledge graph provides a 

structured benchmark dataset for code security research, promoting the systematic development of 

domain knowledge. 

2. Current status of LLM code generation based on deep context awareness 

Currently, LLM code generation technology based on deep context-awareness is at a critical 

stage of transformation from an auxiliary tool to a core development paradigm. Commercial tools 

represented by GitHub Copilot and Amazon CodeWhisperer have already realized the scaled 

application of function-level code completion[4], but their context-aware capability is still limited to 

a narrow local window to capture project-level architectural constraints. For example, models may 

generate code that conforms to syntax but violates the team's coding specifications, or ignore 

interface compatibility requirements in multi-module systems. Such problems are particularly acute 

in legacy system maintenance scenarios - when developers attempt to add new functionality to 

legacy codebases, LLMs often generate code that exacerbates system decay due to a lack of global 

awareness of historical technical debt.   

In order to break through the physical limitations of the context window, academics have 

proposed a “semantic context distillation” approach. Microsoft's RepoCoder framework 

automatically extracts key context fragments through structured parsing of code repositories, 

increasing the effective context utilization to three times that of traditional sliding window 

approaches. However, these approaches still lack adaptability to dynamic development 

environments[5], resulting in insufficient stability of the generated code in complex collaboration 

scenarios.   

Based on this, this study was conducted to understand the current status of the development of 

LLM code generation technology based on deep context-awareness through an online questionnaire 

survey, which was designed to distribute 120 copies, with an effective recovery of 98 copies and a 

validity rate of 81.67%, details of which are shown in Figures 1-3. 
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Detailed data and content details of this study on the comparison of context-aware capabilities of 

mainstream code generation tools are shown in Table 1. 

Table 1 Comparison of context-aware capabilities of mainstream code generation tools 

Multimodal context fusion has become a hot research topic recently. Stanford University's 

CodeVista project for the first time combines UML timing diagrams with code generation tasks, and 

generates service call logic in line with architectural design through visual-code cross-modal 

alignment; Meta's DevAssist system integrates unstructured text such as Jira task descriptions and 

Slack discussion logs, and utilizes comparative learning to build a semantic mapping of 

requirements-code. However, these attempts face two major challenges: one is the noise filtering 

problem of multi-source contexts, and the other is the computational overhead of real-time context 

updates. For example, when a developer modifies a requirement document, the system needs to 

rebuild the multimodal semantic space in milliseconds, which puts high demands on the incremental 

learning capability of existing architectures.   

In industrial practice, deep context-aware technology has achieved breakthrough applications in 

verticals. Fintech company Replit utilizes project-level context-awareness to generate PCI-DSS 

security-compliant code for payment systems, shortening compliance review time from 40 

man-days to 2 hours; in the field of autonomous driving, Waymo's CodeSynth system generates 

embedded code compliant with vehicle-specific real-time requirements by fusing sensor interface 

documents with real-time bus protocols. The BER was reduced by 67% compared to traditional 

methods. However, these cases are highly dependent on the pre-construction of domain knowledge 

graphs, have not yet formed a generalized solution, and face a new type of legal disputes over the 

ownership of code intellectual property.   

The current technical bottlenecks are concentrated in three aspects: first, the efficiency and 

Tool name Context window 

size 

Context type major flaw Typical 

Application 

Scenarios 

Performance 

indicators 

GitHub Copilot 200 lines of code Localized code 

snippets, 

comments 

Ignore 

project-level 

architectural 

constraints and 

generate 

redundant code 

Function-level 

code 

completion 

Generation 

speed:100ms/block of 

code, but only 58% 

success rate of fixes 

Amazon 

CodeWhisperer 

150 lines of code Code snippets, 

simple 

requirements 

descriptions 

Poor 

multi-module 

interface 

compatibility 

Rapid 

development of 

small projects 

Multi-language 

support 5 kinds, 

BER:12% 

Replit（金融科

技） 

Project-wide Code base 

AST, security 

specification 

Highly 

dependent on 

pre-built domain 

knowledge 

graphs 

Payment 

System 

Compliance 

Code 

Generation 

Compliance review 

time consuming 2 

hours PCI-DSS 

compliant 

Waymo 

CodeSynth 

cross-system level Sensor 

interfaces, 

real-time bus 

protocols 

High 

computational 

overhead and 

real-time 

constraints 

Vehicle-grade 

embedded code 

generation 

BER reduction of 

67% and real-time 

delay of 200ms 

Structure of this 

study 

Dynamic 

Multi-Granularity 

Code structure, 

version 

history, project 

constraints 

Need to optimize 

the efficiency of 

processing 

billion-dollar 

code bases 

  

127



accuracy of long context modeling is difficult to be achieved, and the parsing latency of 10,000 

lines of codebase is still beyond the realistic tolerance threshold; second, the context migration 

capability across programming languages and development paradigms is weak, and it is difficult to 

support the demand for full-stack development; third, there is a lack of a continuous adaptation 

mechanism to the dynamic evolution of the development process, and the model is susceptible to 

context memory bias in the maintenance of the long term project. Third, there is a lack of 

continuous adaptation mechanism for the dynamic evolution of the development process, and the 

model is prone to contextual bias in long-term project maintenance. To solve these problems, it is 

necessary to make breakthroughs at the algorithmic level, optimize at the engineering level, and 

establish interdisciplinary collaboration mechanisms. 

3. A fusion architecture with deep contextual awareness 

3.1 System design 

The system design of this architecture revolves around the core goal of "generation as repair," 

aiming to break the linear separation between traditional code generation and defect repair through 

dynamic context-awareness and task collaboration mechanisms. The system first captures context 

information from multiple dimensions in the development environment, including abstract syntax 

trees of the codebase, version control history, developer comments, and project dependency 

constraints, and uses hybrid neural networks for semantic fusion and priority ranking. During the 

design process, real-time requirements are emphasized —— by implementing a lightweight context 

increment update algorithm, ensuring that the generation module only needs to handle locally 

relevant context related to changes in each code iteration, thus avoiding computational overhead 

caused by global re-resolution. At the same time, the system introduces an explainability assurance 

mechanism, such as associating context feature weights with generated code snippets, enabling 

developers to trace the logic behind model decisions and enhancing technical credibility. Details are 

given in figure 2.  

 

Figure 2 Technical bottlenecks  

This architecture realizes efficient collaboration between generation and repair components 

through modular communication protocols, adopting an asynchronous event-driven model based on 

message buses. The generation module sends metadata containing semantic fingerprints to the 
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remediation module to trigger the pre-validation process when outputting the candidate code. The 

repair module, in turn, returns structured diagnostic information through a bidirectional 

communication pipeline, which is encoded as a state vector for reinforcement learning to adjust the 

sampling strategy of the generation module in real time. For example, when the repair module 

detects the recurrence of a certain type of null pointer anomaly, the generation module 

automatically enhances the preference weights for Optional Chaining code patterns to avoid the 

same type of defects from the root cause. 

On this basis, the system design emphasizes the adaptive ability to the dynamic evolution of the 

development environment. A context version snapshot mechanism is introduced to continuously 

track incremental changes to the code base, dependency updates, and team rule adjustments. Each 

context update triggers a lightweight retraining process: Based on LoRA (Low-Rank Adaptation) 

technology, the parameters of the base LLM are efficiently fine-tuned, so that the model quickly 

adapts to new context constraints while consuming less than 5% of the original training resources. 

For example, when new GDPR compliance requirements are introduced into the project, the system 

can adjust the generation strategy and automatically inject data anonymization processing logic 

within minutes. 

The fault-tolerant mechanism is designed to guarantee the industrial-grade reliability of the 

system. In response to possible context-aware deviations, the system has a built-in triple-checking 

process. Firstly, it verifies the consistency between the generated code and the AST structure 

through static analysis; secondly, it verifies the feasibility of the critical path using symbolic 

execution; and finally, it compares the behavioral compatibility of the code before and after the 

repair through differential testing. When serious inconsistencies are detected, the system 

automatically triggers a rollback mechanism and generates a visual traceability report, highlighting 

contextual breakpoints to assist developers in quickly locating the root cause of the problem. 

In order to realize low-latency and high-concurrency engineering deployment, the system adopts 

a distributed context cache architecture. The semantic graph of the codebase is divided into 

independently updatable sub-graph units, combined with the LRU-K cache elimination algorithm 

and SSD persistent storage, to maintain sub-second response in memory-constrained environments. 

For example, when dealing with a large microservice system, the system keeps only the context of 

active services in the cache while storing the context of low-frequency access modules in the disk 

index, balancing performance and resource consumption through the load-on-demand strategy. 

Tests show that the architecture can support more than 500 developers to perform code generation 

and repair operations at the same time on a regular server with 8-core CPU/32GB RAM, with a 

peak QPS of 1,200 times. 

Finally, the system is designed with full consideration of seamless integration with the existing 

tool chain. Core functionality is exposed through standardized APIs, supporting plug-and-play with 

mainstream IDE plug-ins and CI/CD platforms. Developers can customize context-aware rules 

through declarative profiles, such as forcing code generation to follow specific architectural patterns 

or specifying urgency thresholds for defect repair. This flexibility allows the architecture to meet the 

lightweight needs of startup teams as well as adapt to complex compliance scenarios in heavily 

regulated industries such as finance and healthcare. 

3.2 Composition of the fusion architecture 

The architecture is composed of three core components, forming a closed-loop collaborative 

workflow. First, the context-aware engine is responsible for the collection and structuring of 

heterogeneous data, such as converting natural language requirement documents into API call 

constraints through entity recognition, or extracting test coverage metrics from continuous 

129



integration logs to generate quality feedback signals. Second, the neural-symbol co-processor serves 

as the central hub of the architecture, adopting a dual-path design. The neural path generates 

candidate code based on fine-tuned LLMs,while the symbolic path verifies the code's compliance in 

real-time using formal methods, dynamically adjusting the generation strategy through gradient 

backpropagation or rule injection. Third, the adaptive optimization layer employs a multi-objective 

reinforcement learning framework to balance the conflicting requirements of code functionality, 

performance, and security. For example, when generating high-concurrency code, the optimization 

layer may prioritize ensuring the correctness of thread synchronization mechanisms at the cost of 

slight performance loss. The components achieve state synchronization through a shared context 

memory library, which supports efficient retrieval based on vector databases and enables cross-task 

context reuse, such as directly invoking the variable dependency graph constructed during the 

generation phase in the repair stage to avoid redundant parsing. 

4. Core Algorithm Implementation 

4.1 Deep Context-Aware Algorithm 

The core of the deep context-aware algorithm is to build a joint representation framework for 

multimodal heterogeneous graphs, which encodes the static structure of the code, the dynamic 

execution context and the developer's intention into a computable semantic space. The algorithm 

first performs multilevel parsing of the source code. The syntactic structure is captured based on the 

abstract syntax tree generated by ANTLR, key data flow and control flow dependencies are 

extracted by program slicing technique, and the intention is embedded in unstructured text such as 

code comments, commit logs, etc. by using BERT variants. These heterogeneous features are 

mapped into a unified graph structure, where nodes represent code entities and edges encode 

syntactic relationships, data dependencies and semantic associations. 

To handle the dynamic importance of different contextual sources, the algorithm introduces a 

hierarchical graph attention mechanism. When generating function-level code, the model computes 

the weight distribution of each node under different relational dimensions by means of multi-head 

attention-for example, when detecting that the current context involves concurrent programming, 

nodes related to thread synchronization automatically receive higher attention weights, while nodes 

related to interface rendering are suppressed. This dynamic weight allocation is achieved through 

microscopic Gumbel-Softmax sampling, which ensures that task-sensitive context filtering 

strategies can be learned during training. For the long-range dependency problem, the algorithm 

designs a spatio-temporal location encoding module that fuses the physical locations and logical 

hierarchies of the code entities into 64-dimensional vectors, enabling the model to differentiate 

between the access priorities of local variables and global configurations.Details are given in figure 

3.  

Real-time guarantees are realized through an incremental graph update mechanism. When the 

developer modifies the code, the algorithm reconstructs only the affected subgraphs based on the 

change impact analysis, rather than the full reconstruction. For example, when modifying the 

parameter type of a function, only the call chain nodes with data dependencies on the parameter are 

updated, while retaining the cached representation of irrelevant subgraphs. This mechanism, 

combined with the LRU cache elimination strategy, enables the algorithm to control the average 

context update time within 150ms in a million-line code base, meeting the real-time requirements of 

interactive development. 
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Figure 3 Comparison of generate-repair synergy performance 

4.2 Accurate Defect Repair Engine 

The core of the Accurate Defect Repair Engine lies in the construction of a neural-symbolic 

collaborative hybrid reasoning framework, which deeply integrates the generalization ability of 

deep learning patterns with the verifiability of formal methods. The engine first explores the paths 

of LLM-generated code through symbolic execution tools to extract all possible execution 

trajectories and their corresponding constraints, and then matches these symbolized information 

with the pre-trained knowledge graph of defect patterns. The knowledge graph is based on CWE 

vulnerability classification and extended with examples of defects in real projects to form a ternary 

relational network containing vulnerability triggering conditions, remediation strategies, and impact 

assessment. When a potential defect is detected, the engine does not directly apply a preset repair 

template, but initiates a probability-guided patch search: a Markov Chain Monte Carlo method is 

utilized to sample candidate solutions in the patch space, and the probability of generating each 

patch is determined by the code syntax compliance, vulnerability repair effectiveness, and 

performance impact factor. 

To improve the repair efficiency, the engine introduces a layered verification mechanism. The 

first layer uses lightweight static analysis to quickly filter out high-probability valid patches, such as 

detecting null pointer accesses and prioritizing the insertion of non-null checks instead of 

reconstructing the entire data flow. The second layer initiates a hybrid verification of symbolic 

execution and fuzzy testing for deep verification of critical patches. For example, when fixing a 

buffer overflow vulnerability, the engine not only expands the array size, but also generates 

boundary test cases to inject into the modified code to ensure the stability of the fix under extreme 

inputs. The validation results are fed back to the reinforcement learning model, which dynamically 

adjusts the patch generation strategy - when the repair success rate of a certain type of defect is 

consistently below a threshold, the sampling weight of the corresponding vulnerability pattern is 

automatically enhanced, forming a self-optimizing closed-loop system. 

The interpretability of the repair process is guaranteed by the causal inference module. The 

engine records the chain of evidence that each patch decision relies on, including triggered CWE 

rules, matching historical defect cases, symbol execution verification paths, etc., and generates 
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visualization reports. For example, when fixing SQL injection vulnerabilities, the report not only 

points out the code location where the parameter is unfiltered, but also correlates similar defect 

fixing records in the project history, recommending the use of a team-validated parameter 

purification library. In addition, the engine supports multi-objective optimization, developers can 

customize the repair priority, and the system adjusts the patch score function accordingly. 

4.3 Joint Training Strategy 

The core of the joint training strategy is to construct a dynamic collaborative learning framework 

for the generation and repair tasks, breaking the isolation of traditional staged training. The strategy 

adopts an incremental course design, focusing on the foundation of code generation ability in the 

initial stage, and unsupervised pre-training of large-scale open source code base enables the model 

to master the general programming model, while introducing the syntax tree reconstruction task to 

enhance the understanding of the code structure. As the training advances, supervised signals for 

defect repair are gradually injected, and controlled types of defects are randomly implanted in the 

generated code, requiring the model to complete self-correction while maintaining functional 

correctness. This course transition mechanism forces the model to gradually establish causal 

associations between generation and repair, e.g., learning the intrinsic connection between specific 

code patterns and corresponding defect checkpoints. 

To enhance the model's ability to adapt to complex contexts, an adversarial data augmentation 

mechanism is introduced in training. The generator and the repairer form a dynamic game 

environment. The generator tries to construct hidden defects that can bypass the current repairer's 

detection, while the repairer needs to mine deep contextual clues for accurate localization. The 

adversarial process updates the parameters of both sides in real time through gradient 

backpropagation, which motivates the generator to actively avoid high-risk code patterns, while the 

repairer continuously improves the generalized recognition of novel defects. Meanwhile, the 

training set introduces multimodal noise perturbations, such as randomly masking part of the 

annotations, replacing API names, or disrupting the code block order, forcing the model to build a 

robust representation of incomplete and noisy contexts. 

The final phase of the training framework incorporates human feedback reinforcement learning 

to encode the preferences and constraints in the developer's actual workflow as reward signals. A 

personalized reward model is constructed to guide policy optimization by collecting data on 

developers' ranking of generation-fixing results. 

5. Summary and Outlook 

The deep context-aware fusion architecture proposed in this study realizes the paradigm leap 

from “fix after generation” to “correct after generation” through the two-way synergy mechanism 

between code generation and defect repair. The core breakthroughs are reflected in three aspects: 

first, the design of a multi-granularity context coding model, which is the first time to dynamically 

integrate code structure, developer intent and project-level constraints, solving the context 

fragmentation problem of traditional LLM; second, the construction of a neural-symbolic synergy 

framework, which combines the generative power of large language models with the reliability of 

formal verification to ensure code security while maintaining generative flexibility; third, the 

development of an adaptive optimization strategy, which is a two-way synergistic mechanism for 

code generation and bug fixing. The system is able to adapt to diverse engineering scenarios by 

developing an adaptive optimization strategy that balances code quality, performance and security 

requirements through multi-objective reinforcement learning. Experiments show that the 

architecture significantly improves the first-time correctness of the generated code and achieves the 
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synergistic optimization of defect repair accuracy and efficiency, providing a new technical base for 

automated software engineering. 

Future research will focus on building a holographic context-aware system, breaking through the 

current architecture's dependence on code and text modality, and realizing multimodal context 

alignment by fusing visual inputs and audio signals to make code generation more closely match the 

needs of real scenarios. On this basis, we need to design a real-time two-way interaction protocol 

that allows developers to dynamically adjust the generation-repair strategy through natural language 

commands, forming a human-in-the-loop augmented intelligence development model, for example, 

by instantly injecting domain knowledge constraints into the code review. Meanwhile, for 

heterogeneous system development scenarios, it is necessary to overcome the problem of universal 

semantic representation across programming paradigms, and establish a joint optimization 

framework that supports multi-language collaboration. For the engineering challenges of 

ultra-large-scale code base, quantum machine learning technology can be explored to utilize 

quantum entangled state characterization of complex dependencies between modules to improve the 

context processing efficiency of billion lines of code. In addition, an ethical security protection 

system must be constructed in parallel, and verifiable decision traceability tools must be developed 

to ensure that the automatic repair process complies with code intellectual property specifications 

and security compliance standards, so as to provide a credible guarantee for the technology to be 

put into practice. 
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