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Abstract: For the temperature-dependent thermal structure problem of material properties, 

temperature not only affects the thermal structure response as a load term, but also affects 

the structural response through the temperature-dependent material properties. Therefore, 

for the problem of critical thermal buckling temperature analysis for material property 

temperature-dependent problems, the change of temperature affects both the geometric 

stiffness and the global stiffness of the structure, which leads to the nonlinear eigenvalue 

buckling problem. In this paper, the structural critical thermal buckling analysis for 

temperature-dependent problems of materials is mathematically reduced to a fixed point 

problem. By using the fixed point theory, the existence and uniqueness of the solution to 

the thermal buckling problem are discussed. On this basis, an Aitken accelerated iterative 

algorithm is proposed to solve the critical temperature of thermal buckling, which 

significantly improves the efficiency of the algorithm. Based on the proposed algorithm, the 

function of existing CAE software which can only solve the thermal structure buckling 

problem independent of material properties is extended by means of secondary 

development, and the effectiveness of the proposed method is verified through a circular 

ring example. 

1. Introduction 

In the study of thermal buckling phenomenon, the influence of material parameters with 

temperature has received increasing attention[1]. In the high temperature environment, the effect of 

thermal stress and the degradation of material properties become the core issues[2,3], which directly 

affects the stability of the structure. Many researchers began to focus on the critical buckling 

temperature at high temperatures[4]. Thermal buckling will not only weaken the strength of the 

structure and cause structural instability, but also change the stress state, thus affecting the function 

of the structure, such as vibration behavior[5]. Therefore, the determination of critical temperature 
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has become one of the key points of research, which is particularly important for the fields of 

aerospace[6,7], fire prevention[8] and electronic devices[9]. The analysis of thermal buckling is a 

stability problem, and a variety of methods can be applied to increasingly complex models. 

Eigenvalue buckling analysis has been popularized in engineering applications because of its 

practicability. However, the complexity of the thermal buckling problem is that the temperature 

dependence of the material parameters introduces nonlinear eigenvalue challenges that are beyond 

the scope of standard linear eigenvalue analysis methods. 

During the research and development process, William L. Ko[10] was the first to propose using 

iterative algorithms to handle temperature-related material properties, but it is difficult to accurately 

predict high-temperature buckling behavior. Subsequently, Yang J[11] and Malekzadeh P[12] further 

optimized the iterative strategy and carried out iterative improvements starting from the material 

properties at standard temperatures. Deng Keshun[13] used the secant method for iterative solution 

and found that the critical buckling temperature of functionally graded thin plates was negatively 

correlated with the length-thickness ratio and power-law exponent, and the influence of the uniform 

temperature field was the most significant. H.V. Tung et al.[14] proposed an iterative algorithm for 

cylindrical shells of functionally gradient materials, which simplifies the process and ensures the 

accuracy of the results. However, the iterative algorithm has the problem of a large number of 

iterations. Vu Thanh Long et al.[15] applied the iterative algorithm to the post-buckling calculation, 

providing a new idea for the research of thermal buckling and promoting the application of the 

iterative nonlinear eigenvalue method in this field. 

The purpose of this paper is to propose a fast iterative algorithm for nonlinear thermal buckling 

analysis under the frame of fixed point theory. In the second section, the basic theory of the 

proposed algorithm is introduced in detail, including the establishment of finite element equations, 

the introduction of eigenvalues, and the construction of nonlinear mapping relationships including 

temperature dependent material parameters, and the convergence of the iterative process is 

discussed. Through the secondary development of Abaqus software, the critical temperature of 

thermal buckling is integrated, and the critical temperature of nonlinear buckling is quickly 

calculated by Aitken acceleration method. In the third section, the reliability of the new algorithm is 

verified through a circular ring example. We compare eigenvalue buckling analysis, nonlinear 

eigenvalue analysis considering initial defects, critical temperature values obtained using FPIA 

(Fixed Point Iterative Algorithm) algorithm, and corresponding results obtained by Aitken 

acceleration method. In addition, we verify the convergence of fixed points by applying small 

perturbations to the initial values. Finally, the sensitivity of the FPIA algorithm to model 

temperature changes is evaluated by changing the size of the model algorithm construction. 

2. Control equation for thermal buckling of thin plates 

2.1. Nonlinear eigenvalue equation 

To be concise yet general in expression, here we take isotropic homogeneous thin plates as an 

example to elaborate the thermal buckling analysis method considering the temperature correlation 

of material parameters. If the composite material laminated plate and shell theory is adopted when 

establishing the thermal buckling control equation, the method proposed is not difficult to be 

extended to the thermal buckling analysis of complex problems such as functionally gradient 

material plates and shells. 

Consider a thin plate with a thickness of h. Suppose a temperature change field is applied to the 

thin plate. 

     ref, , , ,T x y z T x y z T    (1) 
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Among them, x, y, and z represent three-dimensional Cartesian coordinates, and the x and y 

coordinate axes are located on the midplane of the plate.  , ,T x y z  represents the temperature 

field acting on the thin plate and refT  indicates the reference temperature value. Ignoring the 

influence of deformation on heat conduction, the temperature field on the thin plate can be obtained 

through heat conduction analysis. Further assume that the temperature change along the thickness 

direction of the thin plate is not significant, that is, the temperature change field can be expressed as 

only a function of the coordinates x and y, that is    Δ , , : Δ , ,0T x y z T x y . For ease of calculation, 

it is denoted as  Δ ,T x y . 

If the discussion of the problem is limited to the range of online elasticity and small deformation, 

the material parameters related to thermal deformation include the elastic modulus E, Poisson's ratio 

 , and the coefficient of thermal expansion  . These parameters generally change with 

temperature. In the literature, they are mostly expressed as polynomial functions of temperature[16], 

that is 

 
     i j k

i j k

i j k

E T aT T b T T c T     ， ，

 (2)
 

In the formula, ia , jb  and kc  represent the polynomial coefficients fitted based on the 

experimental data. 

Under the condition of small deformation, the thermal buckling analysis of thin plates can 

decouidate the solution process of the internal forces within the film from the buckling analysis 

process. That is, first, the internal forces within the film of the thin plate are obtained through the 

planar stress analysis under thermal load, and then the thermal buckling equilibrium equation under 

the action of the internal forces within the film in the micro-bending state is established. 

The control equation for planar stress analysis of thin plates under thermal load is: 

 
   

 2 21 1 2 1
x x y T y y x T xy xy

Eh Eh Eh
N N N N N    

  
      

  
， ，

 (3)
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， ，
 (5)

 

 
0 0

xy xy yx
N N NN

x y x y

  
   

   
，

 (6)
 

Among them, xN , yN  and xyN  are the internal forces of the thin plate film, and TN  is the 

heat force. Equations (3) and (4) are physical equations. Where 0u  and 0v  are the displacement 

components of the middle plane of the thin plate along the x and y directions, and x , y  and 

xy are the internal strains of the middle plane, equations (5) is geometric equations, and equations 

(6) is equilibrium equations. Given the boundary conditions, the internal force field xN , yN , xyN of 

the thin plate under temperature load can be solved by using methods such as the finite element 

method. Due to the consideration of the temperature correlation of material parameters, the 
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resulting internal force field of the film is a nonlinear function with respect to temperature variation. 

The critical thermal buckling equilibrium equation of the thin plate in the slightly bent state is: 

  

3 4 2 4 2 2 2

4 2 2 4 2 22
2 2

12 1
x xy y

Eh w w w w w w
N N N

x x y y x x y y

      
     

         
 (7)

 

Among them, it represents the displacement of each point on the middle surface of the thin plate 

along the vertical direction. After the boundary conditions are given, the critical thermal buckling 

temperature and thermal buckling mode can be obtained through the solution of the critical thermal 

buckling equilibrium equation. For complex engineering problems, the partial differential equation 

(7) is transformed into an algebraic equation for solution through the energy method or the Galerkin 

method, and by introducing discretization methods such as the finite element method[17]. Here, the 

discretized algebraic equation is directly presented, that is 

      0E GK T K T U 
 (8)

 

Among them, U is the node displacement vector, KE is the overall stiffness matrix of the 

structure, and KG is the geometric stiffness matrix. Since the material parameters vary with 

temperature, both KE and KG are matrix functions of temperature. 

Given a temperature variation distribution  0Δ ,T x y , the temperature variation field value is the 

temperature variation distribution multiplied by a linear proportional factor, that is 

    0, ,T x y T x y  
 (9)

 

Then the temperature field is 

    ref 0, ,T x y T T x y  
 (10)

 

Then the material parameters related to temperature are transformed into a function of the 

proportionality factor, that is 

 

   
   
   

:

:

:

E T E

T

T



  

  






 (11)

 

Substituting into the discretization equation (8), we obtain 

      0E GK K U  
 (12)

 

This is a problem about eigenvalues  . If the temperature correlation of the material parameters 

is not considered, the stiffness matrix KE is independent of   and the geometric stiffness matrix 

KG is a linear function of  , then the problem degenerates into a linear eigenvalue buckling 

problem, that is 

  0 0E GK K U 
 (13) 

Among them, 0GK  is the geometric stiffness matrix calculated based on the temperature 

variation field  0Δ ,T x y . Efficient solution can be achieved by using linear eigenvalue solution 

methods, such as the subspace iteration method and the Lanczos method, etc. If the temperature 
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correlation of material parameters is considered, both the stiffness matrix KE and the geometric 

stiffness matrix KG are nonlinear matrix functions, and the problem becomes a nonlinear eigenvalue 

problem. Then the basic question becomes 

    ref 0 ref 0Δ ΔE GK T T u K T T u   
 (14)

 

This is a nonlinear eigenvalue problem. 

This problem can be described as: the temperature field determines the spatial distribution of 

material parameters, thus determining the stiffness of the structure. On this basis, the thermal 

buckling temperature load can be calculated, and the following mapping is established in this 

process: 

 :G T   (15)
 

Mean 

  G T 
 (16)

 

Since ref 0ΔT T T  , the above mapping becomes: 

    ref 0: ΔG G T T   
 (17)

 

This mapping problem is essentially an iterative process, and the fixed point theorem ensures the 

convergence of this mapping iteration. 

Fixed point Theorem[18] : Let a function  g x  have a fixed point 
*x  on the interval [a, b], that 

is 

  * *g x x
 (18)

 

This function is continuous on the interval [a, b] and has a first-order derivative  g x . If the 

absolute value of  g x  is less than or equal to a positive number a  strictly less than 1, that is 

   1g x   
 (19)

 

The iteration starting from any point  0 ,x a b  

  1k kx g x 
 (20) 

Converges to the fixed point 
*x  of  g x . 

Nyamoradi[19] et al. mentioned a provable method for the convergence of fixed points to verify 

whether the algorithm would eventually converge to a fixed point. Apply a small perturbation to the 

mapping and observe whether its derivative conforms to the constant condition. 

    1 2 1 2G G L     
 (21)

 

For the convenience of expression, the Fixed Point Iterative Algorithm is abbreviated as FPIA 

(Fixed Point Iterative Algorithm). The steps of FPIA are shown in Table 1. 

The key to FPIA lies in how to apply the non-uniform material parameter space and temperature 

space to the finite element model. This step is the condition for creating nonlinear calculations. 
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FPIA can ensure that the iteration converges to a point. 

Table 1: FPIA algorithm steps 

Step 0,Select the initial temperature loading coefficient 0  and the initial 

temperature field 0T ; 

Step 1,Obtain the initial temperature field and material properties, 

   0ref ref0 0 0Δ ΔT T T E T E TT    ， ; 

Step 2, Assign material parameters to the model by unit; 

Step 3, Obtain the buckling mode and eigenvalue parameters  , obtain the 

new temperature field 0re1 fTT T  , and determine whether the 0error     

satisfies the convergence condition. If it does, the final critical buckling 

temperature *
1T T  is obtained. If not satisfied, continue the iteration to 

obtain a new material parameter space  1E T . 

To further improve the efficiency of the algorithm, an acceleration algorithm is added, and the 

Atiken accelerated iterative algorithm is a commonly used technique that can accelerate the 

convergence speed of the iterative algorithm. Therefore, the fixed-point Iterative Algorithm with 

Atiken acceleration is abbreviated as AFPIA (Atiken Fixed Point Iterative Algorithm). The specific 

steps of AFPIA are shown in Table 2. 

Table 2: AFPIA algorithm steps 

Step 0, select the initial temperature loading coefficient 0 , 0k  ; 

Step 1, conduct thermal buckling analysis, 

   1 2 1,k k kkG G     ; 

Step 2, Accelerate and calculate with Atiken 
2 1

1
k

k k

k

 


 





, 

 2 2 1
1

1
k k kk


   


   


; 

Step 3, Determine whether it converges. If it converges, end the 

calculation. Otherwise, let 1k k   and go to step 1. 

Under normal circumstances, only a few iterations are needed to obtain a high-precision solution. 

This algorithm is based on the secondary development of ABAQUS. With 20℃ as the initial 

temperature, the material properties are assigned by units. A non-uniform temperature field is 

applied to calculate the buckling mode, and it is iterated until convergence. By comparing with the 

commonly used linear and nonlinear buckling methods in engineering (such as the Riks method) 

and the MMCP method, the correctness of the algorithm is verified. The Riks method introduces 

defects with a thickness of 0.2% to calculate the critical buckling temperature.  

 

 
 

 

 

1

3

2

1

Δ
Δ

Δ
2

Δ

cr

cr

cr

cr

T
T

T

T





 (22)
 

Equation 3 is the MMCP algorithm, where  
1aT  is the initial temperature,  

1crT  is the first 

critical buckling temperature,      
2 1 1a cr aT T T    is the second temperature, and  

3
Δ crT  is the 

new initial temperature. 

146



2.2. Example: Thermoelastic ring 

In order to consider the thermal buckling problem of material property parameters with 

temperature, we choose a thermoelastic ring example with known analytical solutions. In this 

example, we apply a non-uniform temperature field and perform buckling analysis for different ring 

sizes and thicknesses. 

The formula for the applied non-uniform temperature field is: 

 
lna b

a
K t t

b

 
   

   (23) 

 
  lna

a
t r t K

r

 
    

   (24)
 

Where at = 1.0, bt = 0, inner circle radius a, outer circle radius b=100mm. The generated 

temperature field diagram is shown in Figure 1. 

 

Figure 1: Non-uniform temperature field of a ring 

The material used in the ring is carbon steel. Elastic modulus curve and thermal expansion 

coefficient curve are fitted through data points as Table 3. 

Table 3: Carbon steel material parameters 

t/°C E/105Mpa a/10-6K-1 

0 2.11 10.76 

20 2.10  

100 2.06 11.53 

200 2.01 12.25 

300 1.98 12.90 

400 1.84 13.58 

450 1.78 13.93 

500 1.68 14.22 

550 1.56 14.42 

600 1.41 14.62 

This study explores the thermal buckling behavior of ring-shaped structures of different sizes. By 

changing the diameter and thickness of the inner circle (with the outer circle size remaining 

unchanged), and under controllable geometric parameters, the fixed-point iterative algorithm is used 

to solve the critical temperature of thermal buckling. The algorithm undergoes iterative calculations 

such as mesh generation, material property allocation, and temperature field update, and introduces 
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an acceleration method to improve efficiency. Meanwhile, based on the arc length method for 

numerical simulation of the annular structure, the arc length and incremental step size were set, and 

the temperature displacement curve was drawn at the monitoring key points. The results of this 

algorithm are compared with those of the risk method and the MMCP algorithm to evaluate its 

accuracy and applicability. 

In this study, the annular structure adopts the outer circular support as the boundary condition to 

maintain stability. In Abaqus, the mesh seed is set to 5 to ensure the mesh density. The temperature 

field adopts a non-uniform distribution, which is in line with reality. For the ring with an inner 

diameter of 50mm and a thickness of 4mm, the temperature displacement curve was plotted by the 

arc length method, and the critical buckling temperature was calculated and plotted by the southwell 

method. 

 

Figure 2: The riks result graph was obtained by the southwell method 

As can be seen from Figure 2, the displacement response under temperature changes, and the 

buckling temperature obtained by the southwell method is 416.6℃. Furthermore, for the 

50×100×4mm thermoelastic ring, the convergence and errors of the FPIA and AFPIA algorithms 

are calculated and presented in Figure 3 and Table 4 respectively. 

 

Figure 3: Convergence graph of the algorithm 

The convergence process shown in Figure 3 has the convergence condition that the relative error 

calculation result is retained to the percentile and reaches 0.00%. The original algorithm FPIA 

without acceleration requires 16 iterations to reach the convergence condition, while the AFPIA 

algorithm accelerated by Atiken only needs 7 iterations to reach the convergence condition, greatly 

reducing the number of iterations required for convergence. The error analysis in Table 4 is more 

clearly indicated by the data. Although the relative error of the original FPIA algorithm decreases 

rapidly in the first 8 iterations, the decline of the relative error is relatively slow starting from the 

9th iteration, and finally reaches 0.00% in the 16th iteration. The relative error of the AFPIA 

algorithm accelerated by Atiken decreased rapidly, reaching 0.00% in just 7 times. The critical 
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buckling temperatures obtained by AFPIA accelerated by FPIA and Atiken were both 367.34℃. 

Table 4: Iterative error analysis of the algorithm 

Iterations 
ADMM(T) /°C ADMM(error) Aitken(T) /°C Aitken(error) 

     1 2 2  /error G G G    
 

 

1 504.09 136.75% 504.09 136.75% 

2 297.89 69.45% 297.89 69.45% 

3 399.24 31.90% 357.75 9.59% 

4 349.84 17.50% 372.28 4.94% 

5 376.40 9.06% 364.79 2.55% 

6 362.46 4.88% 367.34 0.00% 

7 369.80 2.46% 367.34  

8 366.07 1.27%   

9 367.97 0.63%   

10 367.01 0.34%   

11 367.50 0.16%   

12 367.24 0.10%   

13 367.38 0.04%   

14 367.30 0.04%   

15 367.34 0.00%   

16 367.34    

Meanwhile, the critical buckling temperature calculated by the MMCP algorithm in [10] is 

361.58℃, requiring 28 iterations. When obtaining a similar critical temperature, the FPIA algorithm 

has fewer iterations than the algorithm in [10], and the AFPIA algorithm accelerated by Atiken has 

even fewer iterations, which is 1/4 of the number of iterations of the MMCP algorithm. 

 

Figure 4: Convergence diagram of the fixed point of a thermoelastic ring 

Figure 4 shows the relationship between the initial value and the calculated corresponding 

critical buckling temperature. It can be seen from the figure that the two have a linear relationship 

with a slope of 0.0045, and the value range is between 0 and 1. This means that as the iterative 

process progresses continuously, the output of the algorithm tends to a stable value, once again 

confirming the convergence of the algorithm. 

Next, analyze the influence of geometric parameters such as length, width, and thickness on the 

critical buckling temperature. Under the premise of keeping other conditions unchanged, the inner 

radius and thickness of the ring were changed respectively, as shown in Figure 5, to obtain the 

critical buckling temperatures under different geometric configurations. These results reveal the 

intrinsic connection between geometric parameters and buckling temperature, which can provide a 
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reference for structural design and optimization. 

 

Figure 5: The influence diagram of width and thickness on the model 

Table 5 and Table 6 compare the results of four algorithms: Buckle, Riks, MMCP and AFPIA 

(Since the critical buckling temperatures of FPIA and AFPIA are the same, AFPIA is uniformly 

used). All four algorithms show that the critical buckling temperature of the thermoelastic ring is 

approximately positively correlated with the thickness of the ring and the radius of the inner circle. 

Riks, MMCP and AFPIA have obvious nonlinear buckling phenomena. The trend of AFPIA is 

consistent with that of MMCP. When the inner circle radius exceeds 50mm or the ring thickness 

exceeds 4.5mm, the Buckle result is approximately 30% higher than others, and the prediction is 

conservative. After the iteration of AFPIA, the buckling temperature is lower than that of Riks, but 

the difference in the high-temperature area does not exceed 7%, and it converges quickly and has 

high efficiency. 

Table 5: The result of three algorithms is obtained by changing the inner diameter of the ring 

b=100mm 

h=4mm 

a/mm 

Buckle/°C Riks/°C MMCP/°C AFPIA/°C 

a=30  101.23 90.23 85.67 89.42 

a=35 187.96 162.60 144.91 149.82 

a=40 290.83 245.40 216.13 218.64 

a=45  399.66 335.10 289.54 291.88 

a=50 504.09 416.60 361.58 367.34 

a=55 627.37 437.30 431.85 434.87 

a=60  718.93 555.90 522.21 528.21 

Table 6: The result of three algorithms is obtained by changing the thickness of the ring 

b=100mm 

a=50mm 

h/mm 

Buckle/°C Riks/°C MMCP/°C AFPIA/°C 

h=1.0  24.528 24.12 22.86 23.99 

h=1.5 101.14 75.31 60.13 62.52 

h=2.0 153.95 127.7 107.45 110.21 

h=2.5  222.88 172.5 152.11 155.62 

h=3.0 312.84 241.2 213.64 217.5 

h=3.5 399.51 351.40 284.72 289.85 

h=4.0  504.09 416.60 361.58 367.34 

h=4.5  619.32 521.20 460.23 464.88 

h=5.0 726.83 572.30 515.94 520.16 
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