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Abstract: With the increasing demand for energy, proton exchange membrane fuel cell 

(PEMFC) is gradually being developed for high-power applications. The power output of 

a single fuel cell is limited, so multi-stack fuel cell systems (MFCS) are used to meet high-

power demands. The performance of fuel cells is influenced by membrane water content, 

but since it cannot be directly measured by sensors, indirect methods are required for 

estimation. Although previous studies have used Luenberger observers to estimate the 

membrane water content of single-stack fuel cells, the air subsystem of multi-stack systems 

is more complex, with stronger variable coupling and nonlinearity, making single-stack 

methods difficult to apply directly. To address this, the study focuses on MFCS and derives 

membrane water content dynamics via mass conservation. A piecewise system 

identification approach yields state and input-output matrices near steady states. 

Observability is verified, and a Luenberger observer is designed for estimating membrane 

water content under varying power levels. Experiments show stable and accurate estimation, 

supporting MFCS health management and control. 

1. Introduction 

Hydrogen, the most abundant element in the universe, is considered an "inexhaustible and 

sustainable" energy source. Its light weight, high energy density, and cleanliness make it a promising 

"ultimate energy." Hydrogen fuel cells, with a the oretical efficiency of up to 90%[1], outperform 

traditional power generation devices and are key for zero-emission vehicles. A typical fuel cell system 

includes a fuel cell stack, air and hydrogen supply systems, and thermal management. However, due 

to technological complexity or measurement limitations, some internal variables, like membrane 

water content, are difficult to measure. Membrane hydration significantly affects proton conductivity 

and fuel cell performance. As Liu[2] noted that proper hydration improves proton conductivity, while 

a dry membrane reduces it, increasing ohmic losses. Therefore, estimating membrane water content 

is crucial for fuel cell monitoring and control. 
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Some researchers have explored real-time monitoring of internal humidity in fuel cells. For 

instance, Zhao[3] divided the cathode into nine sections and used micro humidity sensors, finding that 

cathode humidity significantly affects the polarization curve. However, limited internal space, high 

sensor costs, and response delays hinder practical application. Jiao et al. [4] developed an adaptive 

sliding mode observer to estimate humidity in both anode and cathode, showing reduced average 

estimation error in an 80 kW fuel cell. Yet, the method involves complex computations, strong model 

dependency, and sensitivity to parameter variations. Jian et al.[5] proposed a PEM humidity estimation 

approach based on interval type-2 fuzzy logic and the Cuckoo Search algorithm, achieving accurate 

nonlinear fitting but facing limitations due to high model complexity and computational demand. Zhu  

[6] used interval type-2 fuzzy logic for soft-sensing modeling of PEM humidity, benefiting from its 

nonlinear approximation capability. Hu[7] formulated a state estimation problem using a cathode two-

phase dynamic model, designing a Luenberger observer and an unscented Kalman filter (UKF) to 

estimate liquid water content under flooding, but this approach also suffers from high complexity and 

computational cost. 

To improve real-time monitoring of membrane water content while reducing model complexity 

and parameter tuning, this paper proposes a Luenberger observer-based method for estimating PEM 

water content in multi-stack fuel cell systems (MFCS). Unlike traditional methods, it uses mass 

conservation principles and piecewise system identification to derive system matrices, enhancing 

accuracy and stability. Observability analysis and an optimized feedback gain further ensure 

robustness under varying conditions. This approach simplifies modeling, supports multi-stack 

systems, and offers practical value, with both theoretical and real-world significance for fuel cell 

technology. 

2. Multi-stack fuel cell system stack modelling 

 

Figure 1: MFCS model structure. 

The air subsystem of MFCS is complex, with numerous actuators and strongly coupled, nonlinear 

internal variables. To meet high power demands, this study adopts a multi-stack PEMFC system 

architecture. In such systems, power allocation strategies significantly impact overall performance. 

While the traditional equal distribution method is simple, it may reduce efficiency when stack 

performance varies. In contrast, stepwise allocation adjusts load dynamically based on metrics like 

efficiency and lifespan, making it suitable for high-performance applications. For example, Zhou et 

al.[8] developed a power management model for heavy-duty vehicles that optimizes stack allocation 
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based on efficiency and remaining useful life, using iterative and heuristic algorithms to determine 

optimal configurations for three to five stacks. Gao et al. [9] proposed an optimized stack allocation 

method considering both economics and dynamics (see Fig. 1), showing that MFCS systems with 20 

kW, 70 kW, and 120 kW targets could meet both efficiency and lifespan requirements. 

To cover typical applications from low to high power, this study adopts 20 kW, 70 kW, and 120 

kW multi-stack architectures, based on the MFCS model proposed by Gao et al. [9]. A simplified 

model of the fuel cell stacks is developed. Since this work focuses on macro-level control, the effects 

of flow field geometry, gas diffusion layers, and catalyst layers are not considered. The stack model 

aims to describe gas consumption and production, membrane transport, heat exchange, and power 

output. It includes sub-models for the cathode and anode flow channels, membrane water transport, 

and stack voltage output, as shown in Fig. 2. 

 

Figure 2: Stack model structure. 

Some key parameters of the MFCS used in this study are shown in Table 1. 

Table 1: Key Parameters of MFCS. 

Parameter Value Parameter Value 

Number of Cells in Stack 1 120 Internal Temperature of Stack (℃) 75 

Number of Cells in Stack 2 440 Density of Membrane when dry (𝑘𝑔/𝑐𝑚3) 0.002 

Number of Cells in Stack 3 630 Molar Mass of Membrane when dry (𝑘𝑔/𝑚𝑜𝑙) 1.1 

Proton Exchange Membrane Area 

(𝑐𝑚2) 

120 Thickness of Proton Exchange Membrane 

(𝑐𝑚) 
0.012 

3. Membrane Water Content Estimation Method 

According to the voltage equation of PEMFC, the output voltage is affected by the oxygen partial 

pressure. Therefore, conventional air system control strategies often consider the pressure and flow 

rate inside the stack. Under varying operating conditions, the inlet humidity of the stack is not constant. 

Since membrane water content directly impacts both efficiency and lifespan of the fuel cell, it is 

essential to incorporate control based on membrane hydration (i.e., a function related to humidity). 

Membrane water content significantly affects fuel cell performance. Studies have shown that 

cathode humidity heavily influences output voltage and power density, with optimal performance 

typically achieved near 80% relative humidity. Yousefkhani et al. [10] reported an 8.5% increase in 

peak power density when cathode humidity rose from 50% to 80%, while Shi et al. [11] observed a 10% 

voltage rise at low current densities as humidity increased. These results suggest that maintaining 

cathode humidity around 80% is beneficial for maximizing fuel cell performance.  

3.1. Humidity Estimation Algorithm 

Fuel cells usually receive corresponding signals through sensors for pressure and flow control. 
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When using sensors to observe humidity, humidity has a large delay, that is, the sensor can only 

obtain the humidity at a historical moment. At the same time, humidity sensors are expensive and 

difficult to place inside a small fuel cell stack. Therefore, other methods are needed to indirectly 

obtain the humidity inside the fuel cell. 

For linear time-invariant systems, a Luenberger state observer can be used. The basic principle is 

to estimate the internal states by correcting the system output feedback, ensuring that the estimated 

states converge to the actual states over time[12]. The structure is shown in Fig. 3. 

 

Figure 3: Structure diagram of the state observer. 

The original system can be expressed as follows: 

{
𝑥̇ = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥

  (1) 

where 𝑥 is the system state, defined as the cathode and anode humidity in this study, 𝑢 is the input, 

and 𝑦 is the output. 𝐴 is the state transition matrix, 𝐵 is the input matrix, and 𝐶 is the output matrix. 

The Luenberger observer reconstructs the system's (𝐴𝐵𝐶) matrices with a feedback correction term 

to ensure estimated states converge to actual values. Its structure is given by: 

{
𝑥̇̂ = 𝐴𝑥̂ + 𝐵𝑢 + 𝐺(𝑦 − 𝑦̂)
𝑦̂ = 𝐶𝑥̂

(2) 

where 𝑥̂ is the estimated state,  𝑦̂ is the estimated output, and 𝐺 is the feedback gain matrix. 

Let the error between the actual state and estimated state be 𝑒, then 𝑒̇ can be expressed as: 

𝑒̇ = 𝑥̇ − 𝑥̇̂ = 𝐴(𝑥 − 𝑥̂) − 𝐺(𝑦 − 𝑦̂) = (𝐴 − 𝐺𝐶)𝑒 (3) 

If the real part of the eigenvalues of 𝐴 − 𝐺𝐶 is less than 0, the error eee will converge to 0 over 

time. That is, as time approaches infinity, the estimated state will approach the actual state. 

3.2. Humidity State-Space Equations 

To establish the state-space model for humidity dynamics, this study defines the system inputs, 

outputs, and state variables through humidity-influencing factor analysis. Key assumptions include: 

uniform water vapor distribution, constant 348K operating temperature, and negligible liquid water 

blockage effects. For a single stack, humidity depends on inlet vapor, electro-osmosis, back diffusion, 

and reaction-generated water. 

(1) Incoming Stack Water Vapor 

The cathode and anode inlet streams within the fuel cell carry water vapor that directly impacts 

membrane hydration. Their moisture contributions can be expressed as: 

𝑛̇𝑐𝑎,𝐻2𝑂,𝑖𝑛 =
𝑛̇𝑐𝑎,𝑖𝑛𝜑𝑐𝑎,𝑖𝑛𝑃𝑠𝑎𝑡

𝑃𝑐𝑎,𝑖𝑛
, 𝑛̇𝑎𝑛,𝐻2𝑂,𝑖𝑛 =

0.4𝑛̇𝑎𝑛,𝑖𝑛𝑃𝑠𝑎𝑡
𝑃𝑎𝑛,𝑖𝑛

 (4) 

34



In the equation, 𝑛̇𝑐𝑎
𝑖𝑛 is the cathode inlet molar flow rate, 𝑍 is the cathode inlet humidity, 𝑃𝑐𝑎

𝑖𝑛 is the 

cathode inlet pressure, 𝑛̇𝑎𝑛
𝑖𝑛  is the anode inlet molar flow rate, 𝑃𝑎𝑛

𝑖𝑛 is the anode inlet pressure, and 

𝑃𝑠𝑎𝑡 is the saturation vapor pressure at the current temperature. To simplify the estimation algorithm, 

the anode inlet relative humidity is assumed to be constant at 0.4. 

(2) Electro-osmosis 

Water is transferred from the anode to the cathode through electro-osmosis, which impacts the 

humidity at anode and cathode. The water content due to electro-osmosis can be expressed as: 

𝑛̇𝐻2𝑂,𝑜𝑠𝑚 =
𝑛𝑐𝑒𝑙𝑙𝑛𝑑𝐼

𝐹
(5) 

where 𝑛𝑐𝑒𝑙𝑙  is the number of cells, 𝐼  is the load current, and 𝐹  is Faraday's constant, 𝑛𝑑 is the 

electro-osmotic coefficient, given by: 

𝑛𝑑 = 0.0029𝜆𝑚
2 + 0.05𝜆𝑚 − 3.4 × 10

−19 (6) 

where 𝜆𝑚 is the membrane water content, expressed as:  

𝜆𝑚 = 0.043 + 17.81 (
𝜑𝑐𝑎 + 𝜑𝑎𝑛

2
) − 39.85 (

𝜑𝑐𝑎 + 𝜑𝑎𝑛
2

)
2

+ 36 (
𝜑𝑐𝑎 + 𝜑𝑎𝑛

2
)
3

(7) 

where 𝜑𝑐𝑎 is the cathode humidity and 𝜑𝑎𝑛 is the anode humidity. 

(3) Concentration Diffusion 

Due to the higher moisture content at the cathode compared to the anode, water diffuses from the 

cathode to the anode through the proton exchange membrane. This part typically transfers more water 

than electro-osmosis. The water content diffused can be expressed as: 

𝑛̇𝐻2𝑂,𝑑𝑖𝑓𝑓 = 𝐷𝑤
𝑐𝑐𝑎 − 𝑐𝑎𝑛

𝑙𝑚
(8) 

where 𝐷𝑤 and  𝑐𝑐𝑎 are given by: 

𝐷𝑤 = 10
−6𝐴𝑒

2416(
1
303−

1
𝑇𝑠𝑡
)
,  𝑐𝑐𝑎 =

𝜌𝑚,𝑑𝑟𝑦
𝑀𝑚,𝑑𝑟𝑦

𝜆𝑐𝑎 (9) 

where 𝐴 is the area of the PEM, 𝑇𝑠𝑡 is the stack temperature, 𝜌𝑚,𝑑𝑟𝑦 is the membrane's dry density, 

𝑀𝑚,𝑑𝑟𝑦 is the membrane's molar mass in dry conditions, and 𝜆𝑐𝑎 is the cathode water content. 

(4) Reaction Water Generation 

The water generated by the electrochemical reaction between hydrogen and oxygen is typically 

concentrated at the cathode. This water content can be expressed as: 

𝑛̇𝑐𝑎,𝐻2𝑂,𝑔𝑒𝑛 =
𝑛𝑐𝑒𝑙𝑙𝐼

2𝐹
(10) 

(5) Outgoing Water Vapor 

The exhaust gases from the cathode and anode contain water vapor, which is recycled to the 

humidifier to humidify the incoming air. The water vapor content in the exhaust is given by: 

𝑛̇𝑐𝑎,𝐻2𝑂,𝑜𝑢𝑡 =
𝑛̇𝑐𝑎,𝑜𝑢𝑡𝜑𝑐𝑎𝑃𝑠𝑎𝑡

𝑃𝑐𝑎
,   𝑛̇𝑎𝑛,𝐻2𝑂,𝑜𝑢𝑡 =

𝑛̇𝑎𝑛,𝑜𝑢𝑡𝜑𝑎𝑛𝑃𝑠𝑎𝑡
𝑃𝑎𝑛

 (11) 

where 𝑛̇𝑐𝑎,𝑜𝑢𝑡 is molar flow rate at cathode outlet, and 𝑛̇𝑎𝑛,𝑜𝑢𝑡 is molar flow rate at the anode outlet. 

Based on ideal gas law, the humidity expressions for both cathode and anode can be derived as: 
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{
  
 

  
 𝜑̇𝑐𝑎 =

𝑅𝑇𝑠𝑡
𝑃𝑠𝑎𝑡𝑉𝑐𝑎

(
𝑛̇𝑐𝑎,𝑖𝑛𝜑𝑐𝑎,𝑖𝑛𝑃𝑠𝑎𝑡

𝑃𝑐𝑎,𝑖𝑛
+
𝑛𝑐𝑒𝑙𝑙𝑛𝑑𝐼

𝐹
− 𝐷𝑤

(𝑐𝑐𝑎 − 𝑐𝑎𝑛)

𝑙𝑚
+
𝑛𝑐𝑒𝑙𝑙𝐼

2𝐹
−
𝑛̇𝑐𝑎,𝑜𝑢𝑡𝜑𝑐𝑎𝑃𝑠𝑎𝑡

𝑃𝑐𝑎
)

𝜑̇𝑎𝑛 =
𝑅𝑇𝑠𝑡
𝑃𝑠𝑎𝑡𝑉𝑎𝑛

(
0.4𝑛̇𝑎𝑛,𝑖𝑛𝑃𝑠𝑎𝑡

𝑃𝑎𝑛,𝑖𝑛
−
𝑛𝑐𝑒𝑙𝑙𝑛𝑑𝐼

𝐹
+ 𝐷𝑤

(𝑐𝑐𝑎 − 𝑐𝑎𝑛)

𝑙𝑚
−
𝑛̇𝑎𝑛,𝑜𝑢𝑡𝜑𝑎𝑛𝑃𝑠𝑎𝑡

𝑃𝑎𝑛
)

(12) 

where 𝜑̇𝑐𝑎 and 𝜑̇𝑎𝑛 represent the change rates of cathode and anode humidity, respectively, and 

𝑉𝑐𝑎  and  𝑉𝑎𝑛  are the volumes of the cathode and anode channels. 

From the above equations, it can be observed that the humidity at both the cathode and anode is 

influenced by inlet and outlet flow rates, pressure, load current, and other factors, and the relationships 

are highly nonlinear. These physical quantities change over time, and the variation patterns differ 

under different operating conditions. To generalize the humidity estimation algorithm and make it 

adaptable to various types of fuel cells and operating conditions, this study will use system 

identification methods, performing piecewise identification of the fuel cell system. The identified 

state transition, input, and output matrices will be used as the 𝐴, 𝐵, and 𝐶 matrices for the state 

observer. The two state variables are cathode humidity and anode humidity, with the input being 

cathode inlet humidity, the disturbance input being load current, and the output being the fuel cell 

voltage. 

3.3. System Output Equation 

To design a Luenberger observer, a measurable output must be selected. Since the fuel cell voltage 

is directly measurable and influenced by anode/cathode humidity and membrane water content, it is 

chosen as the system output. The voltage can be expressed as a simplified nonlinear function of these 

humidity states and load current: 

𝑈 = 𝑓(𝜑𝑐𝑎, 𝜑𝑎𝑛, 𝐼) (13) 

3.4. Nonlinear System Steady-State Point Selection 

Since the fuel cell is a typical nonlinear system, and the Luenberger state observer is a full-

dimensional linear observer, it can only be applied to linear systems. Therefore, a linearization 

approach for nonlinear systems is considered. It is approximated that the fuel cell exhibits good 

linearity around each operating point. Thus, near the equilibrium point, the original system can be 

written in the following incremental form: 

{
Δ𝑥̇ = 𝐴Δ𝑥 + 𝐵Δ𝑢
Δ𝑦 = 𝐶Δ𝑥

(14) 

where 𝐴 is the state transition matrix, 𝐵 is the input matrix, and 𝐶 is the output matrix. Δrepresents 

the deviation from the steady-state data.  

Since the operating conditions and load currents vary, the CWTVC condition, which has the largest 

range of current demand, is used as an example for dividing the operating points, as shown in the fig. 

4. 
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Figure 4: Variation of current in each stack under CWTVC operating conditions. 

From Fig. 4, it can be seen that under the CWTVC condition, the required current for the three 

fuel cell stacks varies within the range of 10-230A. The steady-state operating conditions for the 

entire MFCS are summarized in Tab. 2 as shown below: 

Table 2: Parameter calibration table of the fuel cell at different operating conditions. 

 Point 1 Point 2 Point 3 Point 4 

Current  28A 67.5A 115A 210A 

Current Range 10-45A 45-85A 85-145A 145-230A 

Cathode Humidity of Stack 1 62.5% 78.6% 92.9% 100% 

Cathode Humidity of Stack 2 61.8% 75.4% 89.6% 100% 

Cathode Humidity of Stack 3 63.7% 74.1% 91.7% 100% 

Anode Humidity of Stack 1 70.3% 70.7% 72.2% 73.7% 

Anode Humidity of Stack 2 80.5% 82.6% 84.2% 86.2% 

Anode Humidity of Stack 3 80.4% 83.9% 85.5% 86.9% 

Inlet Humidity of Stack 1 49.9% 60.3% 70.6% 81.6% 

Inlet Humidity of Stack 2 48.3% 61.6% 69.4% 80.9% 

Inlet Humidity of Stack 3 50.2% 59.7% 70.5% 82.2% 

Voltage of Stack 1 105.1 95.9 92.6 88.1 

Voltage of Stack 2 382.8 349 340.6 314.6 

Voltage of Stack 3 549.7 503.8 494.1 457.8 

3.5. System Identification 

To enhance the adaptability of the humidity estimation algorithm, a system identification approach 

is used to construct the humidity observer. Since the same system identification method is applied to 

all three fuel cell stacks (20 kW, 70 kW, and 120 kW), this section uses the 20 kW stack as an example 

to describe the system identification process. The related processes for the 70 kW and 120 kW stacks 

are not elaborated here. 

(1) Identification Signal Design 

In this study, a step-like random signal is used as the identification signal to perform the system 

identification. The identification signal is shown in Fig. 5: 
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Figure 5: Diagram of the identification signal. 

(2) Model Selection 

Since the humidity observer contains two state variables and multiple inputs, and it can be assumed 

that, near each operating point, the variation of variables other than the anode and cathode humidity 

is negligible, a linear state-space model with an order of 2 is chosen for the identification model. 

(3) Identification Process and Results  

At four operating points, the system operates for 300 seconds to stabilize, after which the 

identification signal is injected into the original system and continuously excited for 1500 seconds to 

collect system output data. The input (cathode inlet humidity, load current) and output (fuel cell 

voltage) data are imported into the MATLAB identification toolbox to obtain identification results 

and accuracy at each operating point. The identification matrix for the 20 kW fuel cell stack is shown 

in Table 3: 

Table 3: Identification matrix for the 20 kW stack. 

Operating Point A Matrix B Matrix C Matrix Identification 

Accuracy 

28A [
0.42 −1.29
9.06 2.75

] [
6.04e − 4 0.06
−0.001 −0.13

] [−11.87 0.28] 0.82 

67.5A [
−11.77 −32.3
−7.41 −23.8

] [
−6.06 −6.06e + 2
−4.23 −4.24e + 2

] [1.78 −2.53] 0.84 

115A [
−3.19 5.51
−3.06 0.61

] [
5.51𝑒 − 05 0.005
−4.75𝑒 − 04 −0.04

] [−0.17 2.56] 0.76 

210A [
−0.11 1.31
−0.92 −15.25

] [
−3.96𝑒 − 4 −0.03
0.004 0.44

] [17.6 −1.27] 0.88 

3.6. Observability Test 

Constructing a state observer requires the system to be observable—otherwise, a full-dimensional 

observer cannot estimate the system's state. Observability means the system's internal state can be 

determined from its measurable outputs and inputs. This paper uses the rank criterion to verify 

observability: 

{
𝑥̇ = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥

(15) 

The necessary and sufficient condition for complete observability is that the rank of the 

observability matrix is full rank. The observability matrix can be expressed as: 
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𝑠0 = [

𝐶 
𝐶𝐴
…

𝐶𝐴𝑛−1

] (16) 

For the MFCS in this paper, the observability matrix must be checked for full rank at each 

operating point. The observability matrix at each operating point is shown in Table 4: 

Table 4: Rank of the observability matrix for the 20 kW stack. 

Operating 

Point 

Observability Matrix Rank Operating 

Point 

Observability Matrix Rank 

28A [
−18.03 −35.15
43.18 −39.18

] 
2 

115A [
−2.16 −0.69
−3.07 17.86

] 2 

67.5A [
14.64 −11.37
−43.59 −47.78

] 2 210A [
−2.17 1.15
5.09 4.05

] 2 

As shown in Table 4, the observability matrix of the system is full rank at all operating points, 

indicating that the system is observable. Therefore, it is feasible to use a Luenberger state observer 

for full-dimensional state estimation. 

3.7. Feedback Matrix Selection 

The Luenberger observer's feedback matrix 𝐺 must ensure 𝐴 − 𝐺𝐶 has negative eigenvalues for 

convergence, while avoiding excessive gain to prevent oscillations. In this work, pole placement and 

iterative tuning are used to set all eigenvalues of 𝐴 − 𝐺𝐶  to −10 across operating points. The 

resulting 𝐺 matrices are listed in Table 5: 

Table 5: Feedback matrix for the 20 kW stack. 

Operating Point Feedback Matrix G Operating Point Observability Matrix 

28A [139.1808 − 76.9369] 115A [−75.9484;  44.3789] 
67.5A [−59.9701; −93.4093] 210A [580.9;  1256.6] 

3.8. Incremental State Observer Construction 

Using the incremental values of the anode and cathode humidity and their steady-state values as 

state variables, the incremental values of the cathode inlet humidity and load current as inputs, and 

the incremental values of the fuel cell voltage and steady-state values as outputs, the system is 

corrected through feedback to make the estimated states converge to the actual states. For each steady-

state operating point, the entire incremental state observer model can be expressed as: 

{
Δ𝑥̇̂ = 𝐴Δ𝑥̂ + 𝐵Δ𝑢 + 𝐺(Δy − Δ𝑦̂)
Δŷ = CΔ𝑥̂

(17) 

Where Δ represents the deviation from the steady-state values for each physical quantity, 𝑢 is the 

actual input, and y is the actual output. 

4. Humidity Estimation and Membrane Water Content Estimation Results 

In this paper, the actual humidity is calculated using a mathematical model based on mass 

conservation and the ideal gas law, while the estimated humidity is derived from the observer. A 

comparison between the actual and estimated humidity is made to verify the reasonableness and 

accuracy of the humidity estimation algorithm. 

Under the CWTVC operating condition, the changes in actual and estimated humidity for the 
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MFCS are shown in the following figures: 

 
(a)          (b) 

Figure 6: Estimated vs. real humidity (a) and membrane water content (b) in the 20 kW stack. 

As shown in Fig. 6, under the entire operating condition, the estimated humidity from the humidity 

observer for the 20 kW stack closely follows the trend of the actual humidity obtained through the 

mechanistic model. However, at 870 seconds, there is a noticeable jump in the estimated humidity. 

This is due to the fact that the load current of the stack reached the switching threshold at this point, 

causing the observer to switch its internal model, which resulted in the sudden change in the estimated 

humidity. 

 
(a)         (b) 

Figure 7: Estimated vs. real humidity (a) and membrane water content (b) in the 70 kW stack. 

As shown in Fig. 7, in the 70 kW stack, due to the use of exhaust gas to humidify the cathode inlet 

air, the inlet humidity sometimes becomes excessively high under the CWTVC operating condition, 

causing the stack's internal humidity to reach 100%. At this point, the cathode inside the stack is 

flooded. However, throughout the entire operating condition, the trend of the estimated humidity from 

the humidity observer closely matches that of the actual humidity obtained through the mechanistic 

model. 
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(a)          (b) 

Figure 8: Estimated vs. real humidity (a) and membrane water content (b) in the 120 kW stack. 

As shown in Fig. 8, the performance of the 120 kW stack is similar to that of the previous two 

stacks. Overall, the humidity observer provides good estimation performance. 

5. Conclusion 

Membrane water content is a key factor influencing the efficiency and lifespan of PEMFC. Since 

it cannot be directly measured, this paper proposes a humidity observation algorithm to estimate it. 

First, by analysing the influencing factors of humidity, the necessary system inputs, states, and 

outputs for constructing a state observer were determined. Then, the system was identified in 

segments, and the input-output relationships as well as the state transition matrices for different 

operating conditions were obtained. 

Subsequently, the system's observability was verified to ensure the feasibility of using a full-order 

state observer. A feedback matrix 𝐺 was designed to ensure that the estimated states converge to the 

actual states over time. An incremental humidity state observer was then established in Simulink, and 

its accuracy was validated under the CWTVC working condition. 

The experimental results show that, for the vast majority of the time, the estimated humidity values 

from the observer closely follow the trend of the actual humidity calculated using a physics-based 

model. This indicates that the humidity estimation algorithm has high reliability. Only when the stack 

current reaches a switching threshold, causing the observer to switch its internal model, does a 

transient deviation in the estimated humidity occur. Moreover, the observer performs well across 

stacks with power ratings of 20 kW, 70 kW, and 120 kW, demonstrating its good generalizability. 

In summary, the proposed humidity estimation algorithm can effectively estimate the humidity 

within the fuel cell system and offers practical value. It provides reliable data support for the 

monitoring and control of fuel cell operating conditions. 
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