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Abstract: This paper presents an enhanced fast super-twisting algorithm sliding mode 

observer for sensorless control of permanent magnet synchronous motors. The proposed 

method improves upon conventional super-twisting algorithms by incorporating a linear 

correction term, which simultaneously boosts convergence speed and reduces chattering 

effects. These enhancements lead to superior dynamic response and steady-state estimation 

accuracy. Stability is guaranteed through rigorous Lyapunov analysis, with explicit 

convergence conditions mathematically derived. For practical implementation, rotor 

position and speed are accurately extracted from the estimated extended back-EMF using 

an optimized signal processing chain combining low-pass filtering and quadrature phase-

locked loop techniques. Comprehensive simulation studies validate the proposed observer's 

performance advantages over traditional super-twisting approaches, demonstrating 

significant improvements in both position and speed estimation accuracy. The results 

confirm the method's effectiveness and practical viability for high-performance sensorless 

PMSM drives. 

1. Introduction  

Permanent Magnet Synchronous Motor (PMSM) have become increasingly prevalent in 

industrial automation, new energy vehicles, household appliances, and aerospace applications 

owing to their superior efficiency, high power density, compact structure, and low maintenance 

requirements[1]. The growing adoption of PMSM across these diverse fields has created an urgent 

need for enhanced control precision and reliability. High-performance PMSM control critically 

depends on accurate rotor position information, traditionally obtained through mechanical position 

sensors. However, these sensors not only increase system cost and size but also compromise 

reliability and lifespan in harsh operating environments characterized by high temperatures, 

pressures, and vibrations[2]. Consequently, the development of advanced sensorless control 

techniques has emerged as a crucial research direction in PMSM control[3]. Current sensorless 

control strategies primarily fall into two categories: high-frequency signal injection methods and 

model-based approaches[4,5]. While high-frequency injection methods, which exploit PMSM 

saliency by injecting high-frequency voltages and extracting position information from current 
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responses, perform well at low speeds, they become ineffective at medium-high speeds due to 

spectral overlap between the injected signal and fundamental excitation. This limitation necessitates 

the use of model-based approaches for medium-high speed operation. 

Various model-based techniques have been developed, including Model Reference Adaptive 

Systems (MRAS), Extended Kalman Filters (EKF), and Sliding Mode Observers (SMO). Po-ngam 

et al.[6] proposed an improved MRAS observer with proven stability conditions and enhanced 

dynamic characteristics through feedback gain design. However, MRAS methods remain highly 

sensitive to parameter variations[7,8], potentially leading to convergence issues when parameters 

deviate significantly from their nominal values. Quang et al.[9] developed a reduced-order parallel 

EKF structure that improved computational efficiency while maintaining estimation accuracy. 

Nevertheless, EKF's inherent computational complexity, involving extensive matrix and floating-

point operations, imposes substantial processor requirements, limiting its practical applications. 

Among these alternatives, SMO has gained prominence for medium-high speed sensorless 

control due to its structural simplicity, robustness, and ease of implementation[10]. However, 

conventional SMO suffer from significant chattering caused by switching functions in the control 

law. Researchers have proposed various improvements, including continuous function replacements 

for switching terms. The Super-Twisting Algorithm (STA) developed by Davila and Levant[11] 

effectively reduces chattering by embedding discontinuous functions in the first derivative of 

control inputs while maintaining convergence and robustness. Gonzalez and Evangelista[12,13] 

further enhanced this approach through adaptive-gain STA methods that improve estimation 

accuracy across wide speed ranges.  

Despite these advances, higher-order sliding mode controllers still face limitations including 

slow convergence, delayed response to sudden disturbances, and residual high-frequency chattering 

near sliding surfaces. To address these challenges, this paper presents a novel Fast Super-Twisting 

Algorithm (FSTA) that incorporates a linear correction term to optimize the reaching law, enabling 

exponential state convergence and significantly improved dynamic performance. The proposed 

FSTA demonstrates enhanced responsiveness to input variations and external disturbances while 

maintaining smooth transitions near sliding surfaces, thereby further reducing chattering. Building 

on this algorithm, we develop a Fast Super-Twisting Sliding Mode Observer (FSTA-SMO) with 

rigorously derived stability conditions via Lyapunov theory. Rotor position and speed information 

are accurately extracted from extended back-EMF using a combined low-pass filter (LPF) and 

quadrature phase-locked loop (QPLL) approach. Comprehensive simulation results validate the 

FSTA-SMO's superior dynamic performance and steady-state accuracy, confirming its effectiveness 

for sensorless control applications. 

2. Mathematical Model of Permanent Magnet Synchronous Motor  

The voltage equations of the PMSM in the two-phase stationary reference frame can be 

expressed as: 
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where, u , u denote the stator voltage, while i  and i  denote the stator currents. sR  is the 

stator resistance, and dL  and 
qL  are the stator inductances. The electrical angular velocity is given 

by e  , with p  representing the differential operator. The back-EMF   and   can be expressed 

as:  
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where, 
f  represents the rotor flux linkage and e  denotes the electrical angle. 

By combining Equations (1) and (2), the voltage equations can be reformulated to obtain the 

stator current differential equations: 
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3. Design of Conventional Super-Twisting Sliding Mode Observer 

Compared with conventional sliding mode approaches, the Super-Twisting Algorithm-based 

Sliding Mode Observer (STA-SMO) effectively attenuates chattering by embedding the switching 

function within an integral term. When applying the STA to state observer design, the general 

mathematical representation takes the following form: 
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where, 1x  and 2x  represent the system state variables, with 1x̂  and 2x̂  denoting their observed 

values. The parameters 1k  and 2k  correspond to sliding mode gain coefficients, while 1 1̂( , )x t  and 

2 1̂( , )x t  characterize the system uncertainty terms. 

By selecting the stator currents i  and i  as state variables and substituting 1x i  and 
1x i  

into Equation (4), we establish the STA-SMO model as expressed in Equation (5): 
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where, î  and î  represent the observed stator current values, with i  and i  denoting the 

corresponding current observation errors. By subtracting Equation (3) from Equation (5), the stator 

current observation error dynamics can be derived as: 
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The stability conditions for the STA-SMO have been rigorously proven in [14]. When the 

observer achieves stability, the system states reach and maintain motion on the sliding surface. 

Under these conditions, the extended back-EMF can be derived from the equivalent control: 
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4. Novel Fast Super-Twisting Sliding Mode Observer 

4.1. Observer Design 

To enhance both the dynamic response and steady-state estimation accuracy of the conventional 

STA-SMO, this paper proposes a FSTA, formulated as follows: 
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Building upon the FSTA framework, we construct the FSTA-SMO as formulated in Equation : 
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When the system enters sliding mode, the current error dynamics reduce to: 
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Under observer stability, the system states converge to the sliding surface. Applying the 

equivalent control principle, the reconstructed extended back-EMF via the FSTA-SMO yields: 
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This completes the estimation process of extended back-EMF through the FSTA-SMO 

framework, with the schematic structure illustrated in Fig. 1. To guarantee stability, rigorous 

Lyapunov-based analysis is conducted as follows: 
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î

î
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Figure 1: Schematic diagram of the FSTA-SMO structure. 

4.2. Lyapunov Stability Analysis 

To rigorously validate the stability of the proposed FSTA-SMO, we conduct a Lyapunov-based 

analysis using the current error dynamics in (12): 
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where, 1 1 dk L   and 2 2 dk L   are state variables. 

Assume 
1( , )i t  and 

2( , )i t  satisfy the following boundedness condition: 
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where, 1  and 2  are positive constants. Let 
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We derive: 
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Based on the assumption in (13), we obtain: 
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An equivalent form of (16) can be expressed as: 
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where, 1c  , 2c  are positive constants. Equation (17) can be further rewritten as: 
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Let: 
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where, 1  is a sufficiently small positive constant. After computation, we obtain: 
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If the coefficients 1 , 2 , 1  satisfy: 

 

2 2 2
2 2

1 1 1 1 2 22

1 2

2 2

2 1

1 2

2

1

1 2

2 (4 ) (4 )

8 2 4

4 (4 )

2 2 4 2

1

4

b a b a a b b
c c

a b c c

b a b b a b b

c c

b
b

c c

   

 



   
       

  
  

   


   


 (22) 

then 11 0Q  , 12 21 0Q Q   and 22 0Q   is negative semidefinite. Let: 

 

2 2

1 1 1 2 2( )c c       
  

 

A P PA I D D P
Φ

P C
 (23) 

From the properties of block matrices, Φ  is negative semidefinite. Selecting a quadratic 

Lyapunov function candidate V  ξ Pξ , we have: 
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Combining with the following inequality: 
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Conclusion of Stability Proof: If there exist parameters 1 , 2  such that 1
ˆ( , )i t , 2

ˆ( , )i t  
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satisfy the constraints in (13), and the sliding mode gains 1 , 2  are selected according to (22), 

then 0V   and 0V  , thereby fulfilling the Lyapunov stability theorem. 

4.3. Rotor Information Demodulation 

To obtain smoothed estimates of the extended back-EMF signals, LPF is employed to attenuate 

high-frequency components. The filtered extended back-EMF can be mathematically expressed as: 
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where, c  represents the cutoff frequency of the LPF. Due to the phase delay caused by the use 

of a LPF, phase compensation is required. Following back-EMF acquisition, a QPLL is employed 

to extract rotor position and speed information, with its structure illustrated in Fig. 2. 

Under ideal conditions considering only the fundamental-frequency component of the extended 

back-EMF, the error correction term   fed into the PI regulator satisfies: 
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the equivalent infinitesimal principle. Substituting into (28) yields the simplified error term: 

 ˆ ˆ( )e e e e          (29) 

where, e  is the actual electrical angle and ˆe  the QPLL estimate.  
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Figure 2: Schematic diagram of the QPLL structure. 

5. Simulation 

To verify the effectiveness and superiority of the proposed FSTA-SMO particularly its 

advantages in dynamic response and steady-state accuracy over the conventional STA-SMO we 

developed MATLAB/Simulink models of sensorless vector control systems for Interior Permanent 

Magnet Synchronous Motor (IPMSM) employing both observers for comparative analysis. The 

system structure with FSTA-SMO is illustrated in Fig. 3. 

51



MTPA

SVPWM

Inverse Park 

Transformati

onPI

Park

Transfor

mation

Clark

Transfor

mation

FSTA-SMO

ai

bi

i
i

+
 
-

+
 -

+
 -

*
eT

u

u

e

di

qi

*
di

*
qi

​​Speed 

Estimation

PI

PI

*

rN

rN

e d

dt

Decoupling 

Stage

+
 
+
 +
 
+
 

*

du

*

qu

 

Figure 3: Schematic diagram of the Sensorless Vector Control System for IPMSM. 

The simulation employs an IPMSM with parameters detailed in Table 1.  

Table 1: IPMSM Simulation Experimental Parameters Table. 

Parameter Value/Unit 

Number of Pole Pairs 4 

d-axis Inductance 5.3mH 

q-axis Inductance 12mH 

Moment of Inertia 0.003 2kg m  

Stator Resistance 0.958  

Rotor PM Flux Linkage 0.1827 Wb  

Under the condition of sudden load changes, the motor is set to start under no-load conditions 

with a target speed of 1500 r/min. The total simulation time is 0.6 seconds. A sudden load of 6 Nm 

is applied at 0.15 s and removed at 0.35 s, in order to observe the dynamic response characteristics 

of the two observation methods. Under sudden load variation, the speed waveforms of the two 

observation methods are shown in Fig. 4. As illustrated, the speed observed by the STA-SMO 

exhibits a noticeable delay and certain offset, along with relatively large speed fluctuations, which 

leads to increased observation error. In contrast, the speed waveform observed by the FSTA-SMO 

almost completely overlaps with the actual speed and shows a much smaller fluctuation amplitude. 
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Figure 4: Under Sudden Load Variation. 

Figure 5 and 6 show the rotor position estimation errors of the two observation methods under 

sudden load changes. As seen in Fig. 5(a) and Fig. 6(a), when a sudden load is applied at 0.15 s, the 

STA-SMO exhibits a maximum rotor position error of 0.135 rad, accompanied by significant 

oscillations, with a final convergence time of approximately 0.028 s. In contrast, the FSTA-SMO 

shows an error of only 0.052 rad, with a smooth convergence process and no noticeable oscillations, 

requiring approximately 0.012 s to converge. Furthermore, from Fig. 5(b) and Fig. 6(b), it can be 
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observed that under the condition of sudden load removal, the STA-SMO has a maximum error 

variation of 0.132 rad, still accompanied by significant oscillations, and a convergence time of 

about 0.029 s. On the other hand, the FSTA-SMO exhibits a smaller error variation of only 0.049 

rad, with no apparent oscillations, and the convergence time is reduced to 0.016 s. 
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Figure 5: Under Sudden Load. 
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Figure 6: Under Sudden Load. 

The above analysis indicates that under sudden load changes, the FSTA-SMO demonstrates 

faster response speed and higher estimation accuracy compared to the STA-SMO, showing superior 

observation performance. 

6. Conclusions  

This paper proposes a sensorless control method for PMSM based on FSTA-SMO. By 

introducing a linear term, the system achieves improved dynamic performance and steady-state 

accuracy. Simulation results demonstrate that FSTA-SMO offers higher estimation accuracy of 

rotor position and speed compared to STA-SMO, thereby enabling high-precision control of the 

PMSM. 
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