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Abstract: Current stock market price prediction research mainly uses machine and deep 

learning for historical data, sentiment, and macro - indicators to boost accuracy. Prediction 

is crucial for investors, risk management, and market stability. LSTM has strengths like 

handling long - term dependencies in price sequences but has long training times and high 

resource use. This paper gets index volatility and return data via GARCH, then uses 

Bayesian optimization on LSTM to enhance prediction. It validates the model by comparing 

four metrics with others. Using the CSI 1000 Index, the Bayesian - optimized LSTM reduces 

RMSE by 0.169% compared to the basic LSTM. 

1. Introduction 

Stock prediction means forecasting future stock price trends by analyzing historical stock market 

data. It has long been a key research area in financial markets. There are mainly two ways for stock 

price prediction: linear and nonlinear prediction [1]. Common linear prediction models like the 

ARIMA and GARCH models have been vital in financial stock prediction development. But because 

of the high noise and nonlinear nature of financial time series data, relying only on linear models has 

reduced stock price forecast accuracy [2]. Nonlinear models have come about to overcome these 

drawbacks, enhancing prediction accuracy based on linear models. Among them, machine learning 

neural networks are being more and more used in stock prediction. 

Long Short-Term Memory (LSTM), a classic time-series prediction network, shows great 

performance in stock price forecasting [3]. Sun et al. (2022) used the LSTM network to extract data's 

temporal features and predicted the Shanghai Stock Exchange Index 000001, getting better results 

than traditional statistical methods. In recent years, scholars have been improving LSTM. Bao 

Zhenshan et al. (2020) upgraded LSTM's output module and verified the model with CSI 500 Index's 

intraday minute-level data, finding the improved model superior to the basic LSTM [4]. Hu Yuwen 

(2021) proposed a stock price prediction model combining PCA, LASSO and LSTM neural networks, 

enhancing prediction accuracy. Han Ying et al. (2023) integrated broad learning and deep learning 

based on LSTM, introduced Complementary Ensemble Empirical Mode Decomposition (CEEMD) 

for noise reduction to deal with stock sequences' non-stationary features, and proposed the CEEMD-

LSTM-BLS (C-L-B) stock prediction model [5]. 

In recent years, LSTM has many diverse extended forms for complex financial time - series data. 
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But in practice, LSTM has issues like numerous parameters (manual tuning reduces efficiency) and 

difficulty in capturing nonlinear data relationships, limiting its financial forecasting use. To address 

these, this paper studies the GARCH - BO - LSTM model. The GARCH model captures financial 

time - series volatility well, providing useful features for LSTM. Bayesian Optimization (BO) 

automatically tunes LSTM's hyperparameters, enhancing training efficiency and prediction accuracy 
[6]. By combining these, the paper aims to overcome traditional LSTM's limitations in financial 

forecasting, offering a more accurate, efficient, and practical method for stock price prediction, with 

the hope of achieving significant results in financial research and practice to drive financial 

forecasting technology development [7]. 

2. Model Construction and Trading Strategy 

2.1 Principles of the GARCH Model 

The GARCH model is a statistical model used to estimate and predict the volatility of time series 

data [8-10]. The GARCH model, an extension of the ARCH model, effectively addresses the 

heteroskedasticity issue in financial time series residuals, which the ARCH model cannot resolve. Its 

mathematical expression is as follows:：In the equation, 𝜎𝑡 represents the conditional variance, and 

𝑢𝑡~N(0,1) is a standard normal random variable, where 𝜎𝑡 and 𝑢𝑡are independent of each other. 

Additionally, the coefficients 𝐴𝑖and 𝐺𝑖must satisfy the following constraints: 

𝑦𝑡 = 𝛼0 + ∑ 𝛼𝑖𝛼𝑦𝑡−1 + 𝜀𝑡 + ∑ 𝛽𝑖𝜀𝑡−1
𝑞
𝑖=1

𝑝
𝑖=1                      (1) 

𝜀𝑡 = 𝑢𝑡𝜎𝑡                                     (2) 

𝜎2 = 𝑘 + ∑ 𝐴𝑖𝜀𝑡−1
2 + ∑ 𝐺𝑖𝜎𝑡−𝑖

2𝑞
𝑖=1

𝑝
𝑖=1  𝑘 > 0, 𝐴𝑖 ≥ 0, 𝐺𝑖 ≥ 0                  (3) 

∑ 𝐴𝑖 + ∑ 𝐺𝑖
𝑞
𝑖=1

𝑝
𝑖=1 ＜1                            (4) 

2.2 Bayesian Optimization 

The core steps of Bayesian optimization are building a Gaussian surrogate model and optimizing 

the acquisition function. 

2.2.1 Constructing Gaussian Surrogate Model 

The Gaussian process, defined by a mean and covariance function, constructs sample set D = {(X, 

λ)}, where X is the training set and λ is a mapping function. Closely located input points x have 

similar mapping function values, enhancing prediction accuracy when training and test samples are 

near. The covariance function, typically the squared exponential one, gauges point similarity. Its 

formula contains l, the characteristic length scale, which dictates function smoothness. 

𝑘(𝑥, 𝑥′) = 𝑒𝑥𝑝(−
(𝑥−𝑥′)2

2𝑙2 )                          (5) 

𝜆~𝑁(0, 𝑘(𝑥, 𝑥′))                              (6) 

2.2.2 Optimizing the Acquisition Function 

The Gaussian surrogate model links hyperparameters to model performance.The acquisition 

function identifies the next optimal sampling point. Often, the Expected Improvement function E(x) 

is used, calculating the expected improvement over the current best to efficiently locate the optimum 

while balancing search cost and performance. 
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𝐸(𝑥) = {
(𝛼(𝑥) − 𝑦(𝑥+) − 𝜉) ∗ 𝜑 (

𝛼(𝑥)−𝑦(𝑥+)−𝜉

𝜏(𝑥)
) + 𝜎(𝑥) ∗ 𝜙(

𝛼(𝑥)−𝑦(𝑥+)−𝜉

𝜏(𝑥)
), 𝑖𝑓 𝜏(𝑥) > 0

0, 𝑖𝑓 𝜏(𝑥) = 0
         (7) 

Where, y(x) represents the expected value at the optimal training sample x, 𝛼(𝑥) is the mean of 

the current training sample x, 𝜏(𝑥) is the variance of x,and 𝜉 is a balancing parameter. 𝜑 and 

𝜙are the probability density function (PDF) and cumulative distribution function (CDF) of the 

standard normal distribution, respectively. 

2.3 LSTM 

The LSTM network is an improved RNN version that addresses the vanishing gradient problem 

via a self-looping mechanism. The internal cell unit mainly consists of three key gate units: the forget 

gate, the input gate, and the output gate.Its structure is illustrated in Fig. 1.  

 

Fig. 1. LSTM Structure Diagram. 

2.3.1 Forget Gate 

The specific calculation formula is as follows, 𝑓𝑡 is the output state of the forget gate, 𝜎 is the 

Sigmoid activation function, 𝑊𝑓 is the weight matrix , 𝑏𝑓 is the bias term, 𝑊𝑓 and 𝑏𝑓 determine 

the extent to which information is retained or discarded. 

𝑓𝑡 = 𝜎 ∗ (𝑊𝑓 ∗ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓)                           (8) 

2.3.2 Input Gate 

The input gate initially updates the information via the Sigmoid function, as depicted in Equation 

(9). Subsequently, it quantifies the extent of new information to be integrated, as illustrated in 

Equation (10). Ultimately, by combining the two components, the input gate discards the filtered - 

out info from the forget gate and integrates the processed info into the long - term state, as shown in 

Equation (11). 

𝑖𝑡 = 𝜎 ∗ (𝑊𝑖 ∗ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖)                           (9) 

𝑐𝑡 = 𝜎 ∗ (𝑊𝑐 ∗ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑐)                          (10) 

 𝐶𝑡 = 𝑖𝑡 ∗ 𝑐𝑡 + 𝑓𝑡 ∗ 𝐶𝑡−1                             (11) 

2.3.3 Output Gate 

The output ate specific calculation formulas are as follows,𝑊𝑜 and 𝑏𝑜represent the weight matrix 

and bias term of the output gate, respectively, and ℎ𝑡 is the output value of the current cell. 
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𝑜𝑡 = 𝜎 ∗ (𝑊𝑜 ∗ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑜)                        (12) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ−1(𝑐𝑡)                            (13) 

3. Empirical Analysis 

3.1 Data Source 

This paper conducts empirical analysis on the CSI 1000, SZCI, and SHCI. The sample spans from 

January 2016 to December 2024, with data from https://cn.investing.com/. The CSI 1000 has 1,000 

stocks outside the CSI 800, representing small-cap and liquid stocks. The SZCI is a Shenzhen Stock 

Exchange index with 500 representative listed firms, calculated by weighted average of circulating 

shares. The SHCI is an early and authoritative Chinese stock index reflecting all listed stocks on the 

Shanghai Stock Exchange. Testing multiple indices ensures the model's predictive effectiveness.  

Price trend graphs in Figs. 2-4 indicate significant price fluctuations for each index, with the SZCI 

having the largest variation amplitude. 

  

Fig. 2. Price Trend Chart of the CSI 1000.     Fig. 3. Price Trend Chart of the SZCI. 

 

Fig. 2. Price Trend Chart of the SHCI. 

3.2 Data Processing 

In this paper, to smooth the optimization process, the data is normalized using a transformation 

function. Data normalization refers to scaling the data proportionally so that it falls within a specific 

small interval, typically between 0 and 1 or between -1 and 1. The purpose is to eliminate the influence 

of data dimensions, making data with different features comparable. The transformation formula is 

as follows, where 𝑥𝑚𝑎𝑥  and 𝑥𝑚𝑖𝑛  represent the maximum and minimum values within the 

component, respectively. 

𝑥 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                              (14) 
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3.3 Model Evaluation Metrics 

This paper uses RMSE, MSE, MAE, and MAPE to evaluate model prediction results. MSE is the 

average of squared differences between predicted and actual values. RMSE, the square root of MSE, 

represents the standard deviation of these differences. MAE is the average of absolute differences, 

and MAPE is the average of absolute percentage differences. Generally, lower values of these four 

metrics indicate better model prediction performance. The calculation formulas for these metrics are 

shown in Table 1. 

Table 1 Calculation Formulas for Metrics. 

RMSE MSE MAE MAPE 

√
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 

1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 100%

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 

3.4 Model Construction and Prediction 

3.4.1 GARCH Modeling 

First, the GARCH model is used to model the return rates of the stock closing prices, resulting in 

the return rate curves. Figs. 5-7 show the price volatility of the three indices 

 

Fig. 5. Volatility of the CSI 1000.            Fig. 3. Volatility of the SZCI. 

 

Fig. 4. Volatility of the SHCI. 

Based on the descriptive statistics and GARCH-modeled volatility graphs, the volatility of the 

three indices stays relatively high, with the CSI 1000 Index being the most volatile. In a regression 

model, "Coef" represents the coefficients (weights or slopes), showing how much the independent 

variables affect the dependent variable. "Stderr" is the standard error of these coefficients, which 

gauges the precision of coefficient estimates; a lower Stderr means more accurate estimates. "T" is 

the ratio of the coefficient to its standard error, used to check if the coefficient differs significantly 
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from zero. A larger absolute t-value implies a more substantial influence of the independent variable 

on the dependent one. "P" is for hypothesis testing, usually to see if the coefficient is significantly 

different from zero; a smaller p-value gives stronger grounds to reject the null hypothesis that the 

coefficient equals zero. 
Taking the CSI 1000 Index as an illustration: The coefficient of omega is 8.026e-06, accompanied 

by a standard error of 1.280e-09, a t-value of 6270.295, and a p-value of 0.000. Among the three 

indices, this shows the CSI 1000 Index has the largest coefficient, the smallest standard error, and the 

highest t-value. The alpha coefficient is 0.0992, with a standard error of 3.632e-02, a t-value of 2.731, 

and a p-value of 6.323e-03. Since the alpha coefficient is positive, it means past errors positively 

affect current volatility. The beta coefficient is 0.8687, having a standard error of 2.867e-02, a t-value 

of 30.298, and a p-value of 1.202e-201. The positive beta coefficient implies that past volatility 

impacts current volatility. In general, the p-values of omega, alpha, and beta for the CSI 1000 Index 

are all low, signifying that the results are statistically significant. 

3.4.2 Building the LSTM Model and Performing Bayesian Optimization 

After conducting GARCH modeling to get the conditional volatility and logarithmic returns of the 

three indices, an LSTM model is constructed based on that, and then Bayesian Optimization is carried 

out. In this paper, 75% of the data is chosen as the training set, while 25% serves as the test set. Once 

the LSTM modeling results are obtained, Bayesian Optimization is applied to the model. This process 

uses a Gaussian process to figure out the optimal learning rate, dropout rate, number of LSTM neurons, 

and validation loss for each index.  

After performing Bayesian Optimization, the model training begins, with RMSE, MSE, MAE, and 

MAPE selected as the evaluation metrics for the training set. To more clearly demonstrate the model's 

predictive performance, Figs. 8-10 show the predicted values versus the true values for the three 

indices. 

    

Fig. 5. Prediction Results for the CSI 1000.          Fig. 6. Prediction Results for the SZCI. 

 

Fig. 7. Prediction Results for the SHCI. 
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4. Result Comparison and Analysis 

To check if the GARCH-BO-LSTM model in this paper has better predictive ability, this study 

compares its results with those of the BPNN, XGBOOST, RNN, SVR models and the LSTM model 

without Bayesian Optimization. Findings reveal that the Gaussian-process-optimized LSTM model's 

predictions for the three chosen indices outdo other models in all four metrics (RMSE, MSE, MAE, 

MAPE), proving the GARCH-BO-LSTM model's effectiveness. 

From the GARCH-BO-LSTM model's predictions for different indices, the CSI 1000 has the best 

performance, with the lowest RMSE, MSE, MAE and MAPE values. When comparing different 

models for the three indices, the CSI 1000 and SZCI show big performance differences among models. 

For the SHCI, except for the SVR model, the performance differences among models are smaller. 

Compared with other indices, the SHCI has the smallest mean, standard deviation and range, which 

is due to the authority and comprehensiveness of its data. 

5. Conclusion 

In financial investment, investors highly care about accurately predicting stock price trends. 

Existing single deep learning prediction models can forecast stock prices to a degree, but have 

limitations like non-trivial prediction errors and overfitting risks. This paper first builds a GARCH 

model to catch data's nonlinear relationships, boosting the LSTM model's predictive power. Then, it 

applies the Bayesian Optimization algorithm to the LSTM model. Comparisons with other models 

show that after Gaussian process optimization, the LSTM model effectively solves problems like lag 

and poor fitting in the basic LSTM, thus improving prediction accuracy. With technological progress, 

future stock market predictions require more advanced models to enhance precision and efficiency, 

offering stronger support for market analysis and investment decisions. 
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