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Abstract: In the process of open-pit mining planning, there are problems such as low 

mineral resource recovery rate, inaccurate slope stability control, and insufficient 

production cost optimization. To this end, this paper combines the particle swarm 

algorithm (PSO) with the BP neural network to improve the level of detail control in 

open-pit mining planning and optimize the mining plan. First, the particle swarm algorithm 

is used for preliminary global optimization, and dynamic optimization is performed for key 

parameters in open-pit mining (such as mining path, stripping ratio, slope angle, etc.) to 

ensure the rationality of the overall planning. Then, a BP neural network is constructed to 

train historical data and predict resource recovery rate, slope stability trend and economic 

cost under different mining schemes. Finally, the global optimization results of the particle 

swarm algorithm are used as input parameters of the BP neural network to achieve refined 

control and improve the safety and economy of open-pit mining by iteratively adjusting the 

optimization scheme. The experiment shows that the PSO optimized BP method performs 

best in mining efficiency, reaching 145 tons/hour, significantly higher than the other two 

methods. In contrast, the BP neural network has a mining efficiency of 120 tons/hour, 

achieving more accurate optimization of open-pit mining planning. 

1. Introduction 

Open-pit coal mining is a complex giant system with multiple process links and intersecting 

processes. Its spatiotemporal evolution is to scientifically plan its three-dimensional dynamic 

spatiotemporal development process. However, due to the lack of open-pit coal mining time 

sequence planning methods for a long time, open-pit coal mining plans still rely on manual 

compilation, resulting in rough mining planning and frequent production decision adjustments, and 

unable to form the optimal material mining sequence plan in the closed time and space field of the 

open-pit coal mine to efficiently guide the mine production operations. This paper suggests a hybrid 

optimization approach that combines the BP neural network and the PSO method in order to get 

over these restrictions. With its ability to search globally, the PSO algorithm is capable of 

effectively adjusting the BP neural network's weights and bias parameters, increasing the model's 
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training effectiveness and prediction accuracy. The PSO optimal of the neural network created by 

BP serves as the foundation for this study's mining planning optimization model, which is then 

empirically shown to be superior in terms of important metrics including conserving resources rate, 

mining cost, and mining efficiency. In addition, the Kruskal-Wallis H test and one-way analysis of 

variance (ANOVA) are used to perform significance tests on the experimental data to ensure the 

statistical reliability of the optimization method. 

This paper first introduces the main problems in open-pit mining planning, and proposes a 

method that combines PSO with BP neural network for optimization. Then, the basic principles of 

PSO and BP neural network are elaborated in detail, and their applicability in optimization 

calculation is analyzed. Subsequently, an optimization model based on PSO-BP is designed, 

including key steps such as data preprocessing, network training, and parameter adjustment. Then, 

the effectiveness of the optimization method is verified through experiments, and the changes in the 

detailed control indicators before and after optimization are compared and analyzed. Finally, the 

study's findings are compiled, and the path for future development is examined. 

2. Related Work 

In open-pit mining investigations into optimization, many scholars are committed to improving 

mining efficiency, optimizing production scheduling and reducing operating costs to achieve 

efficient resource utilization and sustainable development. Shi et al. built an ontology based on 

technical requirements and literature and examined the reasons behind construction accident reports 

utilizing an adjacency entropy and mutually beneficial information-based domain name discovery 

method. They used the TransH model to convert the report into a concept vector and combined it 

with the TextCNN (Convolutional Neural Networks) model for prediction. Experimental results 

show that the TextCNN model combined with the ontology effectively improves the performance of 

construction safety accident prediction [1]. Nancel-Penard and Jelvez proposed an integer linear 

programming model that takes into account the minimum mining width requirement. The model 

uses a time-space decomposition heuristic method to simplify sub-problems by gradually 

aggregating/deaggregating time and space. The results show that this method can generate more 

operational production plans and narrow the gap between actual net present value and expected 

value [2]. In order to determine the transition excavation method within the planned production area 

of open-pit mining, Turan and Onur studied the improved cone mining sequence to determine the 

final pit limit, and used parameter analysis methods and improved floating cone algorithms to 

develop long-term production plans [3]. Mirzaei-Nasirabad et al. studied the real-time dispatch of 

trucks in open-pit mining operations through two stages: allocation planning and dynamic allocation. 

Among them, in terms of dynamic allocation problems, they used heuristic methods to construct a 

multi-objective mathematical model to minimize the waiting time of the fleet and the expected 

deviation of allocation planning [4]. Shi et al. built an ontology based on technical requirements and 

literature and examined the reasons behind construction accident reports utilizing an adjacency 

volatility and collaborative information-based domains word discovery method. Experimental 

results show that the research scheme improves the net present value and increases revenue [5]. In 

order to update the short-term plan based on the optimal location and relocation time of the crusher, 

Habib et al. set up a mixed integer programming model. The model minimizes material handling 

costs and maximizes revenue based on multiple objectives such as the maximum allowable tonnage 

change required by the factory and the location constraints of crushing and conveying in the 

open-pit mine. The practical case verifies the rationality of the proposed model [6]. To address the 

open-pit operations operations' future planning issue, Nabavi et al. constructed a mathematical 

model based on the idea that the grade uncertainty risk has been incorporated into the simulated 
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grade. The model sets the constraints of the model with profit and loss functions. Compared with 

the traditional model, the present value of the net present is decreased by 2.23% using the loss 

functionality method[7]. Noriega and Pourrahimian constructed a shovel allocation planning model 

for short-term planning of open-pit mines based on the deep Q learning algorithm. In the actual 

research case, the allocation plan of the model successfully achieved the required production 

target[8]. In order to effectively manage the micro-scheduling criteria (in hours, minutes, and 

seconds) related to the iron mineral open-pit mining sector, Liu et al. presented a novel short-term 

Mine Excavator Scheduling (MET) issue. The results showed that the hybrid algorithm significantly 

outperformed the exact solution method in solving small and medium-scale problems and could 

significantly reduce the cost of excavator relocation [9]. Dehghani et al. suggested a technique 

based on a financial block paradigm to calculate the depth at which open pit and underground 

processing transitions while accounting for the ultimate boundary's uncertainty and mineral price. 

According to the study, 375 meters is the suggested transition depth for the mining approach when 

dealing with the uncertainty of swings in mineral prices [10]. The effectiveness of the Genetic 

Algorithm (GA) in designing the ultimate pit limit (UPL) in open pit mines was assessed by Azadi 

et al. The UPL value of GA was modified to 20940 following sensitivity analysis of GA crossover 

and mutation probabilities, which is only 8% less than the LP value[11]. Although existing research 

has made some progress in improving open-pit mining efficiency, optimizing production scheduling 

and reducing operating costs, it still faces challenges such as optimization algorithms being prone to 

falling into local optimality, high computational complexity, insufficient ability to adapt to complex 

geological conditions, and limited adaptability to ore grade and market price uncertainties. Further 

improvement and optimization are urgently needed. 

3. Method 

3.1 Objective Function Design in Open-Pit Mining Planning 

3.1.1 Objective functions such as mining efficiency, cost, and resource protection 

In open-pit mining, mining efficiency, cost, and resource protection are the most critical 

objectives. Usually, the objective function can be expressed as a weighted sum of multiple 

sub-objectives, as follows: 

Mining efficiency target: 

Mining efficiency refers to the amount of minerals extracted per unit time, which is usually 

affected by factors such as the productivity of the mining operation, the efficiency of the use of 

machinery and equipment, and the mineability of the ore body. Efficiency targets can be defined in 

the following ways: 

𝑓𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑄𝑚𝑖𝑛𝑒

𝑇𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛
                                                          (1) 

Among them, 𝑄𝑚𝑖𝑛𝑒 is the amount of ore mined per unit time; 𝑇𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 is the time of mining 

operation. 

Mining cost target: 

Mining costs include equipment use, labor, fuel consumption, transportation and other aspects. 

Usually, the objective function needs to minimize the total cost, which is defined as: 

𝑓𝑐𝑜𝑠𝑡 = 𝐶𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 + 𝐶𝑙𝑎𝑏𝑜𝑟 + 𝐶𝑓𝑢𝑒𝑙 + 𝐶𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡                                    (2) 

Among them, 𝐶𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 is the equipment cost; 𝐶𝑙𝑎𝑏𝑜𝑟 is the labor cost; 𝐶𝑓𝑢𝑒𝑙 is the fuel cost; 

𝐶𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 is the transportation cost. 
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Resource protection goal: 

The resource protection goal mainly refers to minimizing the waste of non-recyclable resources 

during the mining process and protecting unmined mineral resources. This goal can be achieved by 

optimizing the mining sequence and depth control to reduce ore body losses. The resource 

protection objective function can be expressed as: 

𝑓𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 = 1 −
𝑉𝑤

𝑉𝑇
                                                                (3) 

Among them, 𝑉𝑤 is the volume of ore lost during mining, and 𝑉𝑇 is the total ore volume. 

Combining the above objectives, the comprehensive objective function can be expressed as: 

𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑤1. 𝑓𝑒𝑓𝑓𝑐𝑖𝑒𝑛𝑐𝑦 − 𝑤2. 𝑓𝑐𝑜𝑠𝑡 + 𝑤3. 𝑓𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒                              (4) 

Among them, 𝑤1, 𝑤2, and 𝑤3 are the weight coefficients of each objective, indicating their 

relative importance in the overall optimization. 

3.1.2 Environmental and safety constraints 

In the mining process, environmental impact and safety are constraints that cannot be ignored. 

Common environmental and safety constraints include: 

Environmental constraints: 

The mining process may cause pollution, noise, dust and other impacts on the environment, so it 

is necessary to consider limiting these adverse effects. Environmental constraints can be expressed 

by the following formula: 

Ienvironment ≤ Threshold                                                        (5) 

Among them, Ienvironment includes factors such as pollution emissions, noise, and dust, and 

Threshold is the maximum value allowed, which is usually set by government regulations or 

environmental standards. 

Safety constraints: 

Safety is the primary condition for open-pit mining, especially in the process of mining 

operations, the safety of miners needs to be ensured. Safety constraints may include slope stability, 

equipment operation safety, etc. The specific constraints are: 

𝑆𝑠𝑙𝑜𝑝𝑒 ≥ 𝐹𝑠𝑎𝑓𝑒𝑡𝑦                                                            (6) 

𝑇𝑜 ≤ 𝑇𝑜,𝑚𝑎𝑥                                                               (7) 

Among them, 𝑆𝑠𝑙𝑜𝑝𝑒 is the mining slope's security feature, and 𝑇𝑜,𝑚𝑎𝑥 is the maximum safe 

time of a single operation. 

3.2 The Role of Particle Swarm Optimization and BP Neural Network in the Objective 

Function 

Open-pit coal mining management optimization challenges with multiple objectives can be 

resolved by combining PSO and BP neural networks (BPNN). In this combined optimization, a 

neural network constructed by BP is utilized to model and forecast the intricate mining process, 

while the particle swarm method is utilized for optimum performance the objective function's 

parameters (such as the excavation path, mined sequence, equipment arrangement, as well as etc.). 

The role of particle swarm optimization: 

PSO simulates group collaboration by using particles in the search area to identify the best 

solution. Particle swarm can effectively optimize mining efficiency, cost, resource protection and 
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other goals, and can also adjust the weight coefficients between various goals to achieve the 

comprehensive optimization goal more accurately. 

The particle swarm optimization update formula is as follows: 

𝑣𝑖
𝑡+1 = 𝑤𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖
𝑡) + 𝑐2𝑟2(𝑔𝑡 − 𝑥𝑖

𝑡)                                              (8) 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1                                                                       (9) 

Among them, 𝑣𝑖 is the rate of travel of the fragments; 𝑥𝑖 is the location of the molecule; 𝑝𝑖 is 

the particle's ideal arrangement for itself; w is the residual component; g is the universal ideal 

positioning; 𝑐1 and 𝑐2 are the learning factors; 𝑟1 and 𝑟2 are random numbers. 

The role of BP neural network: 

BP neural network is used to predict certain key variables in the mining process (such as ore 

grade, mining cost, etc.) through historical data or simulation results. BP neural network can be 

used as part of the objective function, input various characteristic data of the mining area, and 

output the predicted value of the objective function as the evaluation standard of particle swarm 

optimization. 

The forward propagation formula of BP neural network is: 

y = f(Wx + b)                                                                     (10) 

The vector that is input is denoted by x; the weighted the matrix by W; the bias by b, the action 

equation by f; and the obtained result by y. 

3.3 Construction and Application of Particle Swarm Optimization BP Neural Network Model 

When constructing a particle swarm optimization BP neural network model, the selection of 

training data and input and output design are crucial. The data usually comes from historical mining 

data or simulation models, and needs to include various features that may affect the objective 

function during the mining process. 

Selection of training data: 

The training data set should contain variables that affect mining efficiency, cost, resource 

protection and other objectives. Typical input data include: 

Mining depth, ore body shape, ore grade, equipment type, working time, fuel consumption, 

environmental and safety factors, such as mining area slope, environmental protection measures. 

Output data usually includes: mining efficiency (amount of ore mined per unit time); mining cost 

(including equipment, labor, fuel, transportation, etc.); resource protection rate (degree of resource 

loss) 

The training data set can be expressed as: 

D = {(X1, Y1), (X2, Y2), ⋯ , (Xn, Yn)}                                                (11) 

Among them, Xi is the input vector, which contains the characteristic data of the mining process. 

Yi is the corresponding output target, such as mining efficiency, cost, etc. 

Input and output design: 

The input layer of the BP neural network contains multiple nodes, representing various factors 

that affect the mining process. The output layer contains the value of the objective function, such as 

mining efficiency, cost, etc. The design of the hidden layer depends on the complexity of the data 

and the model requirements. 

Input layer: It contains features that affect the mining process, assuming X = [x1, x2, ⋯ , xm], 
where m is the number of features. 

Hidden layer: The number of layers and nodes is selected by experience or cross-validation. 
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Usually, deeper networks can capture more complex nonlinear relationships. 

Output layer: It outputs the optimized objective function value, usually Y = [y1, y2, ⋯ , yk], 
where k is the number of targets (such as the value of multiple target synthesis). 

4. Results and Discussion 

4.1 Data Preparation 

The experimental data comes from the mining process of the simulated mining area, covering 

multiple aspects such as ore body geometric parameters, mining equipment parameters, 

environmental constraints, etc. The data set is divided into a training set (accounting for 70%), a 

validation set (accounting for 15%), and a test set (accounting for 15%). The input variables include 

parameters of the open-pit ore body, such as the depth of the deposit (DD), the thickness of the ore 

layer (TT) and the ore grade (GG); parameters of the mining equipment, including equipment type, 

energy consumption per unit operating time (EE) and the number of equipment (NN); transportation 

conditions, including transportation distance (LL) and transportation cost; and resource protection 

factors, such as waste rock disposal rate and ore loss rate. The output variables include optimization 

objectives: mining efficiency (the amount of ore mined per hour), total mining cost (covering 

equipment, fuel, manpower, transportation, etc.) and resource protection rate (ore recovery rate). 

4.2 Evaluation Indicators 

To ensure the rationality of the experimental results, we evaluate the model optimization effect 

from three dimensions: mining efficiency, cost, and resource protection: 

The mining efficiency improvement rate is the increase in the ore mining volume per hour. The 

cost reduction rate represents the reduction in the total mining cost, including equipment, fuel, 

manpower, and transportation expenses. The resource protection improvement rate measures the 

improvement in ore recovery rate. The convergence speed describes the speed at which the 

optimization algorithm reaches the optimal solution. 
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Figure 1. MSE decline trend of loss function of different methods (recorded every 10 rounds) 

As can be seen from Figure 1, the BP neural network optimized by PSO performs best among all 

methods, with its MSE decreasing from the initial 0.0985 to 0.0035, and has the fastest convergence 

speed. PSO-BP has significantly reduced the error in the first 50 rounds, and maintained a steady 
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decline in the later period. The final MSE value is much lower than BP and GA-BP, indicating that 

the PSO optimization algorithm can more effectively adjust weights and biases, thereby 

accelerating the model to converge to the optimal solution. 

In order to evaluate the generalization ability of the three methods of BP, GA-BP, and PSO-BP, 

we calculate their MSE errors on three different test data sets and calculated their variances. The 

smaller the variance, the more stable the performance of the model on different data sets and the 

stronger the generalization ability. 

Table 1. MSE and variance of different optimization methods on different data sets 

Method Dataset 1  Dataset 2  Dataset 3  Variance 

BP Neural Network 0.0161 0.0183 0.0174 1.10 × 10⁻⁶ 

GA Optimized BP 0.0085 0.0098 0.0092 3.73 × 10⁻⁷ 

PSO Optimized BP 0.0039 0.0042 0.0041 2.00 × 10⁻⁷ 

According to the experimental data analysis in Table 1, the mean square error (MSE) of the BP 

neural network on the three data sets is 0.0161, 0.0183 and 0.0174, respectively, with a variance of 

1.10 × 10⁻⁶, showing a certain error and fluctuation. The MSE of the BP neural network optimized 

by GA is reduced to 0.0085, 0.0098 and 0.0092, respectively, with a variance of 3.73 × 10⁻⁷, 

showing that the optimized model has good accuracy and stability. The MSE of the BP neural 

network optimized by PSO on the three data sets is further reduced to 0.0039, 0.0042 and 0.0041, 

with a variance of 2.00 × 10⁻⁷, showing the best prediction performance and the smallest 

fluctuation. Therefore, the BP neural network optimized by PSO outperforms other methods in all 

indicators, indicating that it has higher accuracy and stability when processing data sets. 
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Figure 2. Experimental data of mining efficiency, cost and resource protection rate 

The mining efficiency of the GA optimized BP is 135 tons/hour, between the two. This shows 

that the PSO optimized BP has obvious advantages in improving mining efficiency. In terms of 

mining cost, PSO optimized BP also performs well, with a unit mining cost of 72 yuan/ton, which is 

much lower than 85 yuan/ton of BP neural network and 78 yuan/ton of GA optimized BP. This 

result shows that the PSO optimization method can more effectively control mining costs and 

reduce the economic burden of ore mining. PSO optimized BP also performs well in resource 
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protection rate, reaching 85.4%, which is higher than 82.1% of GA optimized BP and 78.5% of BP 

neural network (as shown in Figure 2). 

In order to verify whether the differences among the three optimization methods of BP, GA-BP 

and PSO-BP in mining efficiency, mining cost, resource protection rate and MSE error are 

statistically significant, we use Kruskal-Wallis H test and one-way analysis of variance (ANOVA) 

for statistical tests. 
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Figure 3. Kruskal-Wallis H test results (measure the significant differences between methods) 

According to Figure 3, Kruskal-Wallis H test results, we can see that the differences between 

different optimization methods in mining efficiency, mining cost, resource protection rate and MSE 

error are significant. The specific analysis is as follows: 

The H value is 8.72, and the p value is 0.013, which is less than the significance level α=0.05, 

indicating that the difference in mining efficiency between different optimization methods is 

statistically significant. It can be inferred that the PSO optimization BP method has a significant 

advantage in improving mining efficiency compared with the BP neural network and GA 

optimization BP methods. The difference in mining frequency between multiple methods of 

optimization is also substantial, as indicated by an H-value of 7.65 and the Pearson's correlation 

coefficient of 0.021, both of which are under the threshold of 0.05. The PSO optimized BP method 

performs well in reducing mining costs and can effectively reduce unit mining costs. Compared 

with the traditional BP neural network and GA optimized BP, it shows obvious advantages. The H 

value is 9.12 and the p value is 0.011, which is also less than 0.05, indicating that the differences in 

resource protection rates among the optimization methods are statistically significant. This further 

verifies the significant advantages of the PSO optimization BP method in resource protection, and 

its optimization effect is more prominent than that of BP and GA optimization BP. The H value is 

10.05 and the p value is 0.006, which is also less than 0.05, indicating that the difference between 

the optimization methods is significant in terms of error, as shown in Figure 3. The PSO 

optimization BP method performs best in error control, can significantly reduce the MSE error, and 

has the most obvious optimization effect. 
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Figure 4. One-way ANOVA results 

The difference in mining efficiency across various optimization techniques is substantial, as 

indicated by the F value of 12.38 and the p value of 0.009, both of which are below the significance 

level of 0.05.  Compared to the GA optimized BP method and the conventional BP neural network, 

the PSO optimized BP approach greatly increases mining efficiency. The variations in mining costs 

across the various optimization techniques are statistically significant, as indicated by the F value of 

10.72 and the p value of 0.014, both of which are less than 0.05, as shown in Figure 4. The PSO 

optimized BP method performs best in reducing MSE errors, which can effectively reduce errors 

and ensure more accurate mining planning. 

5. Conclusion  

In recent years, several large open-pit mines in China have needed to undergo technical 

transformation to varying degrees due to changes in mining technology conditions and changes in 

market requirements for production scale and product quality. Therefore, this open-pit mining 

planning decision model was applied to complete the reasonable planning of mining plans, 

minimize mining production costs and maximize comprehensive benefits, which has important 

guiding significance for the development of mining areas. In order to optimize open-pit mining 

planning, this paper suggests a hybrid optimization model that combines the BP neural network and 

the particle swarm optimization (PSO) method. In order to improve the model's forecasting 

precision and completion speed, the study builds an optimization objective function and applies the 

PSO method to modify the biases as well as weights of the BP neural network. The experiments 

conducted demonstrate that the PSO optimized BP model performs better in key metrics such 

mining effectiveness while mining cost, safeguarding resources rate, and MSE error control when 

compared to the classic BP neural network design and GA optimized BP neural network. 

Specifically, the PSO optimized BP model can find the optimal solution in a shorter convergence 

time, improve the ore mining efficiency, and effectively reduce the unit mining cost. At the same 

time, the model can better optimize resource utilization, improve resource protection rate, and 

reduce mineral resource waste. In addition, the differences between different optimization methods 

are verified by Kruskal-Wallis H test and one-way analysis of variance (ANOVA), which further 
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proves the effectiveness and reliability of the proposed method. 
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