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Abstract: Continuous function theory is a very important part of functional theory. In this 

paper, this article research the properties of continuous functions in the P-plane, which are 

commutative rings containing zero factors generated by two real number. This article 

overcome the difficulties arising from the zero factorisation of P-numbers and prove that 

continuous functions in the P-plane are bounded by the decomposition of P-numbers and a 

geometric interpretation is given for the boundedness of continuous functions in the P-plane. 

For continuous Perplex functions that satisfy zero factor decomposition, based on the 

decomposition of Perplex numbers, we obtain the continuous boundedness theorem for 

Perplex functions. This will further provide a theoretical foundation and research impetus 

for P-analysis and give impetus to applications of the theory of continuous functions in the 

p-plane in physics.  

1. Introduction 

Richter has made significant contributions to the field by developing a geometric methodology for 

generalized complex and hyper-complex numbers. He proposed a technique for constructing multi-

dimensional complex numbers using a general vector space structure and geometric multiplication 

rules. Richter extended the concepts of geometric vector product and exponential functions to higher 

dimensions, introducing new algebraic rules[1]. He also studied three-complex numbers, introduced 

geometric vector and spherical coordinate products, and demonstrated their equivalence. Richter 

derived Euler-type trigonometric representations and applied them to construct directional probability 

distributions in three-dimensional space, offering new insights into directional distribution theory[2]. 

Luna-Elizarraras systematically studied the integration theory for hyperbolic-valued functions, 

considering partial orders and hyperbolic intervals. She established foundational theorems for 

hyperbolic integration, providing a framework applicable to various mathematical and physical 

contexts involving hyperbolic numbers[3]. Richter generalized complex numbers to relate to semi-

antinorms, ellipses, and matrix homogeneous functionals, introducing new classes and extending 

Euler's formula. He discussed solutions to quadratic equations and proved invariance properties of 

certain probability densities, broadening the framework for complex number theory and its 

applications in probability and statistics[4]. 
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Ravasini studied uniformly continuous mappings on unbounded hyperbolic spaces, focusing on 

the space ( )wC x  of mappings with a modulus of continuity bounded by a concave function w . He 

proved that, in the sense of Baire categories, the modulus of continuity of a generic mapping in 

( )wC x  is precisely w , providing insights into the structure of these mappings and their applications 

in functional analysis and related fields[5]. Lang discussed the classification of hyperbolic monopoles 

with continuous symmetries, presenting a framework that simplifies the construction of spherically 

symmetric hyperbolic monopoles. He derived a Structure Theorem, which provides new insights into 

the representation theory and has applications in understanding the mathematical structure of 

monopoles in Anti de-Sitter space and Skyrmions[6]. Griette, Magal, and Zhao studied the existence 

of traveling waves with continuous profiles for the hyperbolic Keller-Segel equation,focusing on cell-

cell repulsion dynamics. They demonstrated the existence of such waves and applied their findings 

to wound healing processes, highlighting the importance of continuous and discontinuous wave 

profiles in biological contexts[7]. Belhamadia, Cassol, and Dubljevic developed a hyperbolic heat 

diffusion model to simulate finite speed of heat propagation in phase change problems, specifically 

applied to steel continuous casting. They demonstrated significant differences between parabolic and 

hyperbolic approaches, highlighting the model's effectiveness in capturing initial thermal dynamics 

and solid-liquid interface behavior[8].  

Aigner et al. explored the exceptional characteristics and potential uses of hyperbolic 

metamaterials, noting their capacity to support waves with exceptionally large wavevectors and a 

high density of states. They examined a variety of structures and natural materials that display 

hyperbolic dispersion, highlighting their promise in boosting light-matter interactions and surpassing 

optical diffraction limits [9].Zhou, Zhang, and Yi studied the enhancement of near-field radiative heat 

transfer using hyperbolic metasurfaces crafted from uniaxial hyperbolic substrates. They showed that 

optimizing substrate parameters can substantially boost heat transfer efficiency, with potential 

applications in energy harvesting, thermal imaging, and radiative cooling [10].Smith et al. 

investigated the arithmetic properties of finite volume complex hyperbolic n-manifolds that contain 

infinitely many maximal properly immersed totally geodesic submanifolds. They established a 

superrigidity theorem for certain representations of complex hyperbolic lattices. Their findings have 

multiple applications, such as demonstrating the nonexistence of specific maps between complex 

hyperbolic manifolds and supporting Klingler's conjecture [11].Bensad and Ikemakhen devised a 

method to construct barycentric coordinates on the hyperbolic plane for arbitrary hyperbolic polygons. 

Using hyperbolic gnomonic projection, they derived coordinates analogous to those in the planar case. 

Their method also applies to the Poincaré disk model, with implications for hyperbolic mesh 

parameterization, deformation, and shape morphing [12]. 

Recent studies have made significant advancements in various aspects of hyperbolic numbers, 

including geometric approaches, integration theories, and applications in physics and materials 

science, providing a solid foundation for further exploration of their continuity and properties. 

Building on these developments, this paper makes a unique contribution by delving into the continuity 

theory of Perplex functions. Specifically, we focus on continuous Perplex functions that satisfy zero 

factor decomposition and derive a boundedness theorem for these functions. This work not only 

strengthens the theoretical framework of continuous function theory but also opens new avenues for 

exploring models in four-dimensional space and other advanced mathematical domains. 

2. Preliminaries 

In this paper, we will extend the function defined on the domain of real numbers to the function 

defined on the ring of p-numbers and continue to explore its boundedness.  

The following is the definition of the set of perplex number.  
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  : ,a bh a b    . (1) 

The perplex unit  satisfies 
2 1h   and 1k   .  

In this literature, h
 and h

 are defined as two zero-divisiors in . The specific meanings and 

the reasons are as follows 

 
(1 ) (1 )

,
2 2

h hh h  
  , (2) 

 
2(1 )(1 ) 1 0h h h     . (3) 

It is noted that zero divisors are idempotent elements. They are also called as the idempoent of .  

 
2 (1 ) (1 )

( )
2 2

h hh h  
  , (4) 

and we have 

 
(1 ) (1 )

1
2 2

h hh h   
    , (5) 

 
(1 ) (1 )

2 2

h hh h h   
    , (6) 

 0h h   . (7) 

Unlike the field ,  is a commutative ring. It’s operations of addition and multiplication are 

as follows 

        1 2 1 1 2 2 1 2 1 2a b h a b h a a b b h          , (8) 

and 

       1 2 1 1 2 2 1 2 1 2 1 2 2 1a b h a b h a a b b a b a b h         . (9) 

Where 1 1 1a b h    and 2 2 2a b h   . For a bh    ,this article define the real part of   as 

 Re  , which  Re a  . We also define the perplex part of   as  Im  , which  Im b  . 

This article denote the conjuate of as  and a bh   .  

If a bh    , then the idempotent representation of it is 

 ( ) ( )a bh a b h a b h uh vh            . (10) 

It’s obvious that the real multiples of h
 and h

 are the zero divisors. The reason is the 

multiples of h
and h

 are on the y x  and y x   lines. So we have 

 
1 2 1 2 1 2( ) ( )u u h v v h        , (11) 

 
1 2 1 2 1 2( ) ( )u u h v v h     . (12) 

The set of non-negative hyperbolic numbers is 

  : : 0, 0a bh a b      . (13) 
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The set of non-positive hyperbolic numbers is 

  : : 0, 0a bh a b      . (14) 

Therefore, we define  

 
1 2 1 2,if      . (15) 

and this article say 1  is -greater than 2  

Similariy, we define  

 
1 2 1 2,if      . (16) 

and this article say 1  is -less than. 

 

Figure 1. The concept of positive and negative perplex number 

The relation  is a partial order in . It’s transitive, reflexive and antisymmetric. We called 

1 2   if 1 2a a , 1 2b b . This article called 1 2   iff 1 2, 1 2a a b b . Also, it’s clear that 0  is 

equvalent to 
 and 0  is equivalent to  / 0  . 0  is equivalent to 

  and 

0  is equivalent to  / 0  . Figure.1 is the relation order. In the figure, x-axis and y-axis is 

a one-dimensional space. These spaces are embedded in . If the speed of light is taken as figure.1, 

we called the set of zero divisors with a positive real Part as the future direction, and we called the 

set of zero divisors with a negative real part as the past direction. Additionly, the points on the y x  

and y x   lines, the ones with 0x   are the future direction, the ones with 0x   are the past 

direction. The real line is embedded in  through the injectin :  , for all a , 

 ( )a a ah ah     . (17) 

Definition 1: For 1 1 2 2,a a b h b a b h       such that a b , this article define the closed 

hyperbolic interval ,a b  by 

    , :a b u a u b    . (18) 

Equivalently,  1 2 1 2,u u h u h      iff 

 1 2a a a  and 1 2b b b  . (19) 
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Figure 2. the concept of perplex number intervals 

Figure 2 is the concept of perplex number intervals, which reveals the geometric significance 

of intervals  1 2,  . The hyperbolic interval  ,a b  is degenerate, if a b  is a non-negtive zero 

divisor hyperbolic number. And the hyperbolic interval  ,a b  is non-degenerate, if a b  is an 

inveitible positive hyperbolic number. The hyperbolic interbals have the notion of length as in the 

real interval. The length of any hyperbolic interval is a non-negative hyperbolic number.  

3. Results 

Definition 3.1 Continuity of points: 

A sequence  n n
P


 of perplex numbers -converges to the perplex number 0P , if for any 

strictly positive perplex number   there exists N  such that there holds: 

 0nP P    (20) 

In this case this article say that the sequence  n
nP


 converges to 0 . 

Using the idempotent representations 

 1 2 0 10 20;n n nP h h P h h           (21) 

This article obtain that, equivalently,  

 1 10 1 2 20 2and n n          (22) 

Which means that the sequence  n n
P


 converges to the perplex numbers 0P  with respect to the 

perplex-valued norm if and only if it converges to 0P  with respect to the Euclidean norm. Even 

though the two norms cannot be directly compared because they take values in different rings, they 

still yield the same sets of convergent and divergent sequences. 

Definition 3.2 Continuity of a function at a point: 

A proplex function is continuous at a point 0P  , if
0

lim ( )
z z

F P


 exists and 
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0

0lim ( ) ( )
z z

f P f P


 . (23) 

It means  

 0 0, 0, , . . ( ) ( )p p s t f p f p          . (24) 

Theorem3.1(Boundedness of -variable functions)：If the function ( )f p  is continuous on the 

closed interval  ,a b , and 1 2( ) ( ) ( )f p f u h f v h   ， then ( )f p  is bounded on the closed 

interval  ,a b , as shown in Figure 3. 

 

Figure 3. The concept of Boundedness Theorem 

Proof: Based on the continuity of the -variable function ( )f p  on a interval  ,a b , it has

 1 2 1 20, 0, ,h h h h for h uh vh a b                    , has 0( ) ( ) ,f p f p   

which 0 0 0p u h v h 
   is a certain point in interval  ,a b  and 1 2 1 2,a a h a h a b h b h       . 

Then according to the Decomposability of function ( )f p , it has 

 
   0 1 2 1 0 2 0

1 1 0 1 1 0 1 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ,

f p f p f u h f v h f u h f v h

f u f u h f v f v h h h  

   

   

    

     
 (25) 

Through simplify, it has  

 1 1 0 1, 1 1 0 2( ) ( ) ( ) ( )f u f u f v f v   . (26) 

Based on the boundedness of continuous functions on closed intervals according to real analysis, 

it has 1 1 2 2( ) , ( )f u m f v m  .So  

   1 2 1 2, , ( ) ( ) ( )p a b f p f u h f v h m h m h M   
      . (27) 

Thus, the conclusion is  f p  is bounded in interval  ,a b . 

4. Conclusions 

This study delves into the examination of continuous functions operating on the hyperbolic plane, 

which is defined by a hyperbolic interval originating from a pair of real numbers. Although such 

functions encounter complexities due to zero factorization, this paper effectively addresses these 
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challenges and establishes that these functions on the hyperbolic plane are indeed bounded. The proof 

provided offers a geometric perspective to understand their bounded nature. This finding is pivotal as 

it not only forms the groundwork for the theory of p-analysis but also supplies substantial theoretical 

backing and momentum for the utilization of continuous functions across disciplines, particularly in 

physics. 
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