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Abstract: This study investigates the coupling and interference effects between Active 

Front-Wheel Steering (AFS) and Direct Yaw Moment Control (DYC) in distributed drive 

electric vehicles. To enhance vehicle handling and stability, a coordinated control strategy 

for AFS and DYC is developed based on phase plane analysis. Utilizing fuzzy control 

theory, the phase plane is categorized into three distinct regions: a stable region, a 

coordinated control region, and an unstable region. To precisely compute the additional 

yaw moment required for stability enhancement, an adaptive sliding mode controller is 

designed. Furthermore, a joint sliding mode surface is formulated by considering the 

deviations between the actual and ideal yaw rate and sideslip angle. The weighting of the 

sliding mode surface is dynamically adjusted in real time using a stability index in 

conjunction with a cosine function. To optimally distribute the control effort between AFS 

and DYC, an improved simulated annealing particle swarm optimization algorithm is 

employed. The proposed control strategy is validated through simulations conducted on 

CarSim and Simulink platforms. The results demonstrate that the coordinated control 

system effectively enhances both vehicle handling and stability. 

1. Introduction 

With the continuous advancement of the automotive industry, active vehicle safety has garnered 

increasing research attention. As an emerging category of electric vehicles, distributed drive electric 

vehicles (DDEV) utilize four independently controllable in-wheel motors for propulsion. This 

configuration offers several advantages, including a compact structural design, high transmission 

efficiency, and the seamless integration of various active safety technologies [1-3]. 

As integral components of a vehicle’s active safety system, Active Front-Wheel Steering (AFS), 

Direct Yaw Moment Control (DYC), and Anti-Slip Regulation (ASR) play crucial roles in ensuring 

vehicle stability [4]. AFS enhances handling stability by regulating the steering actuator to generate 

an optimal front-wheel angle. However, its effectiveness is constrained by the lateral force 

limitations of the tires [5]. DYC adjusts the yaw motion the vehicle by controlling the tire’s 

longitudinal force. Especially in extreme conditions, DYC significantly affects vehicle stability 

control [6,7]. Many scholars have conducted in-depth research in this area. Among them, Zhang et 

al. [8] designed an adaptive fuzzy sliding mode controller (FSMC) to obtain the additional yaw 

moment, and established a method to distribute the additional yaw moment to the four in-wheel 
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motors to improve the handling stability of the DDEV under extreme conditions. Through the active 

front independent steering system distributing the steering correction angle unevenly on both sides 

of the wheels, Farazandeh et al. [9] eliminates the possibility of the tire entering the saturation 

region. There are often multiple subsystems in the chassis. 

Due to the overlap in functions and control objectives, interactions among different vehicle 

control systems may lead to interference and conflicts, thereby compromising overall performance. 

Vehicle stability assessment serves as the foundation for designing coordinated control strategies 

[10]. Li et al. [11] proposed a vehicle stability evaluation method based on the phase plane of front 

and rear tire slip angles, wherein the weight of the sliding surface is adaptively adjusted according 

to the state’s position within the phase plane and its evolving trend. In [12], a stability assessment 

scheme utilizing a Self-Organizing Feature Map (SOFM) neural network and the K-means 

clustering algorithm was introduced to evaluate the real-time stability status of vehicles. 

Additionally, as a time-domain analysis approach, the    phase plane method is frequently 

employed for vehicle stability assessment [13]. 

Given that different chassis subsystems are suited to distinct driving scenarios, an effective 

coordinated control strategy is essential to maximizing their performance. To this end, a novel 

adaptive Linear Quadratic Regulator (LQR) has been developed to enhance vehicle stability through 

the integration of Four-Wheel Steering (4WS) and Direct Yaw Moment Control (DYC) [14]. 

Ahmaddian et al. [15] proposed an integrated Multiple-Input Multiple-Output (MIMO) Model 

Reference Adaptive Control (MRAC) strategy, designing a coordinated control scheme for AFS and 

DYC based on a stability index. Similarly, Yim et al. [16] introduced a hierarchical control 

framework that incorporates an adaptive control strategy to improve vehicle handling and yaw 

stability through the coordination of AFS and DYC. Despite these advancements, limited research 

has focused on optimizing the intervention timing and intensity of AFS and DYC. Furthermore, 

AFS performance is constrained by road adhesion conditions, while DYC, although effective in 

stability enhancement, reduces vehicle speed, thereby impacting handling performance. The 

challenge in achieving a well-balanced coordination of AFS and DYC lies in simultaneously 

maintaining both vehicle handling and stability. 

This paper proposes a coordinated control system integrating AFS and DYC based on the    

phase plane. To account for the limitations imposed by the road adhesion coefficient and other 

influencing factors, the control regions within the    phase plane are defined using fuzzy 

control theory. The vehicle's stability state is then evaluated by determining the region in which the 

current state point 0 0
( , )   is located. To compute the required additional yaw moment, an 

Adaptive Sliding Mode Controller (ASMC) is employed, incorporating an adaptive reaching law to 

mitigate chattering effects inherent in sliding mode control. To maintain both handling performance 

and stability, the weighting factors of yaw rate and sideslip angle within the joint sliding mode 

surface are dynamically adjusted based on the stability index. Furthermore, an improved simulated 

annealing particle swarm optimization algorithm is utilized to allocate the control weights of AFS 

and DYC in real-time, thereby optimizing the overall performance of the coordinated control 

system. 

2. Vehicle model description 

2.1 Two degrees of freedom vehicle model 

To determine the ideal values of vehicle yaw rate and sideslip angle, a 2-DOF vehicle model is 

established, as illustrated in Figure 1. This model accounts for lateral motion along the Y-axis and 
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yaw motion about the Z-axis, while neglecting the effects of suspension vibrations on vehicle 

dynamics. 
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Figure 1: 2-DOF Vehicle model 

Vehicle longitudinal dynamic equation:  

  cos
y x yf f yr

m v v F F   
 

(1) 

Vehicle yaw dynamic equation: 

cos
z f yf f r yr

I l F l F  
 (2) 

Where y
v  is the lateral acceleration, x

v  is the longitudinal speed, yf
F  and yr

F  are the lateral 

force of front and rear tires. f
 is the front wheel angle and z

I  is the yaw inertia of the vehicle, f
l  

and r
l  represent the distance from the front and rear axles to the center of mass respectively. 

In this model, y
v  represents the lateral acceleration, while x

v  denotes the longitudinal speed. 

The lateral forces acting on the front and rear tires are represented by yf
F  and yr

F , respectively. 

f
  corresponds to the front wheel angle, and z

I  signifies the yaw inertia of the vehicle. 

Additionally, f
l  and r

l  indicate the distances from the front and rear axles to the vehicle's center 

of mass, respectively. 

The slip angles of the front and rear tires can be approximated using the following expressions: 

[17]: 
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The differential equations of formulas (1) and (2) can be expressed as: 
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(4) 

Where   is the actual yaw rate of the vehicle,   is its derivative,   is the actual sideslip 

angle of the vehicle,   is its derivative, f
C and r

C  are the tire cornering stiffness. 

Convert (4) to state-space equation: 

f
X AX B CU  

 (5) 
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2.2 Tire model 

To ensure both accuracy and real-time computational efficiency, a nonlinear tire model is 

developed based on the Magic Formula. This model employs a combination of trigonometric 

functions to accurately fit experimental tire test data. The longitudinal force, lateral force, and 

combined tire forces under various operating conditions are expressed as functions of the slip angle 

or slip ratio. The Magic Formula model is formulated as follows: 

sin( arctan( ( arctan )))
v

F D C Bx E Bx Bx s   
 (6) 

Where, F  represents lateral force or longitudinal force, x  represents slip angle or slip ratio, 

C  is shape factor, B  is stiffness factor, E  is curvature factor, and vs  is vertical drift. 

 

Figure 2:Structure of the coordinated control system 

3. Coornianted control system design 

The architecture of the proposed coordinated control system is illustrated in Figure 2. This 

system comprises three key modules: the control region division module, the additional yaw 

moment decision module, and the weight optimization module.  
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3.1 Control region division model 

As a graphical method， by studying the phase trajectory, we can analyze the vehicle's stable 

state, equilibrium position, and various parameters' influence on it. The phase planes commonly 

used to study vehicle stability mainly include    and   . Considering the phase trajectory 

of the    phase plane is greatly affected by road adhesion coefficient, steering angle, and other 

parameters, which may result in misjudgment under extreme working conditions. Therefore, the 

   phase plane is selected to judge the current stable state of the vehicle. 

Combining the magic tire model with the 2-DOF vehicle model, formula (7) can be expressed as 

follows: 
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(7) 

In this study, the stable region of the phase plane is defined using the two-line method. Within 

this boundary, any phase trajectory originating from an initial state converges to zero, ensuring 

stability. The boundary functions of the stable region are expressed as follows: 

2 1

3 1

C C

C C

 

 

  


   

(8) 

Where 1
C  is the boundary slope of the stability region, 2

C  and 3
C  is the intercept of two 

boundary functions. 

The factors affecting stability region boundary functions parameters include road adhesion 

coefficient, vehicle speed and steering angle. However, vehicle speed has little influence on the 

boundary function in practical application, so only the relationship between road adhesion 

coefficient and steering angle on the boundary function is analyzed. Input vehicle speed 

80 /
x

v km h  and steering angle 0
f

  , the phase plane with road adhesion coefficients of 0.8, 0.6, 

0.4 , and 0.2 are shown in Figure 3. 
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Figure 3:    phase plane with different road adhesion coefficients 

From Figure.3 can see that the size of the stable area decreases with the road adhesion coefficient. 
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2
C  and 3

C  are symmetrical about the longitudinal axis. 

Set the road adhesion coefficient from 0.1 to 0.9 and simulate every 0.1 to obtain the values of 

1
C , 2

C  and 3
C , as shown in Table 1. 

Table 1: Values of 1
C

 and 2
C

 with different road adhesion coefficients 


 1C

 2C
 

0.9 -0.2646 -0.21332 

0.8 -0.2985 -0.18403 

0.7 -0.3167 -0.15832 

0.6 -0.3357 -0.13670 

0.5 -0.4348 -0.11823 

0.4 -0.4890 -0.09530 

0.3 -0.5799 -0.07171 

0.2 -0.7628 -0.04010 

0.1 -0.9532 -0.02232 

Taking   as the independent variable, the equations of 2
C  and 3

C  are obtained by 

polynomial fitting: 

2

1
1.26 2.064 1.126C     

 

2

2 3
0.00195 0.2331 0.00161C C       

 

(9) 

The same approach is applied to examine the impact of the front wheel angle on the boundary 

function. Variations in the front wheel angle cause a shift in the vehicle's stability region. The 

equation of stable area offset o  and steering angle is obtained by fitting: 

0.0174
f

o  
 

(10) 

To control the AFS and DYC, a coordinated control region is divided based on the boundary 

function of the stable area. This paper selects the internal contraction method to divide the 

coordinated control region. The boundary of the stability region is extended inward for a certain 

distance, and the region between the new boundary and the original boundary is taken as the 

coordinated control region. The division of the control region is shown in Figure 4. 

Each area is as follows: 

Stable region: 

2 1 3i i
C C C   

 
(11) 
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Control
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Coordinated
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Unstable
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Figure 4: Phase plane control area division 
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Coordinated control region: 

2 1 2

3 1 3

i

i
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C C C

 

 
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(12) 

Unstable region: 
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
  

(13) 

Where 2i
C and 3i

C  are the intercept of the extended boundary function on the horizontal axis, 

which is obtained by the following formula: 

2 2

3 3

i i

i i

C C C

C C C

 
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

  

(14) 

The domain of road adhesion coefficient, steering angle and internal contraction coefficient i
C  

are  0.1,1 ,  25 , 25 and  0.3,1  respectively. The fuzzy set is        NB NM NS Z PS PM PB . Table 2 

shows the fuzzy rules. 

Table 2: Fuzzy rules 

i
C

 f


 


 

 NB NM NS z PS PM PB 

NB PB PB PB PM PB PB PB 

NM PB PB PM PM PM PB PB 

NS PM PM PS PS PS PM PM 

Z PM PM PS Z PS PM PM 

PS PS PS Z NS Z PS PS 

PM PS Z NS NM NS Z PS 

PB Z NS NM NB NM NS Z 

The membership functions for both input and output variables are illustrated in Figure 5. 
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Figure 5: Membership function of input and output 

3.2 Additional yaw moment decision module 

The additional yaw moment decision module calculates the required yaw moment for vehicle 

stability. Traditional SMC causes chattering due to its discontinuous control law. To mitigate this, an 

adaptive sliding mode control (ASMC) method is proposed, balancing response speed and 
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chattering suppression. In this study, yaw rate and sideslip angle are chosen as control variables, and 

a joint sliding surface is designed to make the sideslip angle converge to zero and the yaw rate 

follow its desired value. The joint sliding surface is defined as follows: 

  1 ( )
d d

S          
 (15) 

Where,   is the weight coefficient. 

The expected value d
  of the yaw rate and the expected value d

  of the sideslip angle are 

obtained from the formula (4): 

 max2
min , sgn
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x

d f f

x

v l

Kv
   



 
 
   

(16) 
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22
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d f
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mlv l

v C ll Kv
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

 
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   

(17) 

Where, K  represents the stability factor, which is used to characterize the stability of the 

vehicle. max
  is the maximum yaw rate of the vehicle limited by the road adhesion coefficient. 

They can be obtained from [19]: 

 
2

f f r r

f r

m l C l C
K

C C L




 

(18) 

max
0.85

x

g

v


 

 
(19) 

The differential of equation (15): 

    1
d d

S          
 

(20) 

An adaptive approach law is introduced to replace the conventional approach law: 

k
S S S


     

 
(21) 

Where k  is a positive number, S    is a soft symbolic function, and   is an adaptive 

coefficient.   is defined as follows: 

1

a S b

S


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


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 
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   

(22) 

Where a ， b  and   are positive numbers,and a b . Adaptive coefficients   have the 

following properties: 

 
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lim

lim

S

S

b

a









 

 



  

(23) 

When S  approaches the sliding surface,   will approach b . The approaching speed of the 

system is slow, which can effectively suppress the steady-state chattering. At this time, the sign term 

coefficient   becomes smaller, which leads to the poor robustness of the system. However the 
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continuous term coefficient /k   becomes larger, which improves the system’s robustness without 

enhancing the chattering. When S  is far away from the sliding surface,   will approach a . At 

this time, the approaching speed of the system is fast, and the system can converge quickly. 

The soft symbolic function in the adaptive law is designed to replace the original symbolic 

function. The soft symbolic function further mitigates system chattering, enhancing control 

smoothness. The soft symbolic function designed in this paper is as follows: 

1

S
S

S







  

 
(24) 

Where,   is a positive number. 

According to formulas (5), (20), and (21), the output z
M  of the sliding mode controller can be 

obtained as: 

 
  21 22 21

1

                               

z z d d fM I a a b

k
S S


     






 
       

 

    
 

(25) 

To verify system stability, the Lyapunov function is defined as follows: 

21

2
V S

 
(26) 

The derivation of the Lyapunov function is: 

0
k

V SS S S S


    
 

   
   

(27) 

Formula (26) satisfies 0V  , proving that the designed adaptive sliding mode controller is 

asymptotically stable. 

The yaw rate represents the rotational motion of the vehicle around its central axis, while the 

sideslip angle indicates the deviation from the intended direction. However, when the sideslip angle 

and its derivative exceed a certain threshold, the yaw rate alone is insufficient to accurately assess 

vehicle stability. To address this, the region depicted in Figure 6 is defined to regulate the weighting 

of yaw rate and sideslip angle in the control strategy. 

1R

2R

Circle A

Circle B
 

Figure 6: Stability index area division 

In Figure 6, circle A and circle B are tangent to the coordination control region's inner and outer 
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boundary respectively. Define the current vehicle stability state 
0 0

( , )   and stability index  , 

where: 

2 2

0 0   
 

(28) 

When 1
R  : The vehicle status point is in circles in circle A, only controlling the yaw rate can 

maintain vehicle stability. 

When 2
R  : The vehicle status point is out of circle B, and the sideslip angle or its derivative is 

large. Since the yaw rate alone does not fully represent vehicle stability, the sideslip angle should be 

used as the primary control target. 

When 1 2
R R  : The vehicle status point is located between circle A and circle B. At this stage, 

the weight of the sideslip angle in the sliding surface should be increased. Let d  denote the 

distance from the current state point to the outer boundary of circle A:  

1

2 1

R
d

R R

 


  
(29) 

To keep the process of weight coefficient variation smooth when 1 2
R R  , take d  as the 

independent variable and use the cosine function to calculate the weight coefficient  . 

Based on the above analysis, the weight coefficient   is determined using the following 

formula: 

1

1

1 2

2 1

2

1                                                     <R

( )
cos( ) cos( )        R <

2 2( )

0                                                     >R

R
d R

R R



 
 




  








  

(30) 

3.3 Weight optimization module 

This section presents an improved Simulated Annealing Particle Swarm Optimization (SA-PSO) 

algorithm for optimizing the weight distribution between AFS and DYC. Considering the distinct 

characteristics of AFS and DYC, their respective weights are adaptively adjusted based on the 

control region in which the vehicle state point 0 0( , )   is located. The corresponding control 

weights are provided in Table 3. 

Table 3: weight coefficient of controller 

Control region AFS weight DYC weight 

Stable region 1 0 

Coordinated control region AFS
p

 DYC
p

 
Unstable region 0 1 

In the stable region, the tire's lateral force margin remains large, allowing the AFS output weight 

to be set to 1. In contrast, in the unstable region, tire lateral force is prone to saturation. Therefore, 

DYC is utilized to regulate the tire’s longitudinal force, enhancing stability, with the DYC output 

weight set to 1. In the coordinated control region, the improved SA-PSO algorithm dynamically 

determines the weights AFS
p  and DYC

p  in real time. 

To account for variations among population particles during evolution, the algorithm adaptively 
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assigns weight factors. This allows for rapid exploration of the search space in the early evolution 

phase to locate promising regions and accelerates convergence to the optimal solution in later stages. 

Additionally, simulated annealing is integrated with particle swarm optimization (PSO), employing 

the Metropolis criterion to determine whether to accept new solutions. This approach enhances the 

algorithm’s capability to escape local optima, improving global optimization performance. 

The ratio of the fitness ( )F k  of the generation k  population to the fitness ( 1)F k   of the 

previous generation population is defined as the dispersion  f k , which reflects the change in the 

overall fitness value of population evolution.  f k  can be obtained by the following formula: 

1                        1

( ) ( )
            1

( 1)

k

f k F k
k

F k












  

(31) 

Where, k  represents the current number of iterations. 

The adaptive inertia weight coefficient is obtained by jointly evolving the dispersion  f k  and 

Sigmoid  function.  

In the early stage of evolution, the dispersion degree of the two adjacent generations is similar, 

 f k  fluctuates slightly. Moreover, the adaptive inertia weight coefficient decreases gently to 

ensure the full global optimization of the population in the early stage of evolution. In the later stage 

of evolution,  f k  is more sensitive to the change of population dispersion, and the amplitude of 

adaptive inertia weight coefficient is large, so as to realize accurate local search. The inertia weight 

coefficient is calculated using the following formula: 

 max min max
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1
( )

2
1 exp 10 ( 1)
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   


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 
 
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(32) 

Where, max
 and min

  are the maximum and minimum inertia weights respectively, 0.95 and 0.4 

are taken in this paper.   is the damping factor, generally  0,1 , representsing the maximum 

number of iterations. 

The Mitropolis criterion in the simulated annealing algorithm is introduced into the population 

iteration to accept the worse solution according to the probability generated by the temperature 

variable and judge whether to replace the old solution with the new solution. The judgment formula 

of the Mitropolis criterion is as follows: 
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
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(33) 

Where  ( )
i

F k  is the fitness of the i th  particle in the k th  iteration, g
F  is the best fitness 

of the current population, i
T  is the current temperature. The initial temperature is set according to 

the initial particle optimal value, and the temperature decays with a certain coefficient   after each 

iteration. 

The annealing formula is as follows: 
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Where T  is the initial temperature and the cooling coefficient   is 0.95. After each iteration, 

calculate the difference between the fitness of the updated position and the best fitness of the 

population to judge whether to accept the poor solution. 

Define the objective optimization function as: 

1 2 3
0

t

r d d
f a a a dt          

(35) 

Where, 1
a , 2

a  and 3
a  are the weight coefficients of the corresponding parts. The objective 

function minimizes the errors between the expected and actual values of yaw rate and sideslip angle, 

while also optimizing the sideslip angle velocity.  

4. Simulation 

The effectiveness of the AFS and DYC coordinated control system proposed in this study is 

validated through simulations using the CarSim and Simulink platforms. The hub motor model is 

implemented in Simulink, while the baseline vehicle model from CarSim is adapted into a 

four-wheel-drive configuration for simulation. The corresponding vehicle model parameters are 

listed in Table 4. 

Table 4: List of the vehicle model parameters 

Parameter Value 

Vehicle mass(m/kg) 1230 

Moment of inertia(kg.m2) 1336.4 

Distance from centroid to front axle(m) 1.225 

Distance from centroid to rear axle(m) 1.364 

Wheel rolling radius(m) 0.325 

Front-wheel cornering stiffness (N/rad) -5780 

Rear-wheel cornering stiffness(N/rad) -66854 

Select the Double-lane Change with high and low adhesion coefficients for simulation. This 

paper selects two schemes for the comparison test with the coordinated control system. "Without 

control" represents that no controller participates in the vehicle stability control, "AFS" represents 

an AFS controller based on PID control individually, and "Coordinated control" represents the 

coordinated control system designed in this paper. 

4.1 Double-lane change in high road adhesion coefficient 

The simulation is conducted with a vehicle speed of vx=80km/h, a road adhesion coefficient of μ
=0.85, and a simulation duration of 12 seconds. The results are presented in Figures 7-8. 

68



0 50 100 150 200 250

-1

0

1

2

3

4

S
ta

ti
o
n
(m

)

Station(m)

 Target path

 AFS

 Coordinated control

 Without control

 

Figure 7: The path tracking accuracy of the Vehicle 

Figure 7 illustrates the path tracking accuracy under three different control strategies. Compared 

to the uncontrolled scenario, both the AFS-only control and the proposed coordinated control 

strategy exhibit significantly improved path tracking accuracy. 
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Figure 8: (a) Yaw rate (b) Steering angle 
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Figure 9: (a) Sideslip angle (b) Phase trajectory portrait 

Figures 8(a) and 8(b) depict the yaw rate and steering angle for the three control scenarios. The 

results show that both AFS-only control and the proposed coordinated control system result in 

lower yaw rate and front-wheel angle compared to the uncontrolled case. This indicates that both 

the AFS controller and the coordinated control system enhance vehicle handling performance. 
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Figures 9(a) and 9(b) are the sideslip angle and the changing trend of    phase trajectory of 

the three cases. It is shown that the peak value of sideslip angle under coordinated control is 

0.0117rad，which is 12.74% and 12.39% lower than the AFS control and uncontrolled  cases， 

whose peak value of sideslip angle are 0.01319rad and 0.01315rad respectively. This proves that the 

coordinated control system and AFS separate control improve the vehicle stability to a certain 

extent. The changing trend of phase trajectory in Figure 9(b) can also prove this. In addition, the 

changing trend of AFS control and coordinated control in Figures 7-9 is basically the same. 

Furthermore the AFS output weight is always 1 in the simulation time, proving that AFS plays a 

major role in the coordinated control system under high road conditions. The slight variation in the 

control performance between the AFS-only control and the coordinated control system is attributed 

to differences in their respective control strategies. 

4.2 Double-lane change in low road adhesion coefficient 

To evaluate the stability and maneuverability of the coordinated control system under extreme 

conditions, the simulation is conducted with a vehicle speed of vx=80km/h, a road adhesion 

coefficient of μ=0.3, and a simulation duration of 12 seconds. The results are presented in Figures 

10-13. 
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Figure 10: The path tracking accuracy of three cases 

0 2 4 6 8 10 12

-0.4

-0.2

0.0

0.2

0.4

0.6

Y
aw

 r
at

e(
ra

d
/s

)

Time(s)

 AFS

 Coordinated control

 Without control

0 2 4 6 8 10 12

-6

-4

-2

0

2

4

6

S
te

er
in

g
 a

n
g

le
(d

eg
)

Time(s)

 AFS

 Coordinated control

 Without control

(a) (b)

 

Figure 11: (a) Yaw rate (b) Steering angle 
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Figure 12: (a) Sideslip angle (b) Phase trajectory portrait 

As illustrated in Figure 11, the coordinated control system maintains high path tracking accuracy, 

with a maximum deviation of 0.621 m. In contrast, vehicles under AFS-only control and no control 

exhibit significant deviations from the reference path at 170 m and 190 m, respectively. This 

deviation occurs due to tire lateral force saturation, where excessive front-wheel angles further 

destabilize the vehicle. 

Figures 11(a) and 11(b) depict the yaw rate and steering angle under different control strategies. 

The coordinated control system effectively regulates these parameters, with maximum values of 

-0.20364 rad for yaw rate and -2.08644° for steering angle. In contrast, under AFS-only control, the 

yaw rate and steering angle undergo sudden changes around the 7th second, indicating a loss of 

vehicle stability. Figures 12(a) and 12(b) show the sideslip angle and the evolving phase trajectory 

of β-β. The peak sideslip angle under coordinated control is 0.0519 rad (2.974 ), with the phase 

trajectory ultimately converging to the center. However, in the cases of AFS control individually 

and uncontrolled, the value of sideslip angle suddenly changed in the 8th second and 7th second, 

and both the phase trajectory did not converge to the center. Figure 13 shows the trend of AFS 

output weight in the coordinated control system. 

From Figure 9 to Figure 13, we can conclude that AFS may fail under extreme working 

conditions, and the coordinated control system proposed in this paper still has good maneuverability 

and stability control effect. 
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Figure 13: The weight of AFS 

5. Conclusion 

To enhance vehicle handling and stability while addressing the coupling and conflicts among 
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chassis subsystems in DDEV, this paper proposes a coordinated control system integrating AFS and 

DYC. The system consists of three key modules: the control region division module, the yaw 

moment decision module, and the weight optimization module. 

An adaptive control law is designed to mitigate chattering effects in the yaw moment decision 

module, while the weights of yaw rate and sideslip angle in the sliding mode surface are 

dynamically adjusted based on the stability index. Additionally, a SA-PSO algorithm is introduced 

in the weight optimization module to optimize the control weight distribution between AFS and 

DYC. To validate the effectiveness of the proposed coordinated control system, a co-simulation 

platform is developed using CarSim and MATLAB/Simulink. Simulations are conducted under 

double-lane change conditions on both high- and low-adhesion roads. The results demonstrate that 

the proposed system significantly enhances vehicle handling and stability. 
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