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Abstract: As a vital ecological barrier in China, the Yellow River source area's water 

changes significantly impact the regional environment. Traditional remote sensing 

inversion methods face challenges like limited accuracy and complex data processing. 

This study uses Sentinel-2 remote sensing data and ground-based hyperspectral data, 

combined with an improved deep learning model (MC-DL), to establish an efficient 

framework for key water parameter inversion. Focusing on Ruoergai County, the MC-DL 

model, enhanced by Monte Carlo dropout, quantitatively inverts total nitrogen (TN) 

concentration. The MC-DL model outperforms Support Vector Regression (SVR) and 

Convolutional Neural Network (CNN) in accuracy and stability (R² = 0.95, MAE = 0.08, 

MBE = -0.004, RMSE = 0.13).This study provides a new technological approach for 

water monitoring in the Yellow River source area and supports ecological management 

and protection. 

1. Introduction 

The Yellow River source area, known as the "Water Tower of China," serves as a crucial 

ecological barrier for China's environmental protection. As the origin of the Yellow River, this 

region has faced immense ecological pressure due to global climate change and increasingly 

frequent human activities. In recent years, significant changes in the surface water quality and 
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quantity in the Yellow River source area have greatly impacted agricultural production, water 

security, environmental protection, and sustainable water resource development in the middle and 

lower reaches of the Yellow River basin[1]. Therefore, there is an urgent need for large-scale, rapid, 

and accurate monitoring of surface water in the Yellow River source area to ensure the continued 

functioning of its ecological role and the stability of the regional environment. 

Water quality detection and monitoring have become key strategies to ensure the safety of the 

Yellow River source area. Traditional water quality detection methods rely on field sampling and 

laboratory analysis, which suffer from poor timeliness, high costs, and limited coverage. 

Hyperspectral remote sensing technology, by monitoring multiple spectral bands of surface water 

bodies, can obtain large-scale water quality data in real-time and quickly, thus compensating for the 

shortcomings of traditional methods [2]. 

Significant progress has been made in water quality inversion via remote sensing. Internationally, 

research focuses on large-scale water bodies using diverse remote sensing data and algorithms, 

achieving promising results. Domestically, studies emphasize regional issues like urban lakes and 

river pollution, utilizing high-resolution data and machine learning for refined monitoring and 

assessment. 

In the field of parameter regression models, successfully applied the Extreme Gradient Boosting 

Tree model to retrieve TN concentration in the Liao River Basin (R²>0.575), outperforming 

stepwise regression and random forest models[3].Employed the Partial Least Squares Regression 

model to retrieve TP and TN content, achieving significant results[4], highlighting the advantages of 

parameter regression models in water quality retrieval. In the field of empirical models, Used 

empirical models to retrieve TN concentration, achieving a maximum R² of 0.92 [5]. In the field of 

machine learning models, applied back-propagation neural networks (BP), Gaussian process 

regression (GPR), and random forest regression (RFR) to retrieve in-situ concentrations of TN, TP, 

and COD in Taihu Lake, Liangxi River, and Fuchuanjiang Reservoir, finding that the BP model 

performed the best, with accuracies exceeding 80% [6]. Achieved high-precision retrieval of water 

quality parameters from Landsat 8 OLI imagery data using a neural network model (R²>0.85) [7]. 

With research advancements, deep learning's advantages in water quality retrieval are 

increasingly evident. ANN and LR models were used to analyze Landsat 8 OLI data for TP and TN 

in the Geshlagh Reservoir. Results showed a strong correlation between TN, TP, and Chl-a, with 

ANN achieving higher accuracy (TP: 0.81, TN: 0.93) than LR[8]. 

Traditional regression models achieve some success in water quality retrieval but struggle with 

nonlinear complexity and environmental variability. Deep learning offers superior nonlinear 

modeling and large-scale data processing but risks overfitting. This study enhances deep learning 

models using GEE and hyperspectral data to improve TN retrieval accuracy. Key challenges include 

integrating remote sensing with deep learning for TN distribution and optimizing models to address 

data scarcity and observation variability. These improvements enhance water quality monitoring 

and ecological management. 

2. Materials 

2.1 Study Area 

The Yellow River source area, located in the eastern Roof of the World, spans 122,000 square 

kilometers (16.4% of the Yellow River basin) and contributes about 38% of the river's annual runoff. 

It is the basin's most critical water conservation and runoff replenishment area and a vital ecological 

barrier in China. Ruoergai County, situated in the southeastern Roof of the World, is one of the 

Yellow River's origins and a key ecological functional zone in its upper reaches. 

The parameters used to detect water environmental conditions are diverse, covering various 
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indicators such as TN, TP, chemical oxygen demand, etc. However, existing water quality inversion 

models mostly focus on monitoring common parameters such as suspended solids, chlorophyll-a, 

etc., in static water bodies such as lakes and reservoirs[9,10].In the high-altitude, cold, and 

low-oxygen Yellow River source area, traditional techniques are limited. Despite environmental 

variations, TN, TP, COD, suspended solids, and chlorophyll-a inversion follow similar processes. 

TN, a key indicator of eutrophication and pollution, is crucial for water quality monitoring. This 

study focuses on TN to improve water resource management and ecological protection. TN 

variation is influenced by alpine meadows, climate change, and human activities like farming and 

land use changes. The research area is the confluence of the Yellow, Heihe, and Baihe Rivers in 

Ruoergai County. 

2.2 Remote sensing data preprocessing 

2.2.1 Remote sensing data sources 

Sentinel-2, launched by the European Space Agency (ESA), comprises two high-resolution 

optical satellites with 13 spectral bands and a 290 km swath width. Each satellite has a 10-day 

revisit cycle, offering frequent observations with resolutions ranging from 10 to 60 meters. Its 

near-infrared bands are particularly sensitive to water bodies, making it highly effective for 

monitoring water quality changes, detecting pollution, and assessing aquatic ecosystem health.For 

this study, Sentinel-2 data synchronized with field sampling time (±5 days) from July 12 to July 24, 

2022, was used for model construction and validation. 

2.2.2 GEE cloud computing platform and remote sensing data source preprocessing 

In recent years, with the continuous development of cloud computing technology and the open 

sharing of remote sensing data, cloud platforms such as Google Earth Engine (GEE) have become 

important tools for remote sensing data processing and analysis [11]. GEE provides access to 

massive amounts of remote sensing data, powerful computational capabilities, and rich analysis 

functions, offering researchers an efficient and convenient data processing platform. This has 

greatly facilitated the development and application of remote sensing water quality inversion 

techniques. 

 

Fig.1 Water extraction area in the study area 

In GEE, Sentinel-2 preprocessing includes atmospheric correction, radiometric calibration, and 

geometric correction to ensure data quality and model accuracy. Atmospheric correction removes 
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aerosol and water vapor effects using surface reflectance products; radiometric calibration converts 

raw values into reflectance via spectral coefficients; and geometric correction aligns spatial 

positions. Water body screening is performed using indices like NDWI, MNDWI, and NDSI, 

classifying pixels as water or non-water based on thresholds[12]. Water extraction areas are 

generated from index classification results, and NDWI is used for road extraction. This process is 

implemented through GEE's image calculation and classification functions, producing a final water 

extraction layer with accurately delineated water bodies, as shown in Fig. 1. 

2.2.3 Develop a route for collecting hyperspectral data of field objects 

This study employed a field route planning method based on Geographic Information System 

(GIS) technology to effectively carry out field hyperspectral data collection tasks. By integrating 

water body and road extraction results from the GEE platform, terrain data was analyzed in GIS for 

factors like elevation, slope, and aspect. Considering water sources, vegetation, terrain, 

transportation, and safety, the optimal field route was determined to ensure practicality and 

feasibility. 

2.3 Hyperspectral remote sensing data sampling and processing 

In this experiment, spectral water samples were collected using the American ASD FieldSpec 

spectrometer , with a detection spectral range of 350-2500 nm. The spectral resolution was 3 nm at 

700 nm and 8 nm from 1400-2100 nm, with wavelength accuracy of 0.5 nm and wavelength 

repeatability of 0.1 nm. A total of 56 water samples were collected (Fig. 2) and analyzed using the 

ASD spectrometer, followed by laboratory analysis using the ultraviolet spectrophotometry method 

with alkaline potassium persulfate digestion, as per the HJ 636-2012 standard for TN in water 

quality.  

 

Fig.2 Sampling point distribution 
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3. Proposed model 

3.1 Random Enhancement Sampling 

Random augmentation sampling introduces randomness into datasets to enhance model 

generalization, addressing issues like data imbalance, overfitting, and limited generalization. In 

complex real-world scenarios, original data may lack diversity and quantity for effective model 

learning. This method improves robustness by applying random transformations (e.g., rotation, 

cropping) to training samples, increasing dataset diversity. The principle is represented as: 

  ,' XTX                              (1) 

where, X  is the original data, 'X  is the data after random transformation, T  is the random 

enhancement transformation, and   is the parameter of the transformation. 

3.2 MC-DL inversion model construction 

Deep learning is a branch of machine learning that aims to mimic the structure of the human 

brain's neural networks to achieve the ability to learn from data and extract complex patterns. 

Elastic Net is a regularization method that combines Lasso Regression and Ridge Regression by 

adding both 1L  and 2L  penalty terms. This method is widely used in feature selection and 

regression problems, enhancing the model's generalization ability and robustness. Its formal 

representation is as follows: 
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where,   is the weight vector to be solved, X is the input eigenmatrix, y is the target variable 

vector, samplesn
 is the sample number, 1  represents the 1L  norm (sum of absolute values), 2  

represents the 2L  norm (Euclidean distance),   is the regularization coefficient, used to balance 

the influence of fitting error and regularization terms,   is the mixing ratio, when 1 , The 

model is equivalent to Lasso regression; When 0 , the model is equivalent to Ridge regression. 

By adjusting the value of  , you can find a balance between 1L  and 2L  to better accommodate 

various data characteristics. 

Monte Carlo (MC) dropout technique provides a scalable approach for predicting distributions in 

deep learning [13]. The working principle of MC dropout involves randomly dropping neurons in the 

neural network to regularize the network. Each dropout configuration corresponds to a sample from 

a different approximate parameterized posterior distribution: 

 
)( Dq                                   (3) 

 
)(~ Dqt                                 (4) 

where, t  corresponds to the Dropout configuration sampled from the approximate 

parameterized posteriori, or equivalently corresponds to the simulation )( Dq  , and sampling q 

from the approximate posteriori )( Dq   allows Monte Carlo integration of the model's likelihood 

to reveal the predicted distribution, as shown below: 
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For simplicity, we can assume that the likelihood is Gaussian: 

 )),(),,((),|( 2  xsxfxyP                         (6) 

Using the Gaussian function N specified by the mean ),( xf  and the variance ),(2 xs  

parameters output by the Monte Carlo dropout BNN simulation: 

)(~),(),,( 2 xDropoutMonteCarloxsxf                  (7) 

Fig.3 shows the case of MCdropout. Each dropout configuration generates different outputs by 

randomly turning neurons off (gray circles) and on (colored circles) each time they propagate 

forward. Multiple forward passes with different dropout configurations produce a predicted 

distribution of the mean )),(( xfp . 

 

Fig.3 MC dropout schematic 

This study builds the MC-DL model using TensorFlow and Keras frameworks (Fig. 4), training 

and testing it on the Colab platform. The model inputs spectral reflectance from Sentinel-2's 13 

bands and outputs predicted TN concentration. Through multiple experiments, the optimal number 

of hidden layers and neurons per layer is determined, selecting the parameter combination that 

maximizes accuracy on both training and testing sets, as shown in Table 1. 

Table 1 MC-DL model parameters 

Hyperparameters Parameter Value 

Number of fully connected hidden layers 3 

Number of neurons in each hidden layer 128,64,32 

MCDropout layer 0.1 

Hidden layer activation function ReLU 

Regularization coefficient 2L  0.001 

Optimizer Adam 

loss MSE 

epochs 900 

batch size 20 

validation_split 0.2 
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Fig.4 MC-DL model principle 

3.3 Evaluation indicators 

In this paper, coefficient of determination (R2), mean absolute error (MAE), mean deviation error 

(MSE) and root mean square error (RMSE) are used to measure the fitting degree of the model to 

the true value and the accuracy of the prediction. The calculation formula is as follows: 
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where n  is the number of observations in the data set, iy
 is the true value, iŷ

 is the 

predicted value of the model, and y  is the average of the true values. 

4. Result 

4.1 Model accuracy evaluation results 

This study trains and tests three models (SVR, CNN, and deep learning) using the same dataset, 

with 70% of sample points for training and 30% for testing. Model performance is evaluated using 

R², MAE, MBE, and RMSE (Table 2). A sensitivity analysis assesses the impact of input 

uncertainties on prediction accuracy by perturbing key parameters and observing output changes. 

The SVR model performs well in training (R² = 0.88) but drops in testing (R² = 0.78), indicating 

overfitting and sensitivity to outliers (MAE, RMSE, MBE: 0.02 training, 0.06 test). The CNN 

model captures key features effectively (R²: 0.93 training, 0.85 test), with low errors and near-zero 

MBE, ensuring consistency. The MC-DL model, using Dense layers, excels across metrics, 

surpassing SVR and slightly trailing CNN in testing (R² = 0.95 training, 0.89 test; MAE = 0.08 

training, 0.18 test). Its RMSE (0.24) and MBE (0.02) suggest strong generalization but require 

further validation. 
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Table 2 Training and validation statistics of TN concentration based on hyperspectral Remote 

sensing(R2, MAE, MBE, RMSE) 

 SVR CNN MC-DL 

Training set R2 0.88 0.93 0.95 

MAE 0.12 0.08 0.08 

MBE 0.02 -0.03 -0.004 

RMSE 0.21 0.16 0.13 

Validation set R2 0.78 0.85 0.89 

MAE 0.21 0.20 0.18 

MBE 0.06 -0.01 0.02 

RMSE 0.34 0.29 0.24 

4.2 Model performance evaluation results 

Fig. 5 compares the three models’ TN prediction performance using scatter plots and linear 

fitting. The x-axis represents true values, and the y-axis shows predictions. Each blue point is a 

sample, ideally aligning with the red dashed diagonal (perfect agreement). The closer points are to 

the regression line (slope = 1) and the denser their distribution, the more accurate the model. 

 
(a)                   (b)                   (c) 

Fig.5 Machine learning and deep learning algorithms are used to evaluate the performance of TN 

retrieval, where (a), (b) and (c) are the verification results of SVR, CNN and MC-DL algorithms, 

respectively 

4.3 Model inversion result 

This study focuses on six segments (a, b, c, d, e, f) extracted from the Yellow River source area 

in Zoige County. Through in-depth analysis of their data, the aim is to explore the differences and 

characteristics among these river segments(Fig.6). 

 

Fig.6 6 regional peak comparison statistical line chart 
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Fig.7 shows the local spatial distribution of TN concentration in the source region of the Yellow 

River obtained by model inversion. The figure clearly shows the difference of TN concentration in 

different regions, which helps us to better understand and analyze the water quality and its spatial 

variation characteristics in the source region of the Yellow River. 

 

Fig.7 The local spatial distribution of TN concentration in the source region of the Yellow River 

was retrieved by the model 

5. Discussion 

Upstream (a) features plateau mountains with high precipitation and fast runoff, resulting in 

higher TN concentrations (0.3-0.4).Mid-upper reaches (b, c) are sparsely populated with limited 

farming, maintaining stable TN levels (0.2-0.4). Wetland vegetation and soil microbes reduce 

nitrogen content. Mid-lower reaches (d), at the confluence of the Yellow and Baihe Rivers, 

transition to plains with intensive agriculture and urbanization, leading to high TN (0.579) due to 

non-point source pollution and wastewater. Downstream (e, f) consist of the Yellow River plains, 

where fewer wetlands still effectively reduce TN to around 0.4. 

6. Conclusions  

This study developed a framework using Sentinel-2 and hyperspectral data to retrieve water 

quality parameters in Ruoergai County, Yellow River Source Region. The MC-DL model, 

incorporating Monte Carlo dropout, outperformed traditional methods (e.g., SVR, CNN) in 

predicting TN concentration. The MC-DL model improved accuracy and handled complex data, 

supporting water monitoring and ecological management. However, it relies on high-quality data, is 

sensitive to input parameters, and has limited generalization, requiring recalibration for different 

regions. Training demands high computational resources. 

Future work should optimize the model for diverse environments and expand data collection to 

enhance performance. This study advances water quality monitoring and supports ecological 

protection. 

Analysis in this study was completed using Google Colaboratory (https://colab.research. 

google.com/). The analyzed remote sensing date can be downloaded free of charge from Google 

Earth Engine (https://earthengine.google.com/). 

CRediT authorship contribution statement 

Ruichun Chang: Data curation, Investigation, Writing – original draft 

Chi Zhang: Concept presentation, Methodology, Investigation, Writing – review & editing 

37



 

 

Jian Xu: Software, Writing – review & editing 

Zhe Chen: Methodology, Writing – review & editing 

Wanquan Tuo: Supervision 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 

This study was financially supported by State Key Laboratory of Loess and Quaternary Geology, 

Institute of Earth Environment, CAS (SKLLOG2314).We would like to thank all the partners for 

their participation in field sample collection and experimental analysis. The authors are also grateful 

to the processing editors and anonymous reviewers for their patient communication and 

enlightening suggestions. 

References 

[1] Zhang, T., Liang, S., Zhao, G., et al., 2023. Evolution of Pattern and Service Functions of Ecosystem in the Source 

Region of the Yellow River. People’s Yellow River. 45 (9), 70-76. https://doi.org/10.3969/j.issn.1000-1379.2023.09.012. 

[2] Yang, L., Yang, M., Yang, Y., 2023. Simulation and Application Progress of Water Environment Parameters Based on 

Multi source Remote Sensing. Leather Manuf. Environ. Prot. Technol. 4 (21), 81-83. https://doi.org/10. 

20025/j.cnki.CN10-1679.2023-21-28. 

[3] Wang, W., Li, Y., Lei, K., et al., 2022. Remote Sensing Retrieval of Total Nitrogen Concentration in the Mainstream 

and Part of Tributaries in the Liaohe Watershed. Chin. Rural Water Hydropower. 7, 32-40. 

[4] Chen, J., Zhang, L., Zhang, H., et al., 2023. Comparative study on the hyperspectral estimation models of TP and 

TN in Baiyangdian water body. Nat. Remote Sens. Bull. 27 (7), 1642-1652. https://doi.org/10.11834/jrs.20210575. 

[5] Yang, H., Kong, J., Hu, H., et al., 2022. A Review of Remote Sensing for Water Quality Retrieval: Progress and 

Challenges. Remote Sens. 14 (8), 1770. https://doi.org/10.3390/rs14081770. 
[6] Zhang, Y., 2022. Monitoring water quality using proximal remote sensing technology. Sci. Total Environ. 803, 

149805. https://doi.org/10.1016/j.scitotenv.2021.149805. 

[7] Wu, H., Guo, Q., Zang, J., et al., 2021. Study on Water Quality Parameter Inversion based on Landsat 8 and 

Measured Data. Remote Sens. Technol. Appl. 36 (4), 898-907. https://doi.org/10.11873/j.issn.1004-0323.2021.4.0898. 

[8] Vakili, T., Amanollahi, J., 2020. Determination of optically inactive water quality variables using Landsat 8 data: A 

case study in Geshlagh reservoir affected by agricultural land use. J. Clean. Prod. 247. 

https://doi.org/10.1016/j.jclepro.2019.119134. 

[9] Liang, W., Wu, Y., Shi, Y., et al., 2024. Retrieval of water quality in the Taipu River based on UAV hyperspectral 

imagery. Bull. Surv. Mapp. 29-34. https://doi.org/10.13474/j.cnki.11-2246.2024.0406. 

[10] Liu, X., Zhang, M., Xie, T., et al., 2024. Spatial-temporal changes of chlorophyll a and turbidity in Honghu 

Wetland based on multi-source data and machine learning. Resour. Environ. Yangtze Basin, 1-15 

http://kns.cnki.net/kcms/detail/42.1320.X.20240429.1133.002.html. 

[11] Gorelick, N., Hancher, M., Dixon, M., et al., 2017. Google Earth Engine: Planetary-scale geospatial analysis for 

everyone. Remote Sens. Environ. 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031. 

[12] Li, Y., Sun, X., Guo, Y., et al., 2020. Remote Sensing Retrieval of Water Quality Parameters in Poyang Lake Based 

on the Gradient Boosting Decision Tree Algorithm. Spacecraft Recov. Remote Sens. 41 (6), 90-102. 

https://doi.org/10.3969/j.issn.1009-8518.2020.06.009. 

[13] Gal, Y., Ghahramani, Z., 2016. Dropout as a bayesian approximation: Representing model uncertainty in deep 

learning. Proc. Int. Conf. Mach. Learn. 1050-1059. https://doi.org/10.48550/arXiv.1506.02142. 

38




