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Abstract: Blood cell detection plays a key role in clinical medical diagnosis, while 

traditional manual microscopic observation methods have obvious deficiencies such as 

strong subjectivity and low efficiency. Addressing this problem, this research designs a 

high-precision image segmentation and feature extraction algorithm system by improving 

the U-Net network architecture through residual modules and dual attention mechanisms, 

optimizing the training process with multi-component loss functions, and constructing 

multi-scale feature fusion and attention-based feature selection methods. Experimental 

results show that the improved algorithm achieves 96.8% pixel-level accuracy and a Dice 

coefficient of 0.921 on the BCCD test set, while the feature extraction method reaches 97.2% 

accuracy in white blood cell five-classification tasks. The algorithm significantly improves 

the automation level and accuracy of blood cell detection, providing reliable technical 

support for clinical applications. 

1. Introduction 

Blood cell detection holds an important position in clinical medicine, playing a key role in 

disease diagnosis, treatment monitoring, and prognosis evaluation. Traditional blood cell detection 

methods mainly rely on manual observation and classification under a microscope, which has 

disadvantages such as strong subjectivity, low efficiency, and susceptibility to human factors. With 

the rapid development of digital imaging technology and computer vision, automatic blood cell 

detection methods based on image processing have gradually become a research hotspot. Image 

segmentation and feature extraction are two core components, and their accuracy directly affects the 

accuracy of subsequent cell classification and disease diagnosis. 

2. Related Technical Background 

2.1 Digital Image Processing Technology 

Digital image processing technology provides a basic framework for blood cell analysis, 

including multiple key steps such as image digitization, enhancement, and filtering. Image 

digitization converts analog visual signals into discrete digital forms that computers can process 

through sampling and quantization, with sampling determining spatial resolution and quantization 
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determining the richness of gray levels. Image enhancement techniques such as contrast adjustment 

and histogram equalization can effectively highlight differences between cells and background, 

making cell contours and internal structures more clearly distinguishable. Filtering techniques as 

important means of noise suppression are divided into spatial domain filtering and frequency 

domain filtering. Spatial domain filtering such as mean filtering, median filtering, and Gaussian 

filtering eliminate random noise points and interference signals through different mathematical 

operations, while frequency domain filtering selectively adjusts image frequency components in 

frequency space through Fourier transform. Blood cell image processing also needs to pay special 

attention to background correction and illumination compensation, which can effectively eliminate 

the uneven illumination effects generated during microscopic imaging. Edge detection techniques 

such as Sobel and Canny operators can accurately locate cell boundaries, laying the foundation for 

subsequent segmentation operations[1]. The combination of these technologies forms a complete 

preprocessing workflow, significantly improving the quality and analyzability of blood cell images. 

2.2 Application of Deep Learning in Image Segmentation 

Deep learning technologies, especially convolutional neural networks, have achieved 

revolutionary breakthroughs in image segmentation due to their powerful automatic feature learning 

capabilities. Compared with traditional methods that rely on manually designed features, they show 

significant improvements in segmentation accuracy and robustness. U-Net, as a milestone 

architecture for medical image segmentation, adopts a symmetric encoder-decoder structure where 

the encoder extracts features and reduces spatial dimensions through consecutive convolution and 

pooling operations, while the decoder restores spatial resolution and generates segmentation masks 

through upsampling and convolution. The network's greatest innovation lies in the design of skip 

connections, which directly transmit low-level detail information to high-level semantic features, 

effectively preserving the edge details and spatial position information of cells. As research 

deepened, various improved versions emerged successively. ResUNet introduces residual 

connections to effectively alleviate the gradient vanishing problem in deep networks, while 

Attention U-Net allows the network to focus more on key regional features through attention 

mechanisms[2]. Although deep learning methods have enormous potential, they still face challenges 

such as variable blood cell morphology, blurred boundaries, and cell adhesion, which prompts 

researchers to continuously explore innovative network structures and training strategies such as 

deep supervision, multi-task learning, and adversarial training to improve segmentation 

performance and model generalization ability, adapting to complex and variable clinical blood 

samples. 

2.3 Feature Extraction Methods 

Feature extraction plays a key role in cell classification and recognition, enabling precise cell 

identification and classification by transforming segmented images into numerical feature 

representations. Traditional feature extraction strategies mainly include three categories: shape 

features describe cell geometric properties such as area, perimeter, and circularity, which can 

intuitively reflect cell morphological changes; statistical features quantify cell internal grayscale 

distribution characteristics by calculating pixel intensity distribution such as mean, variance, and 

skewness; texture features focus on cell internal structure patterns, commonly implemented using 

techniques such as gray-level co-occurrence matrix, local binary patterns, and wavelet transforms. 

Although these traditional methods are intuitive and interpretable, they can only extract limited 

features and often struggle to comprehensively characterize complex cell properties. The emergence 

of deep learning methods has fundamentally changed the feature extraction paradigm, as networks 
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can automatically learn hierarchical feature representations from raw images without manual design, 

capturing richer and more abstract features, especially features extracted by higher convolutional 

layers that have stronger semantic information and class discrimination ability. Pre-trained CNNs 

such as VGG and ResNet combined with transfer learning technology can obtain quality feature 

representations even with limited blood cell samples. In practical applications, hybrid feature 

strategies that combine traditional methods with deep learning are often adopted, taking advantage 

of both the interpretability of manual features and the expressive power of deep features, thus 

comprehensively characterizing cell properties and improving classification robustness. 

3. High-Precision Image Segmentation Algorithm Design 

3.1 Improved U-Net Network Architecture 

To address the limitations of traditional U-Net architecture in blood cell segmentation, this 

research proposes multiple network structure improvement strategies to significantly enhance 

segmentation accuracy. The introduction of residual modules in the encoder part is one of the core 

innovations, where these modules construct identity mapping paths allowing network inputs to be 

directly transmitted to subsequent layers. This design not only alleviates the common gradient 

vanishing problem in deep networks but also preserves original feature information, reducing the 

loss of important details[3]. The improved encoder contains two consecutive residual units in each 

downsampling stage, with each unit consisting of two 3×3 convolutions and batch normalization, 

while also introducing 1×1 convolution shortcuts to achieve dimension matching. The network 

depth is carefully designed as a 5-layer downsampling structure, ensuring sufficient receptive field 

coverage for various sizes of blood cells while maintaining computational efficiency. The attention 

mechanism in the decoder part is another key improvement, adopting a dual attention structure 

combining channel attention and spatial attention. Channel attention generates channel descriptors 

through global average pooling and maximum pooling, then produces channel weights through 

shared multilayer perceptrons, while spatial attention generates pixel-level feature importance maps 

using convolution operations. This dual attention mechanism can precisely identify and emphasize 

key regional features of blood cells while suppressing background interference information, 

particularly helpful in handling complex situations such as blurred cell boundaries or cell adhesion. 

Experiments show that the improved network significantly enhances segmentation accuracy while 

keeping parameter counts relatively controlled, with particularly outstanding detection capabilities 

for small cells and tightly clustered cells. 

3.2 Data Augmentation and Preprocessing 

Blood cell image datasets often face challenges such as limited sample sizes and imbalanced 

class distributions, making data augmentation and preprocessing strategies particularly crucial. This 

research designed a systematic data augmentation process including both online and offline 

augmentation. Online augmentation is randomly applied during training, mainly including 

geometric transformations such as random rotations of ±30°, translations not exceeding 15% of 

image size, scaling factors ranging from 0.85 to 1.15, and horizontal and vertical flips[4]. These 

transformations significantly expand the sample space and enhance the model's adaptability to 

changes in cell position and orientation. Color transformation is another key augmentation method, 

including contrast adjustment coefficients from 0.8 to 1.2, brightness changes of ±10%, and 

saturation adjustments of ±15%, effectively simulating image characteristics under different 

microscope settings and staining conditions. Offline augmentation is performed before training, 

mainly targeting cell categories with particularly few samples, including synthetic minority class 
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sample techniques and mixed sampling strategies, effectively alleviating class imbalance problems. 

The image preprocessing workflow first performs color space conversion, transforming RGB 

images to Lab space to reduce inter-channel correlation, then applies adaptive histogram 

equalization to enhance local contrast, followed by image normalization to linearly map pixel 

values to the [0,1] interval, and standardization using the Z-score method to make each channel 

have a mean of 0 and standard deviation of 1. This complete data augmentation and preprocessing 

workflow not only effectively expands training sample diversity but also significantly enhances the 

model's generalization ability and anti-interference capability. Experiments prove that it enables the 

model to maintain stable segmentation performance even under small sample conditions. 

3.3 Loss Function Optimization 

To address the special challenges of blood cell image segmentation, this research designed a 

multi-component mixed loss function to optimize the network training process. Traditional 

cross-entropy loss faces serious class imbalance problems when processing blood cell images, as 

background pixels usually occupy the vast majority of the image, causing the network to tend to 

predict all pixels as background. To solve this problem, dynamic weighted cross-entropy loss was 

introduced, with weight coefficients calculated in real-time based on the foreground-background 

pixel ratio in each batch, using the formula 𝑤𝑐 = 1 −
𝑛𝑐

𝑁
, where nc represents the number of pixels 

in class c and N is the total number of pixels. This dynamic weighting mechanism makes the 

network pay more attention to rare cell regions during training. Meanwhile, relying solely on 

pixel-level classification loss cannot guarantee the spatial continuity and shape integrity of 

segmentation results, so region-based Dice coefficient loss was introduced as the second 

component[5]. The Dice coefficient directly measures the overlap between predicted segmentation 

and true annotations, particularly effective for small target segmentation. To further enhance 

boundary accuracy, a boundary-aware term was designed as the third component, especially 

emphasizing boundary region accuracy by calculating the distance field difference between 

predicted edges and true edges. The final loss function takes the form 𝐿 = 𝜆1𝐿𝑐𝑒 + 𝜆2𝐿𝑑𝑖𝑐𝑒 +
𝜆3𝐿𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦, where λ1, λ2, and λ3 are weight coefficients determined through validation set tuning. 

Experimental results show that this multi-component loss function design significantly improves the 

precision of segmentation results, especially in cell boundary regions, effectively solving cell 

adhesion separation difficulties and improving the detection sensitivity of small cells. 

4. Feature Extraction Algorithm Design 

4.1 Multi-scale Feature Fusion 

The multi-scale feature fusion module is a core innovation in blood cell feature extraction, 

achieving comprehensive feature representation by integrating feature map information from 

various levels of the segmentation network. This module adopts a pyramid pooling structure to 

extract features from different stages of the encoder and decoder. Low-level feature maps are larger 

in size and contain rich texture, edge, and color local detail information, while high-level feature 

maps have reduced spatial resolution but contain more abstract semantic and shape global 

information[6]. The feature fusion process first applies 1×1 convolution to adjust channel numbers 

to a uniform dimension, then resamples all feature maps to the same spatial resolution through 

bilinear interpolation, followed by feature aggregation strategies to fuse features from different 

levels. Fusion methods include direct concatenation, element-wise weighted summation, and 

attention-guided fusion, where attention-guided fusion achieves optimal combination through 
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learning inter-layer feature importance weights αi as 𝐹𝑓𝑢𝑠𝑒𝑑 = ∑ 𝛼𝑖
𝑁
𝑖=1 𝐹𝑖 . This module also 

introduces a multi-branch parallel processing structure, with each branch applying convolution 

kernels of different scales (3×3, 5×5, 7×7) to capture cell features under different receptive fields. 

Experimental results show that multi-scale feature fusion can effectively integrate microscopic 

texture and macroscopic morphological features of cells, with particularly significant effects for 

morphologically variable white blood cell subtype classification. Compared to single-level features, 

classification accuracy improved by approximately 8.5%, while the model's robustness to cell size 

changes and morphological variations was also significantly enhanced. 

4.2 Attention-based Feature Selection 

The attention-based feature selection mechanism is a key strategy for solving feature redundancy 

and information noise in blood cells. The original extracted feature set often contains many features 

that are either irrelevant to cell classification or even interfere with it. This research designed a 

two-level attention mechanism including channel attention and spatial attention dimensions. 

Channel attention mainly targets the channel dimension of feature maps, first generating two sets of 

channel statistical descriptors through global average pooling and maximum pooling, then inputting 

these descriptors into shared multilayer perceptrons to calculate channel importance weight vectors 

𝑤𝑐ℎ ∈ 𝑅𝐶, and finally implementing channel-level feature reweighting through 𝐹𝑐ℎ = 𝐹 ⋅ 𝜎(𝑤𝑐ℎ), 
where $\sigma$ represents the sigmoid activation function ensuring weight ranges between 0 and 1. 

Spatial attention focuses on the importance of different spatial positions within feature maps, 

generating spatial attention maps 𝑀𝑠𝑝 ∈ 𝑅𝐻×𝑊 through convolution operations and implementing 

spatial weighting through 𝐹𝑠𝑝 = 𝐹 ⋅ 𝜎(𝑀𝑠𝑝). The final features combine results from both attention 

mechanisms through 𝐹𝑎𝑡𝑡 = 𝐹𝑐ℎ + 𝐹𝑠𝑝. This two-level attention mechanism can screen important 

features from both feature space and spatial position dimensions, effectively suppressing 

interference information from backgrounds and non-critical regions within cells[7]. Experiments 

compared traditional feature selection methods such as recursive feature elimination and 

variance-based screening, showing that the attention mechanism significantly reduced feature 

dimensionality while preserving key features. In the white blood cell five-classification task, with 

feature quantity reduced by about 65%, classification accuracy actually increased by 2.3%, while 

model training speed improved by approximately 40%, with computational complexity and memory 

usage correspondingly reduced. 

4.3 Feature Dimensionality Reduction and Visualization 

Feature dimensionality reduction and visualization play a dual role in blood cell analysis, serving 

both as a technical means to avoid high-dimensional feature overfitting and as an analytical tool to 

understand feature distribution and cell category relationships. This research constructed a complete 

dimensionality reduction and visualization workflow to provide systematic support for cell feature 

exploration. Principal Component Analysis (PCA), as a basic linear dimensionality reduction 

method, finds the main directions of data variation by calculating the feature covariance matrix 

𝛴 =
1

𝑛
∑ (𝑛
𝑖=1 𝑥𝑖 − 𝜇)(𝑥𝑖 − 𝜇)𝑇  and eigenvalue decomposition 𝛴 = 𝑈𝛬𝑈𝑇 , then selecting the 

eigenvectors corresponding to the top k largest eigenvalues to form the mapping matrix, projecting 

original features into a low-dimensional space. In experiments, typical applications reducing more 

than 300 dimensions to 20-30 dimensions still retained over 95% of information content[8]. 

Considering that PCA cannot effectively preserve nonlinear structure features, the research also 

introduced manifold learning methods including t-SNE and UMAP. t-SNE preserves local 

relationships between data points by minimizing the KL divergence between data point distributions 
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in high-dimensional and low-dimensional spaces as 𝐾𝐿(𝑃||𝑄) = ∑
𝑖
∑
𝑗
𝑝𝑖𝑗𝑙𝑜𝑔⁡

𝑝𝑖𝑗

𝑞𝑖𝑗
, particularly 

excelling at revealing clustering structures between cell subgroups, while UMAP better preserves 

global topological relationships while maintaining local structure. To enhance interpretability, 

feature importance visualization functionality was implemented, using Gradient-weighted Class 

Activation Mapping (Grad-CAM) technology to generate heat maps that intuitively display cell 

regions contributing most to classification decisions. Experimental results show that different cell 

types present clear classification boundaries in the two-dimensional or three-dimensional space 

after dimensionality reduction, with different white blood cell subtypes such as lymphocytes and 

neutrophils forming obviously separate clusters on t-SNE maps, providing intuitive cell 

classification references for clinical doctors. 

5. Experimental Design and Result Analysis 

5.1 Experimental Datasets 

This research selected multiple authoritative public datasets for algorithm validation and 

performance evaluation, mainly including the Blood Cell Count Dataset (BCCD), Leukocyte 

Images for Segmentation and Classification (LISC), and Acute Lymphoblastic Leukemia Image 

Database (ALL-IDB). The BCCD dataset contains 12,500 blood smear microscope images, 

collected by different medical institutions and annotated by professional hematologists, covering 

major blood components such as red blood cells, four subtypes of white blood cells (neutrophils, 

eosinophils, basophils, and lymphocytes), and platelets. Images have a uniform resolution of 

640×480 pixels and use Wright's stain to highlight cell morphological features. The LISC dataset 

focuses on white blood cell segmentation and classification, containing 257 high-resolution images, 

each with multiple classified and located white blood cells, particularly suitable for evaluating 

algorithm performance in distinguishing white blood cell subtypes. The ALL-IDB dataset targets 

acute lymphoblastic leukemia screening, containing 3,648 images from 108 patients with 

resolutions up to 2592×1944 pixels, each image accompanied by precise cell position and category 

annotation information[9]. These datasets have varying image acquisition conditions, including 

different equipment models such as Olympus BX50 microscope and Nikon ECLIPSE E200, with 

obvious differences in image quality and lighting conditions. Some images have problems such as 

uneven staining, low contrast, and background noise, providing challenges for algorithms in real 

application scenarios. To enhance dataset diversity and assess algorithm generalization ability, the 

research team also collaborated with three local hospitals to build their own test set LBC-Test, 

including 1,850 blood sample images from 325 patients with different pathological conditions, 

independently annotated by three experienced blood pathology experts who reached consistent 

conclusions. Comprehensive use of these datasets not only verifies the segmentation and feature 

extraction performance of the algorithm but also evaluates its adaptability and robustness on 

samples from different equipment, different staining methods, and different pathological states, 

enhancing the clinical practical value and promotional application potential of the research results. 

5.2 Experimental Setup 

This research adopted rigorous experimental design to ensure the scientific nature of algorithm 

evaluation and the reliability of results. For dataset processing, a stratified random sampling 

strategy was used to divide the training set, validation set, and test set in a 7:1:2 ratio, while 

ensuring that the cell type distribution in each dataset remained consistent with the original dataset. 

The experiment used 5-fold cross-validation to eliminate the influence of randomness, with each 
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fold using the same network architecture and training parameters but different data divisions, taking 

the average performance as the evaluation result. The hardware environment configuration included 

two high-performance workstations, with the main station equipped with four NVIDIA Tesla V100 

GPUs (32GB video memory) and 256GB system memory, and the auxiliary station equipped with 

two NVIDIA RTX 3090 GPUs and 128GB system memory. The software environment was 

implemented based on Python 3.8, with PyTorch 1.9.0 as the core deep learning framework, and 

OpenCV 4.5.3, scikit-learn 0.24.2, and scikit-image 0.18.3 for data processing and analysis. 

Network training parameters were carefully tuned through numerous pre-experiments, with initial 

learning rate set to 0.001 and cosine annealing strategy adopted, decaying to 0.1 times the original 

every 100 rounds. The optimizer used the Adam algorithm, configured with β1=0.9, β2=0.999, and 

ε=10-8. Batch size was optimized to 16 based on GPU memory, and training cycles were set to 200 

rounds but configured with an early stopping mechanism, terminating training when validation set 

performance showed no improvement for 15 consecutive rounds. Data augmentation parameters 

were also repeatedly tuned, with random rotation angle range of [-30°,30°], translation range of ±15% 

of image size, scaling factor of [0.85,1.15], and brightness, contrast, and saturation variation 

amplitude all at ±10%. To ensure evaluation fairness, all comparison experiments were run under 

the same hardware conditions, using the same data division and training parameters, only changing 

network architecture or algorithm components[10]. For experimental reproducibility, random seed 

was fixed at 42, ensuring consistency of initial weights and data shuffle sequences. During the 

experiment, detailed training logs were recorded including loss value changes per round, learning 

rate adjustments, validation set performance, etc., with TensorBoard used to monitor the training 

process in real-time. The experimental code structure was modularly designed, strictly separating 

data processing, model definition, training loops, and evaluation processes, enhancing code 

readability and reusability. All experimental results were independently repeated three times for 

verification, with final reports of average values and standard deviations to reflect performance 

stability. 

5.3 Image Segmentation Results and Analysis 

The improved U-Net model achieved significantly excellent performance on blood cell 

segmentation tasks, surpassing baseline methods in all major evaluation metrics. Quantitative 

analysis results show that the model achieved pixel-level accuracy of 96.8%±0.3% on the BCCD 

test set, significantly higher than the original U-Net's 93.5%±0.5% and FCN's 91.2%±0.8%. In Dice 

coefficient and Jaccard index evaluations, which are more sensitive to cell boundary precision, the 

improved model reached 0.921±0.015 and 0.857±0.018 respectively, about 7.8% and 8.6% higher 

than the original U-Net, indicating that the model can more accurately delineate cell contours and 

preserve morphological details. In class-balanced F1-Score evaluation, the F1 scores for white 

blood cells, red blood cells, and platelets reached 0.945, 0.912, and 0.887 respectively, with 

particularly notable advantages in recognizing the numerically scarce platelets. The model's ability 

to handle cell aggregation area segmentation was evaluated through connectivity metrics, with a 

success rate of 92.3% in separating adhered cells, while traditional watershed algorithms and the 

original U-Net could only achieve 76.8% and 85.1%. Algorithm robustness tests showed that under 

conditions such as brightness variations of ±20%, contrast variations of ±25%, and added Gaussian 

noise (σ=0.05), performance decreased by no more than 5%, displaying good anti-interference 

capability. In terms of computational efficiency, the average processing time for a single 640×480 

image on an NVIDIA V100 GPU was 85ms, meeting real-time processing requirements. Through 

heat map technology visualization analysis of segmentation results, it was found that the improved 

model could effectively distinguish cell boundaries and backgrounds, eliminating common "false 
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positive" regions and discontinuous boundary problems in the original model. The contributions of 

residual modules and attention mechanisms were verified through ablation experiments, with 

adding residual modules alone increasing the Dice coefficient by 3.2%, adding attention 

mechanisms alone increasing it by 4.1%, and combining both bringing a comprehensive increase of 

7.8%. Feature visualization analysis showed that the feature maps learned by the improved model 

could better highlight cell boundary and internal structure features, especially focusing more on cell 

regions rather than backgrounds in high-level feature maps. It was also observed that the model 

performed excellently in processing irregularly shaped white blood cells (such as eosinophils), 

accurately capturing their unique lobulated nuclear structures. Comparison with traditional image 

processing methods such as threshold segmentation, edge detection, and region growing further 

confirmed the superiority of deep learning methods, particularly outstanding in complex situations 

such as cell adhesion, uneven illumination, and uneven staining. 

5.4 Feature Extraction Results and Analysis 

The feature extraction algorithm designed in this research demonstrated excellent effects on 

blood cell image classification tasks, with the combination strategy of multi-scale feature fusion and 

attention feature selection surpassing comparison methods on multiple indicators. In classification 

performance evaluation, SVM classifiers based on extracted features achieved overall accuracy of 

97.2%±0.6% on the white blood cell five-classification task (neutrophils, lymphocytes, monocytes, 

eosinophils, and basophils), significantly outperforming the 91.5%±1.2% using traditional features 

and 94.3%±0.9% using single CNN features. F1-Score evaluation for each category showed that 

even for the numerically scarce basophil classification, a high score of 0.915 was achieved, solving 

the common class imbalance problem in traditional methods. Feature representation capabilities 

were intuitively verified through visualization, with two-dimensional scatter plots after t-SNE 

dimensionality reduction showing different cell types forming clearly separated clusters with 

distinct boundaries and tight intra-class aggregation. Feature stability tests showed that even with 

cell size variations of ±30% and rotations at arbitrary angles, the category discrimination ability of 

extracted features remained stable, with classification accuracy decreasing by no more than 3.2%. 

Feature interpretability analysis through heat maps generated by Grad-CAM technology intuitively 

displayed the cell regions that the model focused on, verifying that the algorithm indeed captured 

medically meaningful cell morphological features such as nuclear-cytoplasmic ratio, granularity, 

and cell membrane characteristics. Through comparison with key differentiation points marked by 

professional hematologists, it was found that the feature regions automatically identified by the 

algorithm were highly consistent with human expert judgments, with a consistency rate of 86.7%. 

Feature dimensionality reduction efficiency evaluation showed that after reducing from over 300 

dimensions to 32 dimensions, classification performance decreased by only 0.8% but computational 

efficiency improved by more than 5 times. In-depth analysis of misclassification cases revealed that 

main confusions occurred between morphologically similar cell types, such as a 4.7% confusion 

rate between some monocytes and lymphocytes, which aligns with the judgment difficulties human 

experts face under microscopes. In cell pathological detection tasks, anomaly detection algorithms 

based on extracted features achieved 93.8% sensitivity and 96.2% specificity, effectively identifying 

leukemia cells and other blood pathological features. Computational complexity analysis showed 

that the complete feature extraction process had an average processing time of 120ms/cell on 

standard equipment, meeting clinical application requirements. Comparative studies on different 

classifier performances found that random forests, XGBoost, and SVM based on extracted features 

had similar performance (accuracy differences <1.5%), indicating that the proposed features have 

good classifier universality. In long-term data accumulation tests, as training samples increased to 3 
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times the initial dataset, classification performance steadily improved by a total of 2.7%, proving 

the scalability and continuous improvement capability of the feature extraction method in clinical 

applications. 

6. Conclusion 

Starting from clinical needs, this research successfully constructed a complete blood cell image 

analysis technology system, with core innovations in improved network architecture design and 

multi-level feature extraction strategies, effectively solving long-term challenges such as variable 

blood cell morphology, blurred boundaries, and adhesion overlap. By integrating residual 

connections and dual attention mechanisms, the algorithm not only enhanced cell boundary 

delineation precision but also strengthened detection capabilities for small cells and rare categories. 

Multi-scale feature fusion and attention-guided feature selection methods achieved comprehensive 

capture and precise screening of cell morphological features, resulting in a qualitative leap in 

classification performance. Large-scale experimental verification showed that the algorithm 

demonstrated excellent performance and good generalization ability on both public datasets and real 

clinical samples, while the high interpretability of feature representation also enhanced clinical 

credibility. Future work will focus on algorithm lightweight design and multi-center clinical 

validation, further promoting the popularization of intelligent hematology detection technology in 

grassroots medical institutions, providing more reliable technical support for early screening and 

precise diagnosis of blood diseases. 
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