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Abstract: The increasing number of high-dimensional time series data poses challenges 

for traditional anomaly detection methods that rely on supervised approaches. In this 

paper, we propose a stable and novel method called dual adversarial learning graph 

anomaly detection, which effectively captures complex data relationships and accurately 

detects anomalies away from them. Our framework utilizes a graph structure to capture 

complex relationships between variables, while the dual adversarial training overcomes 

the inherent limitations of autoencoders. In addition, we incorporate the prediction 

techniques to enhance the ability to identify anomalies. We evaluate our proposed model 

on publicly available real-world datasets and compare its performance against various 

existing methods. The experimental results demonstrate that our method achieves more 

accurate anomaly detection compared to baseline methods. 

1. Introduction   

With the rapid growth in the number of devices and sensors in network systems in key areas, 

protecting them from attacks and ensuring the security of their data have become increasingly 

important. Many real-world systems involve a large number of interconnected sensors that generate 

significant amounts of time series data. However, the data may exhibit complex and non-linear 

correlations, making traditional threshold-based methods inadequate. In such cases, automated 

anomaly detection methods are necessary to quickly detect anomalies in high-dimensional data and 

enable operators to diagnose and respond to anomalies promptly [1, 2]. 

Due to the subjectivity of manual labeling and the high diversity of anomalies, anomaly 

detection problems mainly focus on unsupervised learning problems. In recent years, numerous 

machine learning-based methods have been developed, with clustering-based methods like K-

Means [3] and DBSCAN [4] being the most common. Other approaches include distance-based 

methods like K-NN [5], isolation-based methods like Isolation Forest [5] and density-based GMM 

[6]. However, as the dimension increases, these traditional machine learning methods struggle to 

capture complex and highly nonlinear relationships in the real world, leading to sub-optimal 

performance due to the curse of dimensionality.  

Recently, there has been significant attention given to the ability of unsupervised anomaly 

detection methods based on deep learning to infer the correlation between time series and identify 
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abnormal behaviors [7-10]. One popular approach is the use of reconstruction-based methods such 

as autoencoder (AE) [11], which is well-suited for anomaly detection. AE maps high-dimensional 

data into a low-dimensional latent feature space and then reconstructs it back to the original space. 

Several AE-based variant models have been developed, including Deep Autoencoding Gaussian 

Mixture Model (DAGMM) [12], Multi-Scale Convolutional Recurrent Encoder Decoder 

(MSCRED), and UnSupervised Anomaly Detection (USAD) [13]. However, these methods tend to 

overlook the potential feature space that is highly abstracted from the input data. This will lead to 

increased uncertainty in these models and a decrease in their ability to accurately identify normal 

behaviors. 

Other deep learning-based methods that have garnered significant interest include those based on 

generative adversarial networks (GAN) [14] and LSTM-based approaches. However, most of these 

methods do not explicitly consider the correlation between variables, which may limit their 

effectiveness in modeling data with multiple potential interrelationships.  

Recent studies have proposed prediction-based graph neural networks (GNNs) such as the graph 

attention network (MTAD-GAT) [15] and the graph deviation network (GDN) [16]. However, most 

GNNs directly utilize graph structure or compressed graph embedding as input, which results in a 

loss of data information and limits the representation of highly distinct behaviors among different 

variables. 

To address the challenges, we propose a novel approach called dual adversarial learning graph 

anomaly detection (DAGAD). This approach focuses on learning the structural relationship between 

variables. In our framework, the adversarial training structure of the autoencoder ensures that the 

model amplifies reconstruction errors while maintaining training stability. To demonstrate the 

efficiency of our approach, we conducted tests using publicly available real-world datasets. The 

main contributions of our paper can be summarized as follows. 

We propose a dual adversarial learning graph anomaly detection approach, which learns the 

structural graph of dependencies between variables. This method combines the benefits of 

autoencoder and adversarial training to effectively detect anomalies. 

We incorporate the concept of GNN prediction into the latent feature space and simultaneously 

consider the reconstruction error and prediction error for anomaly scoring, aiming to enhance the 

recognition capability of the model. Furthermore, we impose a constraint on the latent feature space 

and derive normal behavior by reducing the uncertainty of the latent feature space. 

We perform experiments on public real datasets. The results show that DAGAD detects 

anomalies more accurately than the baseline method. 

The subsequent sections of the paper are organized as follows. 

2. Related Work 

Time series anomaly detection is a complex and practical task. Traditional methods typically 

employ various classical techniques such as density-based methods, linear-model-based methods 

[17], distance-based approaches, isolation-based approaches [18], and regression models [19, 20]. 

TSI [21] converts the time-series input into graphs and utilizes One-Class SVM [22] to identify 

anomalies. Finally, classical methods employ variants of Auto-Regressive Integrated Moving 

Average (ARIMA) [23] to model and detect anomalous behavior. However, these approaches are 

seldom used for anomaly detection in high-order multivariate time series due to their limited ability 

to capture volatile time series effectively. 

In addition to traditional approaches, recent advancements in unsupervised anomaly detection 

have seen improvements in deep learning techniques for inferring the correlation between high-

dimensional time series data. One such method is the variational autoencoder (VAE) [24], which 
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uses reconstruction errors as abnormal scores in a probabilistic manner. Another approach is the 

DAGMM method, which utilizes a deep autoencoding Gaussian mixture model for dimension 

reduction in the feature space and recurrent networks for temporal modeling. This study employs an 

autoencoder to compress input data into a latent space, which is then used by a recurrent estimation 

network to predict the next data point. MSCRED is an RNN-based autoencoder with an attention 

mechanism based on Convolutional Long Short Term Memory (Convolution-LSTM) [25], using a 

feature matrix as the object of model reconstruction. LSTM-VAE [26] fuses signals and reconstructs 

their expected distribution by introducing a progress-based varying prior while modeling the time 

dependence of time series through the LSTM network. MAD-GAN [27] considers both prediction 

error and discriminator loss, using the generator to model the distribution of time series. USAD is 

currently one of the top multivariate time series anomaly detection methods. However, most 

existing methods do not consider the dependencies between variables, making it challenging to 

model complex, non-stationary high-dimensional time series data. 

To address this limitation, several graph neural networks (GNNs) have been recently proposed 

for modeling graph-structured data [28]. Generally, GNNs [29] assume that the state of a node is 

influenced by the states of its neighbors. Graph convolutional networks (GCNs) capture the 

relationship between each node and its adjacent nodes to model the feature representation of nodes. 

To handle more complex data, the graph deviation network (GDN) learns the structural information 

between variable embeddings for prediction and detects anomalies by calculating the deviation from 

real data. However, most existing methods use the graph structure or compressed graph embedding 

directly as the model input, which imposes certain limitations. 

3. Methodology 

We first formalize the problem in Section 3.1. In section 3.2, we give the overall framework of 

our method. Finally, we describe the implementation process and specific details of the method in 

section 3.3-3.6. 

3.1 Problem Formulation 

In this paper, our input data is multivariate time series data, which consists of multiple univariate 

time series. Each univariate time series records one metric to form a sequence of observed data 

points. For multivariate time series with 𝑁 variables, each variable has 𝑇 time steps, which are 

denoted by 

𝑆 = {𝑆1, 𝑆2,⋅⋅⋅, 𝑆𝑇}, 𝑆𝑡 = {𝑠𝑡
1, 𝑠𝑡

2,⋅⋅⋅, 𝑠𝑡
𝑁}, 𝑡 ∈ {1,2,⋅⋅⋅, 𝑇} 

Where 𝑆𝑡 contains 𝑁 variables at a given time 𝑡.  

Following the usual unsupervised anomaly detection formulation, the training data is assumed to 

consist of only normal data 𝑆𝑡𝑟𝑎𝑖𝑛. Our goal is to detect anomalies in unknown data 𝑆𝑡𝑒𝑠𝑡 that have 

the same variables as 𝑆𝑡𝑟𝑎𝑖𝑛, but on a separate set of  𝑇 time steps. Hence, we define the calculation 

of abnormal scores  𝐴(𝑥̂𝑡) to measure the deviation between  𝑆𝑡𝑒𝑠𝑡 and  𝑆𝑡𝑟𝑎𝑖𝑛 , and assign 

labels 𝑦𝑡 according to a given threshold, where 𝑦𝑡 to denote whether the data at the 𝑡-th timestamp 

of 𝑆𝑡𝑒𝑠𝑡 is anomalous. 

3.2 Overview of the Proposed Framework 

The proposed DAGAD method aims to learn the dependencies between variables in the form of 

graphs, and then detect different degrees of deviation from the normal pattern. Figure 1 provides an 

overview of our framework. It includes four main parts: 
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(1) Data preprocessing: normalizes data and divides it into time windows of a specific length L. 

(2) Graph structure learning: learns the graph structure that represents the dependencies between 

variables. 

(3) Dual adversarial network training: learns structural pattern of normal data based on dual 

adversarial networks. 

(4) Graph abnormal score: identifies deviations of varying degrees from the normal pattern. 

3.3 Data Preprocessing 

To make our model more robust, we normalize the time series data (training data and test data) to 

get it in the range [0,1): 

𝑆𝑡 ←
𝑆𝑡 − min(𝑆)

max(𝑆) − min(𝑆) + 𝜏̂
(1) 

Where min(𝑆) and max(𝑆) are the minimum and maximum vectors in the time series. 𝜏̂ is a 

quite small constant to prevent zero-division. 

To capture the time correlation, we use a sliding window to obtain the input of the model, that is, 

a sliding window sample with a length of 𝐿 at a given time 𝑡. 

𝑊𝑡 = {𝑆𝑡−𝐿+1, ⋯ , 𝑆𝑡−1, 𝑆𝑡} 

We traverse the original time series to obtain a sliding window sequence 𝑊 = {𝑊1, ⋯ , 𝑊𝑇}. 

Instead of using 𝑆 directly as training input, we will use 𝑊 to represent the training input and 𝑊 ̂to 

represent the unknown input. For an unknown sliding window input 𝑊̂𝑡 , 𝑡 > 𝑇, we set a label 𝑦𝑡 to 

indicate whether the window at time 𝑡 is abnormal. If its anomaly score is greater than a given 

threshold, it is regarded as an anomaly, 𝑦𝑡 = 1. Otherwise, it is normal, 𝑦𝑡 = 0. 

 

Fig. 1 DAGAD: Dual adversarial learning graph anomaly detection 

3.4 Graph Structure Learning 

A primary objective of our framework is to learn the relationships between variables in the form 

of a graph structure. To achieve this, we utilize an undirected graph where each node corresponds to 

a single variable, and the edges depict hidden dependencies between variables. We use the 

undirected graph as the model is more concerned about the changes in the relationship between 

117



variables caused by anomalies, and the ease of managing its structure. We use the adjacency 

matrix 𝐴 to represent the undirected graph, where 𝐴𝑖𝑗 represents the existence of undirected edges 

from node 𝑖 to node 𝑗. 

To capture the correlation, we calculate the similarity between node 𝑖 and other nodes: 

𝑎𝑖𝑗 = 𝑎𝑗𝑖 =
𝐸(𝑤𝑖

𝑇𝑤𝑗) − 𝐸(𝑤𝑖)𝐸(𝑤𝑗)

𝜎𝑤𝑖𝜎𝑤𝑗

(2) 

𝐴𝑖𝑗 = {
𝑎𝑖𝑗       𝑎𝑖𝑗 > 𝜀

0         𝑜𝑡ℎ𝑒𝑟  
(3) 

Where  𝑖 ∈ (0, 𝑁) ,  𝑤𝑖 is the corresponding single variable sequence in the window  𝑊𝑡 , 

and 𝜀 depicts a given threshold. That is, for each window 𝑊𝑡, we first calculate 𝑎𝑖𝑗, the Pearson 

correlation coefficient between variable  𝑖 and the remaining variables. Then we select a 

threshold 𝜀 to determine the structural relationship in 𝐴: the 𝜀 is dynamically adjusted as the model 

learns, and the user can choose the initial threshold based on the expected sparsity level. In addition, 

we use the Pearson correlation coefficient to represent node similarity, as it effectively retains the 

continuously changing trend of data as much as possible, whether the anomaly is significant or 

subtle. Figure 2 depicts the dynamic learning process of graph structure. Our dual adversarial 

network is then defined, making use of the learned adjacency matrix 𝐴. 

 

Fig. 2 Time series windowing and graph structure learning process 

3.5 Dual Adversarial Network Training 

Autoencoder (AE) is an unsupervised neural network. It uses the encoder  𝐸 to encode the 

original high-dimensional data  𝑋 into the potential low-dimensional feature space  𝑧 and then 

decodes the high-dimensional results through the decoder 𝐷.In anomaly detection, AE performs 

well in reconstructing normal data, but it yields a higher anomaly score for unknown abnormal 

samples. However, there are two major challenges in anomaly detection using autoencoders. 

The first challenge revolves around the latent feature space. The autoencoder constructs the 

latent feature space randomly without any boundaries, which causes uncertainty in the 

reconstruction process. As a result, the performance of the model may be reduced. The second 

challenge involves detecting subtle anomalies [30]. Since the AE aims to learn the normal data 

pattern as accurately as possible, it may fail to detect anomalies that are relatively close to the 

normal data pattern and are therefore small in magnitude. 

To address these limitations, we construct a dual adversarial learning framework. On the one 

hand, this can overcome the inherent limitations of the AE model, while incorporating a prediction 

component to enhance the anomaly recognition ability. On the other hand, the architecture of the 
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autoencoder ensures the stability of the adversarial learning process. In addition, we consider the 

potential representation of the normal graph structure as the embedding of normal patterns. This 

representation allows us to predict future data structures to some extent, whereas abnormal data 

cannot be accurately predicted. Thus, we utilize latent features to predict future data structures. 

Our framework consists of five parts: an encoder  𝐸1 , three decoders  𝐷1 ,  𝐷2 and  𝐷3 , a 

discriminator 𝐷. 𝐸1, 𝐷1, and 𝐷2 constitute the autoencoders 𝐴𝐸1 and 𝐴𝐸2 with the same structure: 

𝐴𝐸1(𝑥) = 𝐷1(𝑧), 𝐴𝐸2(𝑥) = 𝐷2(𝑧), 𝑧 = 𝐸1(𝑥) (4) 

Where, for the sake of simplicity and without loss of generality, we utilize 𝑥 to represent the 

learned adjacency matrix  𝐴 .  𝐸1 and  𝐷 are trained in the form of an Adversarial Network, And 

Here E1 Is Regarded As A Generator. In Addition, We Use The Decoder Structure D3 For Prediction, 

Without Defining A New Network Structure. Further Details Are Provided In The Following. 

First Adversarial Component Training. In The First Training Stage, To Reduce The Uncertainty 

Of The Latent Feature Space, We Aim To Impose A Prior Distribution On The Latent Space (Graph 

Structure Embedding), That Is Matched With A Normal Distribution  N(0,1) . Thus, We Use 

Adversarial Learning To Provide A Constraint On The Probability Distribution Of Latent Feature 

Distribution. The Objective Of The Stage Is To Train Discriminator D To Distinguish Between The 

Embedding And Prior Distribution Generated By E1, Where E1 Tries To Minimize ℒAdv Against An 

Adversary D That Tries To Maximize It. The Objective Is Defined As Follows: 

ℒAdv(X, E1, D) = E [Log (D (Z′))] + E[Log(1 − D(Z))] (5) 

Where Z Denotes A Normal Graph Structure Embedding, The Shape Of Z′ Is The Same As That 

Of  Z , And Its Elements Are Random Variables Generated According To The Normal 

Distribution N(0,1). 

Prediction Component Training. In The Second Training Stage, The Training Objective Is To 

Utilize Latent Features To Predict Future Data Structures. We Take The Graph Embedding 

From E1 As Input And Train D3 To Learn The Normal Graph Structure. The Training Objective Is: 

ℒPre(X, E1, D3) = ‖XT+L − XT+L

′
‖

2
,    XT+L

′
= D3(ZT) (6) 

Where XT+L

′
 Is The Prediction With L Steps After The Graph Structure At Time T (L Represents 

The Window Size). XT+L Is The Real Graph Structure At Time T + L. Thus, The XT+L

′
 Should Be As 

Close To XT+L As Possible. 

Second Adversarial Component Training. In The Third Training Stage, This Component Is 

Designed To Address Another Inherent Limitation Of The Autoencoder, Where AE1 And AE2 Have 

A Dual Purpose. Initially,  AE1 And  AE2 Aim To Reconstruct The Input  X Independently, Thus 

According To Eq. (4), The Training Objectives Are: 

ℒRe1(X, E1, D1) = ‖X − AE1(X)‖2 (7) 

ℒRe2(X, E1, D2) = ‖X − AE2(X)‖2 (8) 

Next, We Introduce The Adversarial Training Of AE1 And AE2. Here, The Objective Of AE2 Is 

To Distinguish Between The Original Input  X And The Candidate Reconstruction Generated 

By AE1 Through Maximizing The Error. As AE2 , AE2 Aims To Reconstruct The Original Input 

(AE2(X) = X) As Much As Possible To Deceive AE2. This Pushes The AE2, In This Phase, To 

Generate The Same Output As AE2(X) That Aims To Match The Input X In The Reconstruction 

Stage. 
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Hence, The Objective Of AE1 Is To Minimize The Error Between X And The Reconstructed 

Output Of AE2, Whereas AE2 Aims To Maximize The Same. This Means The Training Objective Is: 

ℒAdv1(X, E1, D1) = +‖X − AE2(AE1(X))‖
2

(9) 

ℒAdv2(X, E1, D2) = −‖X − AE2(AE1(X))‖
2

(10) 

Finally, We Jointly Consider Two Stages To Obtain Evolutionary Loss Functions, Where The 

Training Objective Of Each AE Is A Combination Of Eq. (7), Eq. (8), Eq. (9) And Eq. (10). The 

Total Training Loss Is: 

ℒAE1(X, E1, D1, D2) = Τ−N‖X − AE1(X)‖2 + (1 − Τ−N)‖X − AE2(AE1(X))‖
2

(11) 

ℒAE2(X, E1, D1, D2) = Τ−N‖X − AE2(X)‖2 − (1 − Τ−N)‖X − AE2(AE1(X))‖
2

(12) 

Where N Indicates The Training Epoch, Representing The Proportion Of Each Part Evolving, 

And Τ Is A Parameter Close To One. It Is Crucial To Remark That In The Initial Part Of The 

Process, The Reconstruction Loss Is Assigned A Low Weight To Avoid Destabilizing Model 

Training When The Reconstruction Error Is Large. As The Reconstructions Become Closer To The 

Inputs, The Weight Of The Adversarial Loss Is Gradually Increased. 

Three-Stage Training. In Our Framework, We Combine All The Losses To Obtain The Total 

Objective Function: 

ℒ(X, E1, D, D1, D2, D3) = ΛℒAdv + Λ′ℒPre + ℒAE1 + ℒAE2 (13) 

Where Λ And Λ′ Are Hyperparameters For Balancing The Losses, And 0 < Λ,  Λ′ < 1. The 

Dual Adversarial Network Is Obtained By Minimizing Eq. (13). We Train The Proposed Framework 

By Using Stochastic Gradient Descent And Doing Alternative Updates Of Each Component As 

Follows: 

Maximize ℒ𝑎𝑑𝑣 by updating weights of 𝐷; 

Minimize ℒ𝑎𝑑𝑣 by updating weights of 𝐸1; 

Minimize ℒ𝑝𝑟𝑒 by updating weights of 𝐷3; 

Minimize ℒ𝐴𝐸1 by updating weights of 𝐸1 and 𝐷1; 

Maximize the adversarial loss and minimize the reconstruction loss in  ℒ𝐴𝐸2 by updating the 

weights of 𝐸1 and 𝐷2.  

Note that the discriminator 𝐷 is only utilized during the training phase. 

3.6 Graph Abnormal Scoring 

Given the learned structure relationships, we want to detect anomalies that deviate from these 

relationships. To do this, our model combines reconstruction error and prediction error to define the 

abnormal score: 

𝐴(𝑥̂𝑡) = 𝛼‖𝑥̂𝑡 − 𝐴𝐸1(𝑥̂𝑡)‖2 + 𝛽‖𝑥̂𝑡 − 𝐴𝐸2(𝐴𝐸1(𝑥̂𝑡))‖
2

+ 𝛾‖𝑥̂𝑡+1 − 𝑥̂𝑡+1
′ ‖2 (14) 

Where 𝛼 + 𝛽 = 1, 𝛼, 𝛽 are hyperparameters used to weigh abnormal sensitivity, and 0 < 𝛾 <
1 is used to parameterize the trade-off between reconstruction error and prediction error. We 

represent 𝛼 < 𝛽 as a high-detection-sensitivity scenario and 𝛼 > 𝛽 as a low-detection-sensitivity 

scenario. 

When we obtain the anomaly score for an unknown window, we label this window as anomalous 

(i.e., 𝑦𝑡 = 1) if the score exceeds a given threshold. While different approaches could be employed 

to set the threshold such as peak over threshold (POT) [31] and annual maximum (AM) [32], to 

120



avoid introducing additional hyperparameters, we use in our experiments a simple approach of 

setting the threshold as the maximum of 𝐴(𝑥̂𝑡) over the validation data. 

4. Experiments 

In this section, we present the set of experiments conducted to demonstrate the effectiveness of 

our method. The performance results are compared with state-of-the-art techniques. 

4.1 Datasets 

We utilize four publicly available datasets in our experiments. It is important to highlight that, 

despite concerns raised by previous work [33] regarding the suitability of benchmark datasets for 

multivariate time series anomaly detection, we still use these datasets to facilitate direct comparison 

with baseline methods. Table 1 summarizes the datasets characteristics and they are briefly 

described in the following. 

Table 1 Benchmarked Datasets. (%) is the percentage of anomalous data points in the dataset 

Dataset Train Test Dimensions Anomalies(%) 

SMD 708405 708420 28*38 4.16 

SWaT 496800 449919 51 11.98 

WADI 1048571 172801 123 5.99 

4.2 Evaluation Metrics 

We use precision (P), recall (R), and F1-Score (F1) to evaluate the performance of anomaly 

detection for all models: 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 𝐹1 = 2 ∙

𝑃 ∙ 𝑅

𝑃 + 𝑅
 

Where TP, TN, FP, and FN are the number of true positives, true negatives, false positives, and 

false negatives. If a model lacks a predefined selection threshold, our method (maximum value of 

the validation set) is utilized for selection. In addition, we hope to compute a model’s best F1 score, 

we calculate all possible anomaly thresholds to search for the best F1, denoted as F1𝑏𝑒𝑠𝑡. 

In real-world scenarios, anomalies usually occur continuously, resulting in a stream of abnormal 

observations. Therefore, it is acceptable to trigger an anomaly alert within any subset of an anomaly 

segment. Hence, [7] proposed a point adjustment method to calculate performance. As this approach 

describes, whenever at least an anomaly is detected in an abnormal segment, all points in this 

segment are considered as anomalies, even if they are not. In this paper, we adopt the point 

adjustment method to calculate the performance index, which provides a more realistic evaluation 

standard. 

Table 2 Performance comparison of DAGAD with baseline methods on the complete dataset 

Methods 
 SWaT   WADI   SMD  

P R F1 P R F1 P R F1 

AE 0.9913 0.7040 0.8233 0.3970 0.3220 0.3556 0.8825 0.8037 0.8280 

L-VAE 0.7123 0.9258 0.8051 0.4632 0.3220 0.3799 0.8698 0.7879 0.8083 

DAGMM 0.8292 0.7674 0.7971 0.2228 0.1976 0.2049 0.6730 0.8450 0.7231 

MSCRED 0.9992 0.6770 0.8072 0.2513 0.7319 0.3741 0.7276 0.9974 0.8414 

MAD-GAN 0.9697 0.6957 0.8101 0.2871 0.5804 0.3842 0.9991 0.8440 0.9150 

USAD 0.9870 0.7402 0.8460 0.6451 0.3220 0.4296 0.9314 0.9617 0.9382 

DAGAD 0.9882 0.7559 0.8588 0.6630 0.3588 0.4526 0.9871 0.8501 0.9327 
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5. Results and Analyses 

In this section, we present the performance and effectiveness of our proposed DAGAD model in 

three aspects: overall performance, ablation study, and parameter sensitivity. 

5.1 Overall Performance 

 

Fig. 3 F1𝑏𝑒𝑠𝑡 of DAGAD and all baseline models 

To illustrate the overall performance of DAGAD, we compare it with six popular multivariate 

time series anomaly detection methods, namely AE, LSTM-VAE, DAGMM, MSCRED, MAD-

GAN, and USAD. Each of these approaches provides a specific method for selecting anomaly 

thresholds, and F1 is calculated accordingly. Table 2 provides a detailed overview of the evaluation 

results for all methods on three public datasets. The results show that DAGAD outperforms all 

baseline models. It is important to note that all models perform relatively poorly on WADI due to its 

large scale in terms of sequence lengths and data modality. However, the overall performance 

improvement of DAGAD over baseline methods is significant, largely as, when dealing with high-

dimensional (123-dimensional) data features, the graph structure is capable of deeply extracting the 

complex relationships between features of normal data, effectively achieving 'data augmentation'. 

The F1 score of DAGAD on the SMD dataset is slightly lower than the optimal baseline due to the 

smaller number of features and their similarity. 

In addition, Figure 3 illustrates the F1𝑏𝑒𝑠𝑡 corresponding to the optimal threshold. All models 

exhibit no significant difference between F1 and F1𝑏𝑒𝑠𝑡 on the SWaT and SMD datasets. However, 

for the WADI dataset, all methods have improved performance, especially DAGAD is 0.0171 

higher than F1 on F1𝑏𝑒𝑠𝑡 (0.4725 vs 0.4526). This may be due to some unknown abnormal segments 

in WADI training data (normal data). 

Overall, DAGMM performs poorly on three datasets as it does not use sequence windows but only 

a single GRU model, regardless of time characteristics. For time series data, observations are 

collected over time, resulting in a significant time dependence between the data. Methods such as 

AE, LSTM-VAE, MAD-GAN, MSCRED, and USAD all utilize sequential observations as input, 

allowing them to preserve time information. Such methods perform reconstruction regardless of 

anomalous data, which prevents them from detecting subtle anomalies close to the normal trends. In 

contrast, DAGAD employs a dual adversarial structure training approach to amplify subtle 

anomalies. Consequently, even in datasets like SMD, DAGAD can detect subtle anomalies in the 

case of a small gap. 
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5.2 Ablation Analysis 

To study the necessity of each component in our model, we exclude each major component and 

observe how the model performance changes in each dataset. First, we consider a dual adversarial 

learning architecture without graph structure, which directly takes original time-series windows as 

the model input. Second, we consider the model without the predictive assistance module, i.e., we 

fix 𝜆′ = 0. Third, we study the model without potential spatial constraint, i.e., we fix 𝜆 = 0. Finally, 

we consider the model without the second adversarial loss, i.e., a single-phase inference and only 

the reconstruction loss and the prediction loss for model training. All experimental results are 

summarized in Table 3 and provide the following findings: 

When we remove the graph structure, the average drop in F1 scores is 6.3%. This drop is more 

pronounced for the WADI dataset (15.4%), indicating that for high-dimensional datasets, a graph 

structure capable of mining variable relationships is necessary. 

Removing the predictive assistance module results in an average F1-score decrease of 3.9%, 

which suggests that the predictive module contributes to performance improvement. 

Not having the potential spatial constraint in the model has little effect on the F1 scores (≈ 

2.1%). 

Removing the second adversarial training primarily affects the SMD and WADI datasets, as a 

significant portion of the anomalies in these datasets are subtle, and the adversarial loss helps to 

amplify the anomaly scores. In this scenario, the average decrease in the F1 score is 5.7%. 

Table 3 Ablation Study - F1 scores for DAGAD and its ablated versions 

Methods SWaT WADI SMD 

DAGAD 0.8588 0.4526 0.9327 

w/o graph structure 0.8418 0.2991 0.9144 

w/o predict module 0.8453 0.4076 0.9195 

w/o first adversarial module 0.8517 0.4378 0.9203 

w/o second adversarial module 0.8371 0.3956 0.8562 

5.3 Sensitivity Analysis 

In this section, we study the effect of six parameters, the window size L, λ and λ′ of training 

objective, and α, β and γ of anomaly score. All experiments were done using the SWaT dataset. 

Sensitivity to the window size. Figure 4(a) illustrates the performance of the DAGAD model and 

its variants with different window sizes. The results show that the window size has a significant 

influence on the overall performance of the model. Smaller windows enable DAGAD to detect 

anomalies more quickly. However, if the window is too small, it fails to effectively utilize local 

contextual information. Conversely, with too large a window, short anomalous segments may be 

obscured by the sheer number of data points within the window. Moreover, larger windows may 

result in predicted graph structures that contain redundant future information, which can negatively 

impact the performance of our model. 

Sensitivity to the training objective parameter. We also demonstrate the performance of 

DAGAD and its variants with varying values λ, while λ′ remains fixed in Figure 4(b). Similarly, 

Figure 4(c) shows the performance of DAGAD and its variants at different values λ′, while λ is 

fixed. It is evident that the choice of optimal parameters is varying for different datasets. Notably, 

increasing both λ and λ′ leads to an overall improvement in performance. However, excessively 

large proportions of λ and λ′ can result in longer training stabilization time or affect the parameter 

update of the primary inference module (Eq. 14). Hence, we set  λ = λ′ = 0.4 for SWaT,  λ =
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0.5, λ′ = 0. 4 for WADI, and λ = λ′ = 0.2 for SMD. 

 

Fig. 4 Effect of parameters 

F1-score as a function of A) the window size L, B) λ of the training objective and C) λ′ of the 

training objective in the training set 

Sensitivity to the abnormal score parameter. Table 4 reports the effect of different α,  β, and γ on 

F1 score. We observed that by adjusting the values of α and β, the model's sensitivity to anomalies 

can be fine-tuned. In addition, there are significant potential spatial differences in different data, and 

we adjust γ to assist the model in achieving the best performance. This ensures that our model meet 

various requirements for different tasks, making it highly valuable for practical applications. 

Table 4 Anomaly detection results with various abnormal score thresholds for SWaT dataset 

α β γ F1 

0.1 0.9 0.2 0.8486 

0.1 0.9 0.4 0.8512 

0.4 0.6 0.4 0.8462 

0.4 0.6 0.8 0.8423 

0.7 0.3 0.8 0.8369 

6. Conclusions 

We propose a new DAGAD model, which can detect anomalies in multivariate time series data. 

The learned graph structure is capable of uncovering complex relationships between variables, 

enabling the model to achieve excellent performance on high-dimensional datasets. DAGAD 

addresses the limitations of autoencoders through dual adversarial training, while ensuring training 

stability. In addition, the model incorporates a predictive auxiliary component to enhance its 

detection capabilities. Finally, experiments show that the DAGAD model has good performance. 
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