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Abstract: With the development of modern educational technology, the teaching of vibration 

testing and signal analysis techniques faces new challenges. To enhance teaching 

effectiveness and improve students' understanding of complex theories, this paper proposes 

a teaching case for bearing fault diagnosis based on continuous wavelet transform and CNN-

BiLSTM. First, by utilizing wavelet transform for time-frequency analysis of vibration 

signals, students can gain a deeper understanding of the core principles of signal processing. 

Second, the introduction of the CNN-BiLSTM model in deep learning enables students to 

not only grasp the fundamental concepts of deep learning but also enhance their problem-

solving abilities in practical engineering scenarios. Experimental results indicate that this 

approach can effectively improve students' mastery of signal analysis and fault diagnosis 

techniques, showing significant advantages in fostering innovative thinking and practical 

skills. This study provides new ideas and practical cases for the reform of teaching vibration 

testing and signal analysis techniques. 

1. Introduction 

The course on vibration testing and signal analysis techniques is an important subject in fields such 

as mechanical engineering, automation, and electrical engineering. It primarily aims to cultivate 

students' ability to utilize modern testing and analysis methods for fault diagnosis and performance 

evaluation of mechanical equipment in engineering practice. The course content covers the collection, 

processing and analysis of vibration signals, and fault diagnosis methods, making it an essential 

pathway for developing students' engineering practical abilities, innovative capacities, and data 

processing skills. With the rapid development of industrial automation and intelligent manufacturing, 

equipment fault diagnosis technology plays a significant role in ensuring the normal operation of 

equipment, improving production efficiency, and extending the service life of equipment. As an 

important part of the mechanical system, bearing failures are often one of the fundamental causes of 
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mechanical equipment failures. Therefore, timely and accurate diagnosis of bearing failures can not 

only ensure the normal operation of the equipment, but also effectively improve the production 

efficiency and reduce the maintenance cost, which is of great practical significance [1]. Traditional 

bearing fault diagnosis methods rely on expert experience and manual feature extraction. Although 

effective in certain situations, they have limitations when dealing with complex signals and 

addressing nonlinear problems. As the complexity of mechanical equipment and systems increases, 

the accuracy and operability of traditional diagnostic methods are increasingly challenged in practical 

applications. Vibration testing and signal analysis have been widely used as important tools for fault 

diagnosis in modern industry [2]. However, with the increasing complexity of equipment, traditional 

fault diagnosis methods and teaching methods are facing new challenges. 

In recent years, the rapid development of deep learning technology has provided innovative 

solutions for fault diagnosis. Methods based on convolutional neural networks (CNN) and 

bidirectional long short-term memory networks (BiLSTM) have achieved remarkable success in 

various fields, particularly in handling complex signals and time-series data. The combination of 

CNN for local feature extraction and BiLSTM for capturing long-term dependencies offers significant 

potential for bearing fault diagnosis [3]. Additionally, continuous wavelet transform (CWT), as an 

effective signal processing method, can decompose vibration signals into multiscale time-frequency 

information, which helps provide richer feature information for subsequent deep learning models [4]. 

However, under the traditional teaching mode, effectively integrating these advanced technologies 

into the educational system remains a challenge. Current courses on vibration testing and signal 

analysis techniques mainly focus on fundamental theories and traditional methods, lacking systematic 

application and exploration of modern deep learning technologies. How to implement innovative 

teaching methods that not only enable students to master the foundational theories of bearing fault 

diagnosis but also cultivate their ability to apply deep learning techniques to solve practical 

engineering problems is a crucial issue that needs to be addressed in current higher education. 

In this paper, the practical application of the CWT and CNN-BiLSTM model is introduced into 

the course on vibration testing and signal analysis techniques through innovative teaching methods. 

This approach helps students develop their ability to solve practical engineering problems through 

experimental operations and case analyses, building upon their theoretical learning. This teaching 

method, which combines modern signal processing technology with deep learning, aims to enhance 

students' technical proficiency and lay a solid foundation for their future involvement in the fields of 

intelligent manufacturing and automation. Through case-driven learning and technological 

integration, students not only master modern fault diagnosis methods but also enhance their 

innovative thinking and practical skills, enabling them to better tackle future challenges in the 

industrial field. The research in this paper provides new ideas and practical experience for the teaching 

reform of the course on vibration testing and signal analysis techniques, promoting the updating and 

improvement of teaching content and methods. 

2. Fault diagnosis process and theoretical foundation 

2.1. General process of fault diagnosis 

In bearing fault diagnosis, this process generally includes key steps such as signal acquisition, 

preprocessing, feature extraction, feature selection, model training, and prediction.  

(1) Firstly, signal acquisition is the fundamental basis for fault diagnosis, primarily relying on 

sensors (such as accelerometers and velocity sensors) to monitor the vibration signals of the 

equipment in real time. These signals reflect the operating status of the equipment and potential fault 

characteristics; therefore, the quality of signal acquisition is crucial for the accuracy of the diagnostic 

results. 
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(2) After obtaining the raw signal, the subsequent preprocessing stage involves denoising, filtering, 

and normalizing the signal. This step is aimed at removing high-frequency noise, low-frequency 

interference, and unnecessary vibration components to ensure the purity and stability of the signal 

required for subsequent analysis. 

(3) Next, the feature extraction utilizes time-domain, frequency-domain, and time-frequency 

domain analysis methods (such as wavelet transform and Fourier transform) to extract key fault 

characteristic information from the vibration signals. CWT can decompose the signal at multiple 

scales, capturing instantaneous changes in non-stationary signals, which is why it is widely used in 

fault diagnosis. 

(4) Feature selection then filters the extracted features to retain the most diagnostic value while 

removing redundant and irrelevant features, thereby simplifying the computation and improving the 

diagnostic accuracy. 

(5) Finally, model training and prediction are the core components of fault diagnosis, often 

employing deep learning techniques such as CNN and BiLSTM. By training on a large set of labelled 

fault data, a classification model is constructed to automatically identify various fault types and 

perform fault prediction and classification on unknown data. 

2.2. Continuous wavelet transform (CWT) 

Continuous wavelet transform is a form of wavelet transform, the core of which is to generate a 

set of wavelet basis functions by scaling and time-domain shifting of the wavelet mother function, 

and then perform convolution operations with the original signal, so as to characterise the local details 

of the signal in the time-frequency domain at different scales (corresponding to different frequency 

ranges). Unlike the Fourier transform, the wavelet transform is able to provide both time and 

frequency local information, which makes it particularly suitable for analysing non-stationary signals. 

For bearing fault diagnosis, the vibration signals of bearings usually contain non-stationary 

characteristics (e.g., transient shocks, impulse signals, etc.), and the advantage of CWT lies in its 

ability to effectively capture these transient and non-stationary features [5]. 

The process of transforming the signal ( )x t  by continuous wavelet transform can be expressed by 

the following equation: 

( , ) ( ) ( )x

t b
CWT a b x t dt

a







                                                    (1) 

where ( )x t  represents the original signal, ( )  denotes the wavelet basis function, a  is the scale 

parameter (indicating the degree of expansion or compression of the signal), and b  is the translation 

parameter (indicating the time-domain location of the signal). By adjusting the scale and translation 

parameters, the wavelet transform can effectively extract the characteristics of the signal across 

various time and frequency scales. 

The choice of a wavelet basis function has a significant impact on the effectiveness of CWT. In 

bearing fault diagnosis, different wavelet basis functions are suitable for different signal 

characteristics and analysis needs. Among the current wavelet functions, there are many types, with 

commonly used ones including Haar wavelet, Morlet wavelet, Daubechies wavelet, and Mexican Hat 

wavelet. We will select one of these four wavelets as the appropriate wavelet basis function for this 

experiment. 

(1) Haar wavelet 

The Haar wavelet function is the most commonly used wavelet function in wavelet analysis. It is 

also the simplest of the four and a tightly supported orthogonal wavelet function. It has the advantage 

of quick computation; however, the disadvantage of the Haar wavelet is also quite apparent: it is 
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discrete in the time domain. Therefore, compared to other wavelets, its feature expression is not 

superior. The expression of the Haar wavelet is: 

1
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                                                         (2) 

(2) Morlet wavelet 

Morlet wavelets are complex wavelets widely used in time-frequency analysis, composed 

essentially of the product of a complex exponential carrier and a Gaussian envelope function. Since 

these wavelets typically do not satisfy the strict admissibility condition for wavelets (i.e., zero mean), 

there is no corresponding scale function. Their mathematical expression is: 

2
01/4 /2( )

j t tt e e
                                                                   (3) 

where 0  represents the frequency of the wavelet, 0j t
e


 denotes a high-frequency sine carrier 

signal, and 
2 /2te

 is a Gaussian window function that ensures the localization of the wavelets in the 

time domain, allowing Morlet wavelets to achieve good time-frequency localization capabilities. 

From the above expression, it can be seen that the Morlet wavelets are composite wavelets, whose 

time-frequency characteristics are determined by the product of a sine wave and a Gaussian window. 

The sine wave provides frequency information in the frequency domain, while the Gaussian window 

limits the duration of the signal in the time domain, thus enabling effective time-frequency analysis. 

(3) Daubechies wavelet 

Daubechies wavelets are characterized by compact support and orthogonality, with both the 

scaling and wavelet functions having finite support. This enables time-domain localization while 

preserving good spectral properties. By using finite impulse response (FIR) filters, Daubechies 

wavelets fulfil multi-resolution analysis requirements, allowing for effective signal decomposition 

and reconstruction. This wavelet family is categorized by order (e.g., db1, db2, db4), with higher 

orders providing increased smoothness for various signal analysis tasks. Their orthogonality allows 

the Daubechies wavelet transform to represent signals without redundancy, making it highly effective 

for data compression and noise reduction applications. 

(4) Mexican Hat wavelet 

The Mexican Hat wavelet function is mathematically defined as the second derivative of a 

Gaussian function, as shown in Equation 2. 

22 /2( ) (1 ) tt t e                                                               (4) 

Its expression in the time domain has compact support, allowing for localization in the time domain, 

which effectively captures the features of short-duration signals. Because it is related to the Gaussian 

function, it has a relatively narrow bandwidth in the frequency domain, making it well-suited for 

analysing specific frequency components of a signal. 

From the above wavelet analysis, it can be seen that most wavelets possess excellent capabilities 

for representing local features and can effectively display characteristic information as needed. 

Therefore, wavelet analysis has been widely applied in nonlinear and non-stationary signals. Based 

on an in-depth study and analysis of gear vibration signals, this experiment will utilize wavelet 

transform for time-frequency analysis, taking into account the characteristics of the vibration signals. 
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The time-frequency maps obtained from four different wavelet transforms of the bearing data in 

normal state are shown in Figure 1. 

          
(a)                                 (b)                                   (c)                                (d) 

Figure 1: Time-frequency diagram of (a) Haar wavelet, (b) Morlet wavelet, (c) Daubechies wavelet 

and (d) Mexican Hat wavelet 

From Figure 1, it can be seen that the Morlet wavelet, with its optimal time-frequency localization 

capability, exhibits significantly better energy concentration than other wavelet basis functions. This 

wavelet presents clear frequency focusing characteristics in the time-frequency plane, allowing for 

precise capture of periodic impulse signals (such as the characteristic frequency components of 

bearing faults). It strikes a balance between time and frequency resolution, making it particularly 

suitable for extracting transient features in non-stationary vibration signals. Therefore, it has been 

chosen as the basis function for this study. 

2.3. CNN-BILSTM model 

In bearing fault diagnosis, with the advancement of deep learning technology, traditional feature 

extraction methods have gradually been replaced by deep learning models such as CNN and Long 

Short-Term Memory networks (LSTM). In particular, the neural network model that combines CNN 

and BiLSTM, referred to as CNN-BiLSTM, has shown significant advantages in signal feature 

extraction and fault pattern recognition. The details of CNN-BiLSTM are illustrated in Figure 2. 

CNN is a type of deep learning model that excels at automatically extracting features from images 

or time-series data. In fault diagnosis, the CNN is typically used to extract efficient spatial features 

from bearing vibration signals. Through multiple layers of convolutional and pooling layers, CNN 

can identify local and important frequency features within the signals, which are crucial for 

diagnosing different types of faults. The convolutional layer performs convolution operations on the 

input signal using convolutional kernels to extract local features. Assuming the input signal is ( )x t , 

the convolution operation can be represented as: 

0

( ) ( )( ) ( ) ( )
N

k

z t x t x t k w k


                                                        (5) 

where ( )z t  is the output signal after the convolution, ( )w k  is the convolution kernel, and   

represents the convolution operation. 

The role of the pooling layer is to reduce computational load and extract more representative 

features through downsampling. The formula for the max pooling operation is: 

 
( ) max ( ( ))

Kernek l Size
y t z t k


                                                              (6) 

where the Kernel Size refers to the size of the pooling window, and ( )y t  is the output from the 

convolutional layer. Through these operations, CNN can automatically extract representative 

frequency features from vibration signals, providing a foundation for subsequent fault diagnosis. 

LSTM is a special type of recurrent neural network (RNN) that can effectively handle long-term 
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dependencies in sequential data. Compared to traditional RNNs, LSTM successfully avoids the 

vanishing gradient problem by introducing gating mechanisms. In fault diagnosis, LSTMs can learn 

time-dependent features in vibration signals, such as long-term trends and periodic variations. 

BiLSTM is an extension of LSTM that further improves the accuracy and robustness of the model by 

simultaneously considering information flow in both forward and backward directions. By combining 

CNN with BiLSTM, the neural network model can not only extract effective spatial features from 

vibration signals but also capture long-term and short-term dependencies in the time domain, thereby 

achieving more precise fault diagnosis. This combination fully leverages the advantages of both 

approaches, reduces manual intervention, and enhances robustness against complex fault patterns and 

signal noise. 

  

Figure 2: Details of CNN-BiLSTM neural network 

3. Case study 

3.1. Experimental platform setup 

To conduct bearing fault diagnosis experiments, we established a dedicated experimental platform, 

shown in Figure 3, to collect high-quality bearing vibration signals and build a corresponding fault 

dataset. This platform consists of components such as a motor, gearbox, and eddy current brake, 

where the motor drives the bearing, and the eddy current brake simulates the load under actual 

operating conditions of the bearing. We installed high-precision accelerometers at different locations 

on the test bench to collect vibration signals in real-time, which are generated by bearings under 

various fault conditions. To simulate real fault scenarios, we set up multiple types of faults, including 

inner race, outer race, and rolling element faults. Data collection was conducted at different rotational 

speeds and loading conditions to obtain vibration signals from various operating scenarios. This data 

will be used to build the bearing fault dataset, providing realistic and diverse sample support for the 

training of subsequent deep learning models and fault diagnosis. 

 

Figure 3: Experimental setup and signal acquisition 
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Based on the experimental setup, the bearing dataset includes four types of conditions: normal 

condition, inner race fault, outer race fault, and rolling element fault, with each condition containing 

300 samples. To ensure the generalization capability of the model, the dataset is divided into training 

and testing sets in an 80:20 ratio, where 80% of the data is used for training and 20% for testing.  

3.2. Fault diagnosis and analysis 

To comprehensively evaluate the diagnostic capability of the model, we adopted four evaluation 

metrics: Accuracy, Precision, Recall, and F1 score. 

(1) Accuracy measures the proportion of correctly classified samples relative to the total number 

of samples, and is specifically defined as follows: 

iTP
Accuracy

Total


                                                                 (7) 

where iTP  is the number of samples correctly predicted for the ith class, and Total  is the total 

number of samples. 

(2) Precision, also known as positive predictive value, is a key performance metric used to assess 

the accuracy of a classification model. It focuses on the quality of the positive predictions made by 

the model. It represents the ratio of true positive predictions to the total number of positive predictions 

made by the model, defined as follows: 

i
i

i i

TP
Precision

TP FP



                                                            (8)  

where iFP  is the number of samples incorrectly predicted for the ith class.  

(3) Recall, also known as sensitivity or true positive rate, is a performance metric used to evaluate 

the effectiveness of a classification model, particularly in scenarios where identifying positive 

instances is crucial. Recall measures the proportion of actual positive class samples that are 

successfully identified by the model, defined as: 

i
i

i i

TP
Recall

TP FN



                                                              (9) 

where iFN  is the number of samples in the ith class but incorrectly predicted as other classes. 

(4) F1 score is a crucial metric for evaluating the performance of classification models, especially 

in scenarios where class imbalance is present. It combines both Precision and Recall into a single 

score, defined as follows:  

2
1

×i i
i

i i

Precision Recall
F

Precision Recall



                                                     (10) 

Using the evaluation metrics shown in Table 1, the bearing fault diagnosis method based on 

wavelet transform and CNN-BiLSTM demonstrates exceptional performance. At a load current of 

0A, the method achieves an accuracy of at least 99.76%, with precision, recall, and F1-score all at 

100%. For load currents of 0.3A and 0.5A, it maintains 100% across all metrics. These results confirm 

the robustness and generalization ability of the fault diagnosis model, allowing it to identify faults 

under different load conditions. This innovative method offers a reliable solution for the industry, 

ensuring high accuracy and effective identification of different fault types, thereby enhancing bearing 

condition monitoring and maintenance. 
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Table 1 Results of the proposed method after five executions. 

Load current (A) Accuracy (%) Precision (%) Recall (%) F1 score 

0 

99.76 100 100 1 

100 100 100 1 

99.76 100 100 1 

99.76 100 100 1 

100 100 100 1 

0.3 

100 100 100 1 

100 100 100 1 

100 100 100 1 

100 100 100 1 

100 100 100 1 

0.5 

100 100 100 1 

100 100 100 1 

100 100 100 1 

100 100 100 1 

100 100 100 1 

4. Conclusions 

In this study, we provide an in-depth exploration of a bearing fault diagnosis method utilizing 

wavelet transform and CNN-BiLSTM. Experimental results show that wavelet transform can 

effectively extract the time-frequency features of bearing vibration signals, while the CNN-BiLSTM 

model exhibits high accuracy, recall, and F1 scores in fault classification tasks, demonstrating its 

superiority in bearing fault diagnosis. Additionally, regarding the teaching reform in the course on 

vibration testing and signal analysis techniques, we have integrated this advanced fault diagnosis 

method into the course curriculum. Through practical case analysis and experimental operations, we 

have enhanced students' understanding and application of modern signal processing technologies. 

The innovative design of the course allows students to gain practical experience while mastering 

theoretical knowledge, thereby increasing their engineering practice and problem-solving abilities. 

Through this reform in teaching methodology, students not only learn advanced fault diagnosis 

techniques but also cultivate their innovative thinking and interdisciplinary application skills. 

Acknowledgements 

Funding: This research is sponsored by the National Natural Science Foundation of China (Project 

No. 52305122) and the China Scholarship Council. The authors would acknowledge many colleagues 

who provided constructive comments on improving the research. 

References   

[1] Ruonan L., Boyuan Y., Enrico Z., Xuefeng C.  (2018) Artificial intelligence for fault diagnosis of rotating machinery: 

A review, Mechanical Systems and Signal Processing, 108, 33-47. 

[2] Dongdong L., Lingli C., Weidong C. (2024) A Review on Deep Learning in Planetary Gearbox Health State 

Recognition: Methods, Applications, and Dataset Publication [J], Measurement Science And Technology, 35(1). 

[3] R. Balamurugan, D.G. Takale, M.M. Parvez, S. Gnanamurugan. (2024) A novel prediction of remaining useful life 

time of rolling bearings using convolutional neural network with bidirectional long short term memory, Journal of 

Engineering Research. 

[4] Sun, H., He, Z., Zi, Y., Yuan, J., Wang, X., Chen, J., & He, S. (2014) Multiwavelet transform and its applications in 

mechanical fault diagnosis – A review. Mechanical Systems and Signal Processing, 43, 1-24. 

[5] Deng, L., Zhao, C., Yan, X., Zhang, Y., & Qiu, R. (2025) A novel approach for bearing fault diagnosis in complex 

environments using PSO-CWT and SA-FPN. Measurement.  

8




