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Abstract: The flower pollination algorithm exhibits notable strengths, including robust 

search capabilities, minimal parameter requirements, and a straightforward architecture, but 

due to the randomness of its local search, it leads to slow convergence. Comparatively, the 

raccoon optimization algorithm does not require parameter adjustment, and the local search 

range is gradually reduced over time, ensuring the algorithm's effectiveness and convergence. 

However, for solving high-dimensional complex problems, the global search time is too long 

to reach the optimal global solution. Therefore, This study introduces a novel coati flower 

pollination algorithm incorporating an intra-group competition mechanism, effectively 

integrating the global exploration capabilities of FPA with the local exploitation 

characteristics of COA. The algorithm divides the population by k-means clustering to 

improve diversity and utilizes the competition mechanism to promote information exchange 

among individuals. For winning and losing individuals, the improved flower pollination 

algorithm and coati optimization algorithm are used for iterative updating, respectively, and 

adaptive polynomial mutation is introduced to avoid local optima. The superiority of the 

algorithm is verified on the CEC2017. 

1. Introduction 

It is well-known that optimization problems are prevalent in various fields, covering engineering 

design [1], shop floor scheduling [2], image processing [3], face recognition [4], feature selection [5], 

stock prediction [6], air quality detection [7], and many other practical applications [8], [9]. The 

common feature of these problems is seeking optimal solutions or decisions to maximize or minimize 

a specific objective function [10]. However, since traditional methods are usually based on 

deterministic rules or mathematical models, their performance is limited when confronted with 

complex, nonlinear, or high-dimensional optimization problems. For example, in engineering design, 

the combination of optimization variables and the complexity of constraints often prevent traditional 

analytical methods from finding the global optimal solution [11]. Similarly, in feature selection, when 

confronted with high-dimensional datasets, there is the challenge of removing redundant features and 

selecting the optimal combination of features to ensure that the data can be utilized more efficiently 

[12].  

To address the inherent constraints associated with conventional approaches, researchers have 
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started to explore more flexible and adaptable solutions. Heuristic algorithms [13], [14], as a common 

alternative, search for optimal solutions by simulating the evolution of nature, principles of physics, 

or artificial intelligence techniques. These algorithms include genetic algorithms [15], ant colony 

algorithms [16], particle swarm optimization [17], and so on. In contrast to conventional approaches, 

heuristic algorithms demonstrate enhanced robustness and superior global exploration capabilities, 

effectively mitigating the risk of local optima entrapment while maintaining applicability across 

diverse optimization scenarios. Nevertheless, as established by the "No Free Lunch" theorem [18], 

universal optimization methods do not exist, implying that each algorithmic approach possesses 

distinct strengths and inherent limitations. Therefore, to better solve real-life problems, researchers 

propose many other new algorithms or improve existing algorithms, or even mix them to achieve 

better results [19].  

Particularly, hybrid optimization methodologies [20]-[22] have garnered significant research 

interest due to their ability to synergistically integrate the merits of diverse algorithms for addressing 

complex optimization challenges. The fundamental principle underlying these hybrid approaches lies 

in the strategic combination or sequential integration of multiple optimization techniques, thereby 

leveraging their complementary strengths while mitigating individual limitations. With hybrid 

algorithms, higher search efficiency, better convergence, and more accurate results can be achieved. 

For example, in 2021, Hussain. et al. found that the global optimization search of Harris Hawks 

Optimization (HHO) [23] is too stochastic, which may result in the algorithm failing to search the 

effective region, and to ameliorate this problem, an efficient hybrid sine-cosine Harris Hawks 

Optimization (SCAHHO) [24] was proposed. Since the Sine-cosine Algorithm (SCA) [25] possesses 

the properties of both sine and cosine functions and can perform an effective global search in the 

solution space, the algorithm uses the search strategy of SCA to replace the global search strategy of 

the original HHO, which improves the global search capability of the HHO and at the same time 

ensures that the algorithm can efficiently converge to the global optimal solution. 2022, Ewees. et al. 

proposed a Slime Mould Algorithm (SMA) improved Gradient-based optimizer (GBO) [26]. Owing 

to its distinctive characteristics including accelerated convergence rates, enhanced robustness, and 

superior solution precision, the SMA [27] has been strategically integrated to address the inherent 

limitations of the gradient-based optimizer (GBO), particularly its inadequate local exploitation 

capability frequently leading to premature convergence. This hybrid approach incorporates SMA as 

a local search operator within the GBO framework [28], thereby significantly improving the 

algorithm's capacity for comprehensive exploration across the solution space. 

However, combining multiple algorithms to construct a good hybrid algorithm is difficult because 

the results of hybrid algorithms often depend on how multiple algorithms are constructed. So far, 

most of the hybrid algorithm construction methods use a randomized hybrid approach. And this 

randomized hybrid approach is to choose each strategy randomly in each iteration, and the 

convergence performance is difficult to guarantee. Therefore, when constructing hybrid algorithms, 

while considering the randomness of the algorithms, it is more necessary to consider selecting their 

corresponding iteration strategies for different populations to better ensure their convergence 

performance.  

The flower pollination algorithm (FPA) [29], developed by Yang in 2012, represents a biologically-

inspired computational optimization technique that mimics the natural pollination processes observed 

in flowering plants. This algorithm demonstrates distinctive characteristics including robust search 

capabilities, minimal parameter requirements, and structural simplicity. However, its search 

mechanism is constrained by the conversion probability parameter, leading to challenges in 

maintaining an optimal balance between exploitation and exploration processes. Furthermore, the 

algorithm's local search strategy exhibits excessive randomness, resulting in suboptimal convergence 

rates toward global optima. The Coati Optimization Algorithm (COA) [30] is a new heuristic 
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algorithm proposed by Dehghani. et al. In 2022, researchers developed the coati optimization 

algorithm (COA) through systematic investigation of coati predation behaviors and predator 

avoidance mechanisms. This algorithm exhibits distinctive advantages, including parameter-free 

operation and an adaptive local search range that progressively narrows during the optimization 

process, thereby ensuring both search efficiency and algorithmic convergence. The incorporation of 

COA's local search strategy effectively addresses FPA's convergence limitations caused by excessive 

randomness in its local search mechanism. Therefore, these two algorithms are mixed in this paper. 

Different from the above hybrid class algorithms that only perform a simple combination of 

multiple algorithms, the algorithm proposed in this paper divides the population and uses a 

competition mechanism for each divided sub-population, choosing different iteration strategies for 

different individuals, which improves the problem that convergence is difficult to guarantee in hybrid 

algorithms. The principal contributions of this research can be summarized as follows: 

(a) The k-means clustering technique is employed to partition the randomly initialized population, 

effectively segmenting the solution space into distinct regions. This strategic division enhances the 

algorithm's exploration capability across the entire search domain. Furthermore, this approach 

significantly minimizes redundant exploration of similar solutions, thereby accelerating the 

algorithm's convergence rate. 

(b) Use of competition mechanism in each divided subpopulation. Within each subpopulation, 

individuals are systematically sorted in ascending order based on their fitness evaluations. The 

superior half of these ranked individuals are classified as dominant solutions, while the remaining 

members are designated as non-dominant solutions. Moreover, the winning individuals are iteratively 

updated using the coati local search method, and the failed individuals are iteratively updated using 

the improved flower pollination algorithm. 

(c) Enhancement of the flower pollination algorithm's search strategy is presented. This study, 

inspired by the PSO algorithm, integrates the local and global search methods of the flower 

pollination algorithm into a unified formula. By employing two operators to regulate these search 

methods, it removes the reliance on conversion probability and facilitates more efficient exploration 

within the solution space. 

(d) Adaptive polynomial mutation of globally optimal individuals. To prevent the algorithm from 

getting trapped in a local optimum, after each update iteration, the global optimum is mutated using 

a polynomial mutation strategy, and the mutated individual is compared with the unmutated 

individual to select the one with the better fitness value as the final individual. 

The remainder of this manuscript is structured as follows: Section 2 elaborates on the fundamental 

principles underlying both the flower pollination algorithm (FPA) and coati optimization algorithm 

(COA). Section 3 provides a comprehensive description of the proposed KSCOFPA methodology. 

Section 4 presents extensive experimental results and corresponding discussions. Finally, Section 5 

concludes the study with a summary of key findings and outlines potential directions for future 

investigations.  

2. Preliminaries 

2.1 Flower Pollination Algorithm 

Self-pollination and cross-pollination are the two primary methods of pollination. Self-pollination 

occurs when a plant's pollen fertilizes its flowers in the absence of reliable pollinators. In contrast, 

cross-pollination involves the transfer of pollen between different plants. The behavior of pollinators 

during cross-pollination follows a specific distribution. This study assumes that each plant has only 

one flower and one pollen gamete, with each gamete linked to a unique solution, adhering to a defined 

set of pollination rules.  
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(1) Global pollination involves the transfer of pollen gametes by transmitters through 𝐿𝑒́𝑣𝑦 flight, 

a process known as heterogeneous pollination. 

(2) Abiotic self-pollination, a form of local pollination, occurs when a plant fertilizes its own 

flowers using its pollen without external pollinator intervention. 

(3) Flower constancy posits that the reproductive success between two flowers is influenced by 

their level of similarity. 

(4) The probability of conversion 𝑝 ∈ [0,1] dictates the extent to which cross-pollination shifts 

to self-pollination, as factors such as distance bias the process toward self-pollination. 

In the initial phase of FPA, a population P(t) = {Xt
i} ,    Xt

i = [xi,1
t , xi,2

t , ⋯ , xi,j
t , ⋯ , xi,D

t ] ,   j =

1,2, ⋯ , D;   i = 1,2, ⋯ , N consisting of N individuals is randomly initialized. Here, D denotes the 

dimensionality of the optimization problem, t represents the current iteration count, and the 

population size N reflects both the diversity of potential solutions and the number of individuals 

undergoing iteration at each step. This setup ensures a broad exploration of the solution space while 

maintaining computational efficiency. The random generation of the population facilitates the 

algorithm's ability to explore diverse regions, which is crucial for identifying optimal or near-optimal 

solutions in complex optimization tasks. 

The self-pollination process, also known as local pollination, can be described as follows: 

Xi
t+1 = Xi

t + ε(Xj
t − Xk

t )                           (1) 

Here, the variables Xj
t and Xk

t  represent pollen originating from two distinct flowers belonging 

to the same plant species. These variables are modeled as randomly selected integers within the 

population. Furthermore, the scaling factor ε is a random variable uniformly sampled from the range 

[0,1], introducing stochasticity into the local pollination process. 

In this study, heterogeneous pollination is characterized as a global pollination process where 

pollinators, such as insects or birds, engage in long-distance flights to enable cross-pollination 

between distant flowers. This mechanism can be mathematically expressed as: 

Xi
t+1 = Xi

t + L(Xi
t − g∗)                           (2) 

𝐿 ∼
λΓ(λ)𝑠𝑖𝑛(πλ/2)

π

1

𝑠1+λ
 

Here, 𝑋𝑖
𝑡 denotes the position of the 𝑖-th pollen particle at iteration 𝑡, and 𝑔∗ represents the 

current population's best solution. Additionally, the intensity of pollination is determined by the 

parameter𝐿, which specifies the step size according to the 𝐿𝑒́𝑣𝑦 distribution. Here, Γ(λ) is the 

standard gamma function, and this distribution is valid for large steps 𝑠 > 0. In all our simulations 

below, we have used λ= 1.5. The switch between local and global pollination is controlled by the 

probability 𝑝. The FPA algorithm gives its highest performance when the transition probability 𝑝 

equals 0.8, as demonstrated by reference [29]. The step by step procedure of FPA is presented in 

Algorithm1. 

Algorithm1: Flower Pollination Algorithm 

1: Setting parameters (current iteration number t, maximum iteration number T, population size N, 

transition probability p) 

2: Initialize pollen position 

3: Calculate all pollen fitness values and save the global optimum 

4: While  t ≤ T  do 

5:     For  i = 1 : N  do 

6:         If  rand < p  do 

7:             Use (2) to update pollen location 

8:         Else 
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9:             Use (1) to update pollen location 

10:        End If 

11:        Boundary processing of transgressing individual locations 

12:        Calculating updated pollen fitness values to optimally preserve pollen positions 

13:    End For 

14:    Save the global optimal pollen position for this iteration 

15: End While 

16: Return the optimal pollen position and the corresponding fitness value 

2.2 Coati Optimization Algorithm 

The COA population undergoes two distinct phases of updating, which are inspired by two natural 

behaviors exhibited by coatis. These behaviors are: 

(1) The strategy coatis employ when attacking iguanas, 

(2) The escape strategy they employ when evading predators. 

Hence, the process of updating the position of candidate solutions in the COA relies on modeling 

these two behaviors of coatis. 

2.2.1 Hunting and attacking strategy on iguana 

This particular strategy involves a coordinated effort by a group of coatis to climb a tree and 

approach an iguana with the intent to frighten it. Meanwhile, several other coatis remain on the ground, 

positioned under the tree, patiently waiting for the iguana to eventually fall down. Once the iguana 

falls to the ground, the coatis swiftly attack and hunt it. This strategy effectively prompts the coatis 

to explore various positions within the search space, highlighting the COA's capability for global 

search in problem-solving scenarios. 

To mathematically simulate the position of the coatis as they ascend from the tree, we can employ 

the following equation: 

𝑥𝑖,𝑗
𝑃1 = 𝑥𝑖,𝑗 + 𝑟 ⋅ (𝐼𝑔𝑢𝑗 − 𝐼 ⋅ 𝑥𝑖,𝑗), 𝑖 = 1,2, … ,

𝑁

2
;  𝑗 = 1,2, … , 𝑚.          (3) 

Once the iguana falls to the ground, it is randomly positioned within the search space. Subsequently, 

the coatis on the ground adjust their positions in the search space based on this random placement. 

This adjustment process can be mathematically simulated using the equations: 
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To determine whether the newly calculated position for each coati is acceptable for the update 

process, a condition is applied. If the new position leads to an improvement in the value of the 

objective function, the coati adopts the new position. Otherwise, the coati remains in its previous 

position. This update condition is applied for each coati, denoted by the index 𝑖 = 1,2, … , 𝑁, and can 

be represented by the equation: 
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Here, 𝑋𝑖
𝑃1 represents the new position calculated for the 𝑖th coati. 𝑥𝑖,𝑗

𝑃1 corresponds to the 𝑗th 

dimension of the 𝑖th coati's position. 𝐹𝑖
𝑃1 denotes the objective function value associated with the 

𝑖th coati. 𝑟 is a random real number within the range [0,1]. 𝐼𝑔𝑢 signifies the position of the best 

member, which is equivalent to the iguana's position in the search space. 𝐼𝑔𝑢𝑗 represents the 𝑗th 

dimension of the iguana's position. 𝐼 is an integer randomly selected from the set {1, 2}. 𝐼𝑔𝑢𝐺stands 

for the position of the iguana on the ground, which is randomly generated. 𝐼𝑔𝑢𝑗
𝐺 denotes the 𝑗th 

dimension of the iguana's position on the ground. 𝐹𝐼𝑔𝑢
𝐺  represents the objective function value 

associated with the iguana's position on the ground. The symbol ⋅ refers to the floor function, which 

returns the greatest integer less than or equal to a given number. 

2.2.2 The process of escaping from predators 

In the described scenario, when a predator threatens a coati, the coati quickly reacts by escaping 

from its current position. The coati's movement in this strategy aims to relocate itself to a nearby safe 

position. This behavior demonstrates the COA's ability for local search and exploitation. To simulate 

this escaping behavior, a random position is generated near the current position of each coati. This 

generation process can be modeled using equations. 
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To determine whether the newly calculated position is acceptable or not, a condition is applied 

based on the improvement of the objective function value. This condition can be simulated using the 

equation: 
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In the given context: 𝑋𝑖
𝑃2 represents the new position calculated for the 𝑖th coati based on the 

second phase of COA. 𝑥𝑖,𝑗
𝑃2corresponds to the 𝑗th dimension of the 𝑖th coati's position in the second 

phase. 𝐹𝑖
𝑃2denotes the objective function value associated with the 𝑖 th coati in the second phase. 𝑟 

is a random number within the range [0,1]. 𝑡 represents the iteration counter, indicating the current 

iteration of the algorithm. 𝑙𝑏𝑗
𝑙𝑜𝑐𝑎𝑙 and 𝑢𝑏𝑗

𝑙𝑜𝑐𝑎𝑙 refer to the local lower bound and local upper bound, 

respectively, of the 𝑗th decision variable. 𝑙𝑏𝑗 and 𝑢𝑏𝑗 represent the lower bound and upper bound, 

respectively, of the 𝑗th decision variable. The step-by-step procedure for the COA is presented in 

Algorithm 2. 

Algorithm 2: Coati Optimization Algorithm 

1: Setting parameters (current iteration number t, maximum iteration number T, population size N) 

2: Initialize coati population position 

3: Calculate all individual fitness values and save the global optimum 

4: While  t ≤ T  do 

5:     For  i = 1 : N/2  do 

6:         Calculate individual positions using (3) 

7:         Calculate individual positions using (5) 

8:     End For 
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9:     For  i = (N/2+1) : N  do 

10:        Calculate individual positions using (4) 

11:        Calculate individual positions using (5) 

12:    End For 

13:    Calculate local upper and lower bounds using (6) 

14:    For  i = 1 : N  do 

15:        Calculate individual positions using (7) 

16:        Update individual locations using (8) 

17:    End For 

18:    Select the current optimal individual position 

19: End While 

20: Return the optimal individual position and the corresponding fitness value 

3. The proposed method 

The original FPA algorithm has the advantages of simple structure, no need for gradient 

information, fewer parameters, easy to implement, etc. However, FPA, like other intelligent 

optimization algorithms, suffers from defects such as easy to fall into local optimums and slow 

convergence speed. In order to improve its deficiencies, this paper proposes a competitive coati flower 

pollination algorithm based on k-means clustering(KSCOFPA). 

The algorithm adopts the k-means clustering method to divide the population into k different 

categories. Then, a population competition mechanism is introduced in each category to rank the 

fitness values of all particles in that category, and the top 50\% of individuals with better fitness values 

are classified as the winning individuals, and the rest as the losing individuals. Since the local update 

of the coati optimization algorithm is to generate a random location near the location of each coati, 

and the random location will become smaller and smaller as the number of iterations grows, this can 

ensure the effectiveness of its local search and the convergence of the algorithm. 

Therefore, this paper adopts the coati local search strategy as the updating method for the winning 

individuals. For the failed individuals, this paper adopts the combination of self-flowering and hetero-

flowering pollination of flower pollination for updating, and the positive cosine operator is used to 

control the change of the search center of gravity. In addition, this paper modifies the pollen object 

of self-pollination in the flower pollination algorithm, and transforms the pollen object of self-

pollination into the winning individual corresponding to its ranking, in order to improve the search 

efficiency of the algorithm. 

Finally, this paper uses the adaptive polynomial mutation strategy for the global optimal solution 

in the iterative update process, which avoids the population from falling into a local optimum and at 

the same time provides the possibility of exploring other more optimal solutions.  

3.1 Segmentation of populations based on k-means clustering algorithm 

It is well known that most of the intelligent optimization algorithms use the method of exchanging 

information by all individuals uniformly in an overall solution space. Although this approach can help 

populations to share information comprehensively, it also suffers from the problems that may cause 

the algorithms to fall into local optimal solutions prematurely and increase the computational and 

storage costs. To solve this problem, KSCOFPA uses the k-means clustering algorithm[31] to divide 

the population before each iteration update, which is equivalent to dividing the population into 

different sub-populations based on the space in which they are located. This not only makes the 

individuals in the sub-populations relatively concentrated and the information exchange relatively 

easy, but also effectively promotes the individuals to fully explore and discover potential high-quality 

solutions in their respective spaces, and also improves the search efficiency of the algorithm. 
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3.2 Competition Mechanism 

Next, in order to promote information exchange between individuals, KSCOFPA uses a 

competition mechanism in each divided sub-population[32]. That is, all individuals in that 

subpopulation are ranked according to the size of their fitness values, and the top 50% of the 

population individuals with better fitness values are rounded down as winners, and the rest as losers; 

for the winning individuals, they are updated according to the iterative updating method of the 

winners; for the rest of the losers, they are updated according to the updating method of the losers. 

3.2.1 Winner update strategy 

For the individual who wins the competition in the sub-population, it is updated using the local 

update strategy of the raccoon optimization algorithm, which can gradually reduce the search area as 

the iteration time grows, and can ensure the randomness and convergence of the winning individual's 

search. The specific update formula is as follows: 
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where 1

,

t
win ji

X denotes the j-th dimension of the i-th winner at the (t+1)-st iteration, t
win ji

X
,

denotes 

the j-th dimension of the i-th winner at the t-th iteration, and the rest of the parameters are the same 

as equation (6) and equation (7). 

3.2.2 Update strategy for losers 

For individuals that failed to compete in a subpopulation, a combination of self-pollination and 

allopollination was used for updating, and a positive cosine operator [33] was used instead of the 

transition probability to control the transition of the search center of gravity. In addition, the two 

random homozygous pollen individuals during self-pollination are replaced with this loser pollen 

individual and its corresponding winning pollen individual, and if this loser individual does not have 

a corresponding winning individual, a winning individual is randomly selected for learning. The 

specific mathematical expression is as follows: 
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where A=2, B=0.5, then t and T denote the current and maximum number of iterations, respectively. 

𝑋𝑤𝑖𝑛𝑖

𝑡 denotes the i-th winning individual at the t-th iteration in a given subpopulation; 𝑋𝑙𝑜𝑠𝑖

𝑡 denotes 

the i-th failing individual at the t-th iteration in a given subpopulation,𝐺𝑏𝑒𝑠𝑡 is the current global 

optimal individual, and the rest of the parameters are the same as in the flower pollination algorithm. 

3.3 Adaptive polynomial mutation strategy 

In order to avoid the algorithm from falling into a local optimum, KSCOFPA sets an adaptive 

polynomial variation on the global optimum each time. Specifically, an adaptive mutation probability 

P is set after all individuals are updated at the end of this iteration, and a polynomial mutation is 

performed on the current global optimum when the mutation probability is larger than a random 

number )1,0(rand  [34]. 
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(11) 

where tS denotes the standard deviation of the fitness value of the t-th iteration of the population, 

and 0S denotes the standard deviation of the fitness value at the initialization of the population. 
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Where,
jbestG where denotes the jth dimension of the globally optimal solution in this iteration. new

best j
G

denotes the jth dimension of the global optimal solution mutated in this iteration, random number

]1,0[ , m is the distribution index, jl denotes the lower bound of the j-th dimension of the population, 

ju denotes the upper bound of the j-th dimension of the population. 

3.4 Algorithmic Pseudocode 

Algorithm 4: KSCOFPA 

1: Setting parameters (current iteration number t, maximum iteration number T, population size N) 

2: Initialize population position 

3: Calculate all individual fitness values and save the global optimum 

4: While  t ≤ T  do 

5:     Use k-means to divide the population into k sub-populations 

6:     For  i = 1 : k  do 

7:         Sorting all individuals in the ith subpopulation 

8:         Consider the top 50% of individuals as winners and the rest as losers 

9:         Use (10) to update the loser's position 

10:       Calculate the fitness value and select the individual with the better fitness value as the new 

generation 

11:        Use (9) to update the location of the successor 

12:       Calculate the fitness value and select the individual with the better fitness value as the new 

generation winner 

13:    End For 

14:    Selecting the contemporary globally optimal individual 

15:    Use (11) to calculate the mutation probability P 

16:    If  P > rand  do 

17:    Mutation of globally optimal individuals using (12) 

18:    End If 

19: End While 

20: Return the optimal individual position and the corresponding fitness value 

4. Experiments and Simulations 

In order to demonstrate the effectiveness of KSCOFPA, in this section we perform performance 

tests of KSCOFPA on the CEC2017 test suite [35]. This section is divided into three main subsections; 
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the first subsection provides a description of the parameter settings for each algorithm, and the second 

subsection describes the algorithms comparing the experiments on the CEC2017 test suite. 

EXPERIMENTAL ENVIRONMENT: all experiments were conducted using Matlab R2024a on a 

personal computer equipped with an Intel i5-1240 CPU (running at 1.7 GHz) and 16.00 GB RAM. 

4.1 Experimental Parameter Settings 

The parameter settings for each algorithm used in this experiment are shown in Table 1: 

Table 1 Algorithm experiment parameter setting table 

Algorithms Parameter settings 

AO .1.0,1.0,005.0,00565.0,01.0,5.1   Us  

AOA .499.0,5,2.0,1  MuMOPMOP MinMax   

FPA ]1,0[,5.1,8.0 Up   . 

SSA 21,cc randomized distribution. 

SCA .2  

HHO .5.1  

WOA  decreases linearly from 2 to 0. 

KSCOFPA ].1,0[,5.1,3 Uk    

4.2 Comparison Experiments 

1) Experiment Description 

In this experiment, eight other well-known algorithms (including AO[36], AOA [37], HHO [38], 

SCA [25], SSA [39], COA [30], FPA [29] and WOA [40]) are selected as comparison algorithms for 

KSCOFPA, and their performances relative to KSCOFPA on the CEC2017 test set are tested 

separately. The experiments were performed on the 10 dimensions of the CEC2017 test set. The 

number of initialized populations was 50, the number of iterations was 10000, and the experiments 

on each function were run independently for 30 times. The results of each experiment were tested 

using Friedman rank sum test [41] and Wilcoxon rank sum test [42]. In addition, “Mean Rank” 

denotes the average of the ranks of the Friedman rank sum test for each algorithm; “Total Rank” 

denotes the overall performance ranking of each algorithm. The symbols “+”, “-”, and “≈” indicate 

that KSCOFPA outperforms, underperforms, or is similar to the comparison algorithms. “P-Value” 

denotes the significant result of Wilcoxon rank sum test based on multiple problems. “R+/R-” denotes 

the corresponding rank sum. When P is less than 0.05, it indicates that KSCOFPA outperforms other 

comparison algorithms. 

2) Experimental results 

Table 2 shows the function mean and standard deviation of KSCOFPA and other comparison 

algorithms after 30 runs in the 10-dimensional CEC2017 test suite. The experimental results show 

that KSCOFPA outperforms the comparison algorithms in all 10-dimensional CEC2017 test 

experiments. It ranked first in all 10-dimensional CEC2017 test experiment results and its 

optimization performance was significantly different from all other eight comparison algorithms in 

Wilcoxon rank sum test. Fig. 1 lists the algorithmic convergence curves of these eight algorithms on 

the two test functions (the 6th function and the 8th function of CEC2017), through which it can be 

clearly observed that the algorithmic optimization search performance of KSCOFPA is significantly 

better than the other seven comparison algorithms. 
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Table 2 Table of experimental results of algorithm comparison on 10-dim CEC2017 test set 

Fun Meas AO AOA COA FPA SCA SSA WOA HHO KSCOFPA 

F1 
Ave 3.98E+04 9.74E+03 7.78E+09 1.53E+10 3.58E+08 4.78E+03 1.07E+04 1.09E+05 4.20E+02 

Std 2.57E+04 3.26E+03 2.54E+09 5.89E+09 1.58E+08 1.84E+03 1.83E+04 3.90E+04 6.51E+02 

F3 
Ave 3.00E+02 3.00E+02 8.24E+03 1.13E+05 7.44E+02 3.24E+03 3.10E+02 3.00E+02 3.00E+02 

Std 1.01E-01 6.91E-03 2.66E+03 1.47E+05 4.18E+02 8.30E+03 2.21E+01 1.53E-01 3.03E-07 

F4 
Ave 4.04E+02 4.08E+02 8.42E+02 2.18E+03 4.23E+02 4.27E+02 4.06E+02 4.04E+02 4.01E+02 

Std 2.15E+00 5.16E+00 1.64E+02 7.62E+02 3.98E+00 4.84E+01 1.46E+00 1.17E+00 1.20E+00 

F5 
Ave 5.21E+02 5.49E+02 5.85E+02 6.46E+02 5.35E+02 5.33E+02 5.48E+02 5.31E+02 5.19E+02 

Std 7.27E+00 1.86E+01 1.41E+01 1.80E+01 5.33E+00 1.42E+01 1.34E+01 1.11E+01 4.92E+00 

F6 
Ave 6.03E+02 6.37E+02 6.42E+02 6.93E+02 6.13E+02 6.06E+02 6.22E+02 6.11E+02 6.00E+02 

Std 2.98E+00 4.31E+00 8.52E+00 1.48E+01 1.59E+00 7.23E+00 1.27E+01 5.77E+00 3.52E-02 

F7 
Ave 7.40E+02 7.96E+02 7.79E+02 1.16E+03 7.66E+02 7.26E+02 7.72E+02 7.52E+02 7.21E+02 

Std 1.33E+01 1.15E+01 1.75E+01 8.29E+01 5.35E+00 7.44E+00 1.87E+01 1.46E+01 9.02E+00 

F8 
Ave 8.22E+02 8.24E+02 8.53E+02 9.30E+02 8.29E+02 8.25E+02 8.37E+02 8.24E+02 8.02E+02 

Std 6.98E+00 3.99E+00 5.99E+00 1.11E+01 4.58E+00 7.78E+00 1.00E+01 6.81E+00 3.19E+00 

F9 
Ave 9.04E+02 1.35E+03 1.37E+03 4.68E+03 9.44E+02 9.90E+02 1.18E+03 1.16E+03 9.12E+02 

Std 8.85E+00 1.97E+02 1.91E+02 5.40E+02 2.08E+01 1.43E+02 1.29E+02 1.51E+02 5.05E+01 

F10 
Ave 1.72E+03 2.04E+03 2.41E+03 3.37E+03 1.85E+03 1.58E+03 1.75E+03 1.56E+03 1.49E+03 

Std 2.37E+02 3.25E+02 1.69E+02 3.94E+02 1.90E+02 1.41E+02 2.45E+02 1.73E+02 1.34E+02 

F11 
Ave 1.13E+03 1.13E+03 1.83E+03 9.59E+03 1.15E+03 1.18E+03 1.16E+03 1.13E+03 1.11E+03 

Std 1.66E+01 7.15E+00 5.03E+02 7.49E+03 6.37E+00 7.91E+01 4.27E+01 1.03E+01 5.33E+00 

F12 
Ave 9.82E+05 9.64E+04 2.24E+08 1.74E+09 3.50E+06 3.71E+06 1.42E+06 2.42E+05 6.23E+03 

Std 5.68E+05 4.67E+04 2.62E+08 1.01E+09 2.73E+06 7.23E+06 2.26E+06 2.42E+05 2.63E+03 

F13 
Ave 6.51E+03 9.68E+03 6.21E+04 1.55E+08 9.62E+03 5.87E+03 1.38E+04 9.98E+03 1.23E+03 

Std 2.72E+03 7.70E+03 1.03E+05 1.05E+08 3.70E+03 9.16E+03 8.27E+03 6.35E+03 1.50E+01 

F14 
Ave 1.52E+03 1.27E+04 1.50E+03 2.48E+06 1.50E+03 1.45E+03 1.50E+03 1.48E+03 1.43E+03 

Std 2.99E+01 9.45E+03 2.39E+01 6.50E+06 2.85E+01 2.71E+01 3.70E+01 1.83E+01 1.24E+01 

F15 
Ave 1.92E+03 5.77E+03 6.62E+03 1.54E+06 1.64E+03 2.11E+03 1.77E+03 1.59E+03 1.50E+03 

Std 3.09E+02 4.61E+03 3.30E+03 3.87E+06 3.77E+01 1.69E+03 9.34E+01 7.84E+01 3.37E+01 

F16 
Ave 1.67E+03 2.03E+03 2.08E+03 2.50E+03 1.66E+03 1.73E+03 1.79E+03 1.86E+03 1.66E+03 

Std 8.63E+01 1.15E+02 9.40E+01 2.09E+02 3.64E+01 8.74E+01 1.30E+02 1.01E+02 7.52E+01 

F17 
Ave 1.76E+03 1.89E+03 1.80E+03 2.33E+03 1.75E+03 1.74E+03 1.76E+03 1.75E+03 1.72E+03 

Std 1.96E+01 1.18E+02 2.78E+01 1.19E+02 9.72E+00 1.47E+01 1.72E+01 2.03E+01 1.26E+01 

F18 
Ave 2.07E+04 1.41E+04 2.64E+06 5.43E+08 4.12E+04 8.12E+03 1.59E+04 1.21E+04 1.82E+03 

Std 1.38E+04 8.21E+03 4.24E+06 3.86E+08 1.88E+04 1.08E+04 1.06E+04 9.97E+03 7.73E+00 

F19 
Ave 2.12E+03 1.11E+04 3.97E+03 3.35E+07 2.08E+03 1.92E+03 8.92E+03 5.69E+03 1.90E+03 

Std 1.53E+02 1.00E+04 1.68E+03 6.53E+07 7.85E+01 2.64E+01 7.71E+03 4.81E+03 1.67E+00 

F20 
Ave 2.05E+03 2.11E+03 2.22E+03 2.40E+03 2.06E+03 2.11E+03 2.10E+03 2.11E+03 2.02E+03 

Std 3.78E+01 6.69E+01 4.26E+01 8.80E+01 7.89E+00 5.29E+01 5.66E+01 6.34E+01 1.24E+01 

F21 
Ave 2.21E+03 2.30E+03 2.37E+03 2.44E+03 2.21E+03 2.30E+03 2.27E+03 2.31E+03 2.24E+03 

Std 3.36E+01 5.68E+01 2.05E+01 1.79E+01 1.50E+00 5.25E+01 6.50E+01 5.49E+01 5.47E+01 

F22 
Ave 2.30E+03 2.45E+03 2.97E+03 3.70E+03 2.34E+03 2.31E+03 2.31E+03 2.31E+03 2.30E+03 

Std 1.28E+00 8.05E+01 2.07E+02 4.73E+02 7.54E+00 1.30E+01 5.20E+00 2.69E+01 1.83E+01 

F23 
Ave 2.63E+03 2.70E+03 2.72E+03 2.79E+03 2.64E+03 2.63E+03 2.64E+03 2.65E+03 2.64E+03 

Std 1.24E+01 3.50E+01 2.20E+01 4.62E+01 4.49E+00 1.09E+01 1.56E+01 1.79E+01 1.14E+01 

F24 
Ave 2.69E+03 2.78E+03 2.85E+03 2.93E+03 2.68E+03 2.76E+03 2.74E+03 2.79E+03 2.51E+03 

Std 1.23E+02 1.20E+02 8.93E+01 5.78E+01 1.09E+02 4.63E+01 8.37E+01 1.05E+02 3.35E+01 

F25 
Ave 2.92E+03 2.93E+03 3.40E+03 4.40E+03 2.93E+03 2.96E+03 2.94E+03 2.94E+03 2.91E+03 

Std 2.39E+01 2.54E+01 1.56E+02 3.86E+02 1.30E+01 3.95E+01 2.25E+01 3.50E+01 2.22E+01 

F26 
Ave 2.99E+03 3.72E+03 3.92E+03 4.95E+03 3.02E+03 3.46E+03 3.12E+03 3.16E+03 2.81E+03 

Std 6.75E+01 3.84E+02 4.18E+02 3.71E+02 2.70E+01 5.04E+02 4.39E+02 3.93E+02 1.43E+02 

F27 
Ave 3.10E+03 3.21E+03 3.18E+03 3.31E+03 3.10E+03 3.10E+03 3.12E+03 3.13E+03 3.12E+03 

Std 2.97E+00 2.59E+01 3.52E+01 6.72E+01 1.23E+00 1.67E+01 2.99E+01 2.72E+01 1.41E+01 

F28 
Ave 3.30E+03 3.33E+03 3.75E+03 4.01E+03 3.21E+03 3.40E+03 3.27E+03 3.32E+03 3.21E+03 

Std 1.13E+02 1.48E+02 1.14E+02 1.46E+02 1.55E+01 1.32E+02 1.81E+02 1.89E+02 1.26E+02 

F29 
Ave 3.18E+03 3.30E+03 3.37E+03 3.93E+03 3.18E+03 3.23E+03 3.27E+03 3.25E+03 3.19E+03 

Std 1.54E+01 9.96E+01 5.53E+01 1.87E+02 1.25E+01 3.14E+01 6.54E+01 7.74E+01 2.47E+01 

F30 
Ave 2.50E+04 3.37E+05 3.60E+06 9.00E+07 1.75E+05 7.18E+05 4.02E+04 3.69E+05 3.41E+03 

Std 2.95E+04 3.31E+05 3.95E+06 2.18E+07 1.55E+05 9.09E+05 5.22E+04 5.09E+05 5.44E+02 

+/-/≈ 24/5/0 29/0/0 29/0/0 29/0/0 25/4/0 27/2/0 28/1/0 29/0/0 － 

R+/R- 383/52 435/0 435/0 435/0 410/25 427/8 434/1 435/0 － 

P-Value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 － 

ɑ=0.05 Yes Yes Yes Yes Yes Yes Yes Yes － 

Mean Rank 3.07 5.9 7.66 9 4.07 4.38 5.07 4.45 1.41 

Total Rank 2 7 8 9 3 4 6 5 1 
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(a) Convergence curve of the 6th test function  (b) Convergence curves for the 6th test function 

Fig. 1 Algorithm iteration convergence plot for CEC2017 comparison experiments 

5. Conclusion and future directions 

This paper presents a competitive coati flower pollination algorithm utilizing k-means clustering 

for population grouping. The k-means algorithm enhances individual learning efficiency and 

accelerates convergence. A competition mechanism within subpopulations allows for varied 

evolutionary strategies, facilitating effective information exchange. Winning individuals are updated 

using a coati local search strategy, which gradually narrows the random search range, ensuring 

convergence to the global optimum. For losing individuals, an improved flower pollination algorithm 

is employed, integrating global and local searches without using the transformation probability. The 

sine-cosine operator constrains the search center's movement, enabling a comprehensive exploration 

of the solution space. An adaptive polynomial mutation strategy is applied to globally optimal 

individuals to prevent local optima and enhance population diversity. Performance tests on the 

CEC2017 benchmark, analyzed with Wilcoxon and Friedman rank-sum tests, demonstrate the 

algorithm's effectiveness and robustness. 

In the future, this algorithm is considered for use in high-dimensional feature selection, 

engineering optimization, and neural network parameter optimization or parameter optimization for 

a wider range of other models, in addition to considering other effective ways of mixing other 

heuristic algorithms. 
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