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Abstract: This study delves into the multi-objective flexible job-shop scheduling problem 

with fuzzy time (MOFFJSP), addressing complex and dynamic production environments, 

with the goal of minimizing the maximum completion time and total machine workload 

(TMW). A graph embedding algorithm based on reinforcement learning (GEARL) is 

proposed in this article, consisting of four modules: population initialization, fuzzy 

disjunctive graph, policy model, and solution set optimization processing. Diverse initial 

populations are constructed using different rules tailored to the problem. A fuzzy 

disjunctive graph is designed to transform individual data information into graph 

information. Graph embedding technology is utilized to extract individual feature 

information and generate corresponding optimization strategies through the policy model. 

Solution set optimization processing involves performing non-dominated sorting on the 

entire population to filter out advantageous individuals to guide subsequent optimization 

directions. Experimental results demonstrate that the GEARL algorithm exhibits significant 

advantages in solving the MOFFJSP. 

1. Introduction  

As manufacturing enterprises continue to expand, the urgent need to reduce machine workload 

while improving production efficiency has prompted traditional manufacturing enterprises to 

accelerate transformation and upgrading [1]. Compared to traditional workshop scheduling issues, 

the flexible job shop scheduling problem (FJSP) is more complex, requiring not only the rational 

arrangement of processing sequences but also the precise allocation of machine resources for each 

operation [2]. Therefore, FJSP is fundamentally classified as a classic NP-hard problem [3]. 

In recent years, researchers have conducted in-depth studies on the FJSP. For single-objective 

FJSP, existing literature [4-6] has delved into the subject, with goals typically focusing on 

minimizing the maximum completion time. However, as manufacturing enterprises continue to 

grow in scale, decision-makers need to balance multiple objectives. Consequently, the multi-

objective flexible job shop scheduling problem (MOFJSP) has gradually become a research hotspot. 
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Zhang et al. [7] studied the distributed MOFJSP, considering both total completion time (TET) and 

total energy consumption (TEC), and proposed a super-heuristic algorithm based on Q-learning. 

Luo et al. [8] designed a knowledge-guided two-stage memetic algorithm to address multi-objective 

energy-saving FJSP, which also considers TET and TEC. Zhu et al. [9] proposed an improved 

memetic algorithm for distributed FJSP in production environments, aiming to optimize TET and 

TEC. Li et al. [10] focused on energy-saving FJSP under finite worker conditions and proposed a 

multi-objective evolutionary algorithm based on reference fuzzy correlation entropy. This article, 

when studying MOFJSP, considers both TET and total machine workload (TMW) as objectives and 

constructs the corresponding mathematical model. 

In actual production workshop scheduling, numerous uncertainties such as raw material 

shortages, insufficient power supply, machine failures, lead to uncertainty in job processing times in 

FJSP [11]. However, most existing theoretical models typically assume fixed values for processing 

times, which significantly differ from real production environments. Therefore, to better adapt to 

uncertain environments, this article introduces fuzzy numbers into MOFJSP, expanding it to fuzzy 

MOFJSP. Chen et al. [12] proposed a multi-objective hybrid immune algorithm for solving fuzzy 

FJSP with variable processing speeds, considering fuzzy TET and fuzzy TEC. Abdel-Basset et al. 
[13] introduced a hybrid fuzzy flexible job shop scheduling algorithm (HFFSA) for fuzzy FJSP. 

Triangular fuzzy numbers (TFN) are introduced into MOFJSP in this article, as this model more 

accurately reflects real production situations.  

In the past, evolutionary algorithms such as ant colony optimization (ACO) [14], artificial bee 

colony (ABC) [15], memetic algorithm (MA) [16], etc., have been widely adopted to find optimal 

solutions within a reasonable time frame. However, these algorithms often face challenges such as 

convergence difficulties, cumbersome parameter tuning, and computational complexity when 

dealing with increasingly complex models. With the rapid development of artificial intelligence 

technology, introducing reinforcement learning (RL), neural networks, etc., into scheduling 

problems can significantly improve solution accuracy. Hu et al. [17] combined mathematical 

programming methods, RL, and metaheuristic algorithms to propose a learning-oriented multi-

objective artificial bee colony algorithm to solve dynamic FJSP. Akram et al. [18] proposed a multi-

objective black widow spider algorithm to address multi-objective dynamic FJSP. Chen et al. [19] 

designed a reinforcement learning algorithm integrated with long short-term Memory (LSTM) 

networks to solve dynamic FJSP. Zhang et al. [20] optimized FJSP by introducing attention 

mechanisms and RL frameworks for intelligent agents. Park et al. [21] combined graph neural 

networks (GNN) and RL, using disjunctive graphs to extract common JSP indicators. Based on this, 

this article introduces GNN and RL to solve fuzzy FJSP. 

In the research background mentioned above, this article proposes a fuzzy time-aware FJSP at 

the problem level, considering both TET and TMW as objectives. A graph embedding algorithm 

based on reinforcement learning (GEARL) is proposed to solve this problem. The rest of this article 

is organized as follows: The second part introduces the basic theory of triangular fuzzy numbers 

and defines the MOFFJSP model. The third part presents the GEARL. The fourth part discusses the 

experimental results. The fifth part concludes and outlines future work. 

2. Definition of the problem 

2.1. The fundamental theory of TFN 

Fuzzy set theory is a generalization and extension of classical set theory, with its core being the 

introduction of membership functions to quantify the degree of an element's membership in a set. A 

fuzzy set  𝐴̃ is defined by formula (1). Here, 𝑥 is any element in the fuzzy set 𝐴̃, 𝑢𝐴̃(𝑥) serves as the 
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membership function quantifying the possibility of 𝑥 belonging to set 𝐴̃, and 𝑋 is the fixed domain 

of the fuzzy variable. 

𝐴̃ =  {𝑥, 𝑢𝐴̃(𝑥)|∀𝑥 ∈ 𝑋}, 0 ≤ 𝑢𝐴̃(𝑥) ≤ 1 (1) 

Classical sets are deterministic sets, where 𝑢𝐴̃(𝑥) = 1  implies that the element 𝑥  completely 

belongs to the set. Formula (2) represents the classical set. 

𝐹 =  {𝑥, 𝑢𝐴̃(𝑥) = 1|∀𝑥 ∈ 𝑋} (2) 

𝑓(𝑥) =

{
 
 

 
 

0, 𝑥 ≤ 𝑡1
𝑥 − 𝑡1
𝑡2 − 𝑡1

, 𝑡1 < 𝑥 ≤ 𝑡2

𝑡3 − 𝑥

𝑡3 − 𝑡2
, 𝑡2 < 𝑥 < 𝑡3

0, 𝑥 ≥ 𝑡3

 (3) 

In addressing practical scheduling problems, due to the uncertainty of job processing times, TFN 

are introduced. As shown in Figure 1, 𝑡1 represents the earliest processing time, 𝑡2 represents the 

most likely processing time, 𝑡3 represents the latest processing time. TFN are typically represented 

as a triplet 𝑇𝐹𝑁 = (𝑡1, 𝑡2, 𝑡3) , and the triangular membership function is defined as shown in 

formula (3).  

Given two triangular fuzzy numbers 𝐴̃ = (𝑎1, 𝑎2, 𝑎3) and 𝐵̃ = (𝑏1, 𝑏2, 𝑏3), three operations are 

introduced: addition, comparison, and maximum value selection. 

(1) Addition operation 

𝐴̃ + 𝐵̃ = (𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 + 𝑏3) (4) 

(2) Comparison operation 

Case 1: 𝑦1(𝑥̃) = (𝑥1 + 2𝑥2 + 𝑥3)/4, If 𝑦1(𝐴̃) > 𝑦1(𝐵̃), then 𝐴̃ > 𝐵̃, otherwise 𝐴̃ < 𝐵̃. 

Case 2: 𝑦2(𝑥̃) = 𝑥2, when 𝑦1(𝐴̃) = 𝑦1(𝐵̃), If 𝑦2(𝐴̃) > 𝑦2(𝐵̃), then 𝐴̃ > 𝐵̃, otherwise 𝐴̃ < 𝐵̃. 

Case 3: 𝑦3(𝑥̃) = 𝑎3 − 𝑎1, when 𝑦2(𝐴̃) = 𝑦2(𝐵̃), 𝑦3(𝐴̃) > 𝑦3(𝐵̃), then 𝐴̃ > 𝐵̃, otherwise 𝐴̃ < 𝐵̃. 

(3) Maximum value selection operation 

If 𝐴̃ > 𝐵̃, then 𝐴̃⋁𝐵̃ = 𝐴̃; otherwise, 𝐴̃⋁𝐵̃ = 𝐵̃. 

x

u(x)

1

t1 t2 t3  

Figure 1: TFN 

2.2. The notations of MOFFJSP 

The notations of MOT2FJSP are described as follows. 
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Notations Description 

𝑛 Total number of jobs. 

𝑚 Total number of machines. 

𝑖 Index of machine. 

𝑗, 𝑘 Index of job. 

ℎ𝑗 Total number of operations of job j. 

𝑙 Index of operation. 

𝑝̃𝑖𝑗ℎ The fuzzy processing time of the h operation of job j on machine i. 

𝑠̃𝑗ℎ The fuzzy start time of the h operation of job j. 

𝑐̃𝑗ℎ The fuzzy completion time of the h operation of job j. 

𝐿 A sufficiently large positive number. 

𝐶̃𝑚𝑎𝑥 The fuzzy maximum completion time of a schedule. 

𝑊𝑖 The total workload of machine i. 

𝐽 Collection of jobs, 𝐽 = {1,2,3, . . . , 𝑛}. 
𝑀 Collection of machines, 𝑀 = {1,2,3, . . . , 𝑚}. 

𝐻𝑗 Collection of operations for job j, 𝐻𝑗 = {1,2,3, . . . , ℎ𝑗}. 

𝑥𝑖𝑗ℎ = {
1,
0,

 
If operation 𝑂𝑗ℎ selects machine i. 

Otherwise. 

𝑦𝑖𝑗ℎ𝑘𝑙 = {
1,
0,

 
If 𝑂𝑖𝑗ℎ processed before 𝑂𝑖𝑘𝑙. 

Otherwise. 

2.3. The MILP of MOFFJSP 

The MILP (Mixed Integer Linear Programming) model is an abstract method, the construction of 

which is aimed at simplifying and handling complex problems [22]. The MILP description of 

MOFFJSP is given as follows: 

Objective function: 𝑚𝑖𝑛(𝐶̃𝑚𝑎𝑥, 𝑊𝑖) (5) 

s.t. 𝑠̃𝑗ℎ + 𝑥𝑖𝑗ℎ  ×  𝑝̃𝑖𝑗ℎ  ≤  𝑐̃𝑗ℎ, (∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽, ℎ ∈ 𝐻𝑗) (6) 

𝑐̃𝑗ℎ  ≤  𝑠̃𝑗(ℎ+1), (∀𝑗 ∈ 𝐽, ℎ ∈ 𝐻𝑗−1) (7) 

𝑐̃𝑗ℎ𝑗  ≤  𝐶̃𝑚𝑎𝑥, (∀𝑗 ∈ 𝐽) (8) 

𝑠̃𝑗ℎ + 𝑝̃𝑖𝑗ℎ  ≤  𝑠̃𝑘𝑙  +  𝐿 × (1 − 𝑦𝑖𝑗ℎ𝑘𝑙), (∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐽, ℎ ∈ 𝐻𝑗 , 𝑙 ∈ 𝐻𝑘) (9) 

𝑐̃𝑗ℎ  ≤  𝑠̃𝑗(ℎ+1)  +  𝐿 × (1 − 𝑦𝑖𝑘𝑙𝑗(ℎ + 1)), (∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐽, ℎ ∈ 𝐻𝑗−1, 𝑙 ∈ 𝐻𝑘) (10) 

∑𝑥𝑖𝑗ℎ

𝑚𝑗ℎ

𝑖 = 1

 =  1, (∀ℎ ∈ 𝐻𝑗 , 𝑗 ∈ 𝐽) (11) 

∑ ∑ 𝑦𝑖𝑗ℎ𝑘𝑙 

ℎ𝑗

ℎ = 1

𝑛

𝑗 = 1

 =  𝑥𝑖𝑘𝑙 , (∀𝑖 ∈ 𝑀, 𝑘 ∈ 𝐽, 𝑙 ∈ 𝐻𝑘) (12) 
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∑ ∑𝑦𝑖𝑗ℎ𝑘𝑙 

ℎ𝑘

𝑙 = 1

𝑛

𝑘 = 1

 =  𝑥𝑖𝑗ℎ, (∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽, ℎ ∈ 𝐻𝑘) (13) 

𝑠̃𝑗ℎ  ≥  0, 𝑐̃𝑗ℎ  ≥  0, (∀𝑗 ∈ 𝐽, ℎ ∈ 𝐻𝑗) (14) 

𝑊𝑖 = 𝑝̃𝑖𝑗ℎ × 𝑥𝑖𝑗ℎ, (∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽, ℎ ∈ 𝐻𝑗) (15) 

The optimization objective of MOFFJSP is defined by function (5). The sequence of operations 

for each job is determined according to formulas (6) and (7). Formula (8) sets an upper limit on the 

completion time for each job to ensure that the completion time of all jobs does not exceed the total 

completion time. Formulas (9) and (10) specify that only one operation is processed on the same 

machine at the same time. Formula (11) represents machine constraints, stating that a particular 

operation is processed by only one machine at the same time, and formulas (12) and (13) indicate 

the existence of cyclic operations on each machine. Formula (14) stipulates that all parameter 

variables must be positive. Formula (15) outlines the calculation method for machine workload. 

3. Algorithm Section 

3.1. The overall framework of the GEARL 

Population Initialization

Minimum processing time rule

Minimum machine load rule

Stochastic policy rule

Fuzzy Disjunctive Graph

Data information Graph information

Policy Model

Reinforce

Graph Embedding

Policy network

Get the solution set

Cmax             TMW

 

Figure 2: The overall framework of the GEARL 

The overall structure of the algorithm is illustrated in Figure 2, consisting of four modules: 

population initialization, fuzzy disjunctive graph information transformation, strategy model 

construction, and solution set optimization processing. In the population initialization phase, three 

different rules are designed to enhance the diversity of the population and ensure the high quality of 

the initial population. The three initialization rules are as follows: the minimum processing time 

rule, the minimum machine load rule, and the random strategy rule. In the fuzzy disjunctive graph 

module, the data of each individual in the population is transformed into the form of a disjunctive 

graph, facilitating the training and learning of the subsequent strategy model. In the strategy model 

module, graph embedding technology is utilized to extract individual features, which are then input 
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into a policy network consisting of fully connected layers. This network outputs sequence 

adjustment strategies for each individual based on their features, such as the job sequence and 

machine sequence. By comparing the performance of new and old individuals in terms of maximum 

completion time and total machine load, the values of the corresponding reward functions are 

adjusted accordingly. The entire model iteratively updates using the Reinforce algorithm in 

reinforcement learning, ensuring that the policy model guides each individual to choose the optimal 

evolutionary path through continuous training. In the solution set optimization module, a non-

dominated sorting is applied to the updated population to select the optimal solution set. In 

summary, the GEARL algorithm efficiently addresses MOFFJSP through these four closely 

collaborating modules. 

3.2.  Encoding and population initialization 

In this paper, two one-dimensional vectors (operate sequence (OS) and a machine sequence 

(MS)) are used to represent a solution for MOFFJSP. As shown in Figure 3, OS lists the execution 

order of each operation in all jobs, while MS indicates the corresponding machines selected for each 

operation. The lengths of OS and MS are equal to the total number of operations in the problem 

being solved. By sorting based on the positional correspondence of elements in OS and MS, the 

maximum completion time of this solution can be calculated. Combining MS with its corresponding 

time information allows for the determination of the total workload of the machines. Ultimately, 

this solution is parsed and transformed into a specific fuzzy scheduling scheme. 

1 2 3 2 1 3 2

2 1 3 2 3 1 3

Job1

Job2

Job3

O1,1 O2,1 O3,1 O3,2O1,2O2,2 O2,3

O1,1 O1,2 O2,1 O2,2 O2,3 O3,1 O3,2

OS

MS

 

Figure 3:  Representation of the solution 

To improve the convergence efficiency of the algorithm and reduce the consumption of 

computing resources, three methods for initializing the population have been designed. The 

population is evenly divided into three parts, and then constructed according to the following rules 

in sequence: 

(1) Minimum processing time rule: Firstly, OS is randomly initialized, and based on the principle 

of fuzzy number comparison, the machine with the smallest processing time among the currently 

available machines is assigned to each operation to minimize the objective of minimizing 𝐶̃𝑚𝑎𝑥. 
(2) Minimum machine load rule: OS is randomly initialized, and based on the principle of fuzzy 

number comparison, the machine with the minimum machine load is selected for each operation 

allocation, aiming to reduce the total machine load. 

(3) Random strategy rule: OS and MS are randomly initialized to increase the randomness and 

diversity of the population, thereby expanding the search space. 

3.3. Fuzzy disjunctive graph 

In the fuzzy disjunctive graph module, a fuzzy disjunctive graph was designed for a specific 

problem, which effectively transforms sequence information into intuitive graphical information [23]. 

A triplet 𝐺 = {𝑂, 𝐶, 𝐸} is defined to represent the fuzzy disjunctive graph, as shown in Figure 4. 

Here, 𝑂 represents a set of operation nodes, including start and end nodes as well as all intermediate 

nodes, each node accompanied by corresponding fuzzy time information. 𝐶 is a set of directed arcs 
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connected by black arrows, explicitly showing the logical relationships between preceding and 

succeeding operations within the same job. 𝐸 represents a set of undirected disjunctive arcs, where 

arcs of the same color connect operations that need to be performed on the same machine. 

 

Figure 4:  Fuzzy Disjunctive Graph of a 3 × 3 Instance 

The process of transforming sequence information into graphical information in this module is as 

follows: initially, nodes are constructed based on OS, and fuzzy time is normalized by querying the 

fuzzy time of operations on the corresponding machines, with the normalized results stored as 

weight information in each node. Subsequently, to distinguish between different processing 

machines, different colours of dashed lines are used to represent machine information. 

Simultaneously, black arrows act as connecting arcs, clarifying the sequence of operations. For a 

complete solution, it is essential to determine the direction of disjunctive arcs and the start time of 

each operation. By employing an arc-adding strategy, nodes are selected from the arcs of available 

machines based on the known MS to establish connections. Ultimately, the information from OS 

and MS is transformed into a fuzzy disjunctive graph. This graph not only consolidates all intricate 

information but also facilitates subsequent graph embedding operations. 

3.4. Policy model 

The GEARL algorithm considers the entire population as a synergistic whole, where each 

individual in the population becomes a part of the reinforcement learning iterative chain. Through 

the policy model, the algorithm can precisely match the most suitable evolutionary strategy for each 

individual. Subsequently, the algorithm evaluates key metrics of individuals before and after 

evolution, including the change in 𝐶̃𝑚𝑎𝑥 value and machine workload, to calculate the cumulative 

reward function based on this evaluation. Therefore, the magnitude of the cumulative reward 

function becomes an intuitive scale to measure the quality of the population, aligning well with 

Markov decision processes. This not only demonstrates the effectiveness of the evolutionary 

strategy but also provides clear guidance for subsequent network updates. 

To gain a deeper understanding of the problem characteristics and optimize the solution strategy, 

a variant of GNN [24] called graph isomorphic network (GIN) technology is introduced, which 

extracts vector information from the fuzzy disjunctive graph and generates feature vectors that 

comprehensively represent the entire graph through multiple processing steps. The detailed process 

is as follows: 𝐺 = (𝑉, 𝐸)  defines the graph, GIN performs 𝑘  update iterations to compute 𝑝  -

dimensional embeddings for each node 𝑣 ∈ 𝑉, and updates according to equation (16), where ℎ𝑣
(𝑘)

 is 

the representation of node 𝑣 at iteration 𝑘, ℎ𝑣
(0)

 is its original input feature, 𝑀𝐿𝑃𝜃𝑘
(𝑘)

 is a multi-layer 

perceptron with parameters 𝜃𝑘 , followed by batch normalization, 𝜖 is a learnable parameter, and 

𝑁(𝑣) is the neighbourhoods of 𝑣. 

The extracted graph embedding features ℎ𝑣
(𝑘)

 are then inputted into the policy model, which is 

responsible for generating a probability distribution 𝑃(𝑎𝑡) to guide the transformation operations of 

Start

O11

O21

O31

O12

O22

O32

O13

O23

O33

End

M1

M2

M3
(1,2,3)

(2,3,4)(2,4,6)

(3,5,6)(6,7,8)

(1,3,5)
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individuals. The setting of the reward function is closely related to changes in individual target 

values: if both target values decrease, the reward is 20 to encourage significant optimization; if any 

target value decreases, the reward is 10 to acknowledge partial optimization; if both target values 

increase, the reward is 0 as a penalty. The entire model iteratively updates through the Reinforce 

algorithm, where each population in each iteration represents one round. The improvement in 

cumulative reward value directly reflects the model's ability to more accurately select the optimal 

evolutionary strategy based on individual circumstances after training. 

ℎ𝑣
(𝑘)
= 𝑀𝐿𝑃𝜃𝑘

(𝑘)
((1 + 𝜖(𝑘)) × ℎ𝑣

(𝑘−1)
+ ∑ ℎ𝑢

(𝑘−1)

𝑢∈𝑁(𝑣)

) (16) 

The 6 strategies output by the policy network are designed based on MOFFJSP and are 

combined as follows: 

OS: 

(1): Priority crossover operation on OS, dividing the job set into two parts, exchanging and 

duplicating OS segments within subsets, and then integrating and restoring them. 

(2): Operation exchange on OS, randomly selecting two segments in the OS sequence and 

swapping their positions. 

(3): Operation mutation, randomly selecting a segment in OS and inserting it at any OS position. 

MS: 

(1): Crossover operation on MS, randomly selecting segments at the same position in two MS 

and exchanging them. 

(2): Mutation operation on MS, randomly selecting a position in MS and replacing it with any 

machine from the corresponding optional machine set for the operation. 

4. Experimental Results and Analysis  

In this section, a detailed evaluation of the proposed algorithm's performance is conducted and 

the experimental results are presented. The experiments are based on testing a subset of standard 

sets for the fuzzy flexible job shop scheduling problem [25]. 

GEARL is implemented using the Python programming language. The experimental 

environment consists of a Windows 11 Pro 64-bit operating system with a 12th Gen Intel(R) Core 

(TM) i5-12500H CPU @ 3.10 GHz and NVIDIA GeForce RTX 3050 Laptop GPU. Each instance 

is run 10 times individually, with a termination condition of n*m seconds of CPU time to ensure 

fairness in the experiments. In subsequent numerical experiments, unless otherwise stated, the 

above experimental settings remain consistent. MOFFJSP is a multi-objective problem. Three 

metrics, Hypervolume, Inverted Generational Distance, and C Metric, are used to evaluate the 

performance of the GEARL algorithm, considering the completeness, convergence, diversity, and 

dominance relationships of the Pareto front. 

4.1. Parameter Settings 

The GEARL algorithm mainly includes three key parameters: population size 𝑃 ∈
{80,90,100,110} , policy gradient discount rate 𝐺 ∈ {0.8,0.9,1} , and learning rate 𝐿 ∈
{2𝑒−6, 2𝑒−5, 2𝑒−4}. These parameters are determined based on existing literature and preliminary 

experimental results. According to orthogonal experimental design, there are a total of 4 × 3 × 3 =
36 different parameter combinations. The optimal parameter combination for the GEARL algorithm 

is selected based on the 8 different instances in the test set. Each instance is terminated after n×m 
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seconds of CPU time, run independently 5 times, resulting in a total of 1440 outcomes (36 × 8 ×
5). 

Table 1: Presents the ANOVA results for the HV 

Source Sum Sq. d. f. Mean Sq. F-ratio p-value 

𝑃 0.00044 3 0.00015 14.52 0.0003 

𝐺 0.00039 2 0.00020 19.10 0.0002 

𝐿 0.00042 2 0.00021 20.68 0.0001 

𝑃 ∗ 𝐺 0.00011 6 0.00002 1.73 0.1964 

𝑃 ∗ 𝐿 0.00008 6 0.00001 1.30 0.3274 

𝐺 ∗ 𝐿 0.00014 4 0.00004 3.50 0.0410 

Error 0.00012 12 0.00001   

Total 0.00171 35    

Table 2: Presents the ANOVA results for the IGD 

Source Sum Sq. d. f. Mean Sq. F-ratio p-value 

𝑃 54.336 3 18.1119 17.27 0.0001 

𝐺 32.479 2 16.2394 15.48 0.0005 

𝐿 37.695 2 18.8477 17.97 0.0002 

𝑃 ∗ 𝐺 11.894 6 1.9824 1.89 0.1639 

𝑃 ∗ 𝐿 14.836 6 2.4727 2.36 0.0972 

𝐺 ∗ 𝐿 15.385 4 3.8462 3.67 0.0357 

Error 12.587 12 1.0489   

Total 179.212 35    

The experiment utilized analysis of variance (ANOVA) technique to assess the experimental 

results. Before applying ANOVA, three core assumptions were validated: the normality of the data, 

homogeneity of variance, and independence among observations. Through rigorous testing 

procedures, it was confirmed that the data collected in this experiment did not exhibit significant 

biases, meeting the prerequisites for analysis. Subsequently, ANOVA calculations were conducted 

for the metrics HV and IGD, and the results were summarized in Tables 1 and 2. By analyzing the 

data in Tables 1 and 2, it is evident that when the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is less than the significance level of 

0.05, the population size 𝑃, policy gradient discount rate 𝐺, and learning rate 𝐿 significantly impact 

the performance of the GEARL algorithm. This discovery indicates that these three parameters are 

crucial factors determining the overall efficiency of the GEARL. Furthermore, by comparing the 

magnitudes of the F-ratio values, it was observed that the learning rate 𝐿 stands out as the most 

prominent influencer among all these significant parameters on the performance of the GEARL. 

As shown in Figures 5 and 6, main effect plots regarding each participant were constructed based 

on the HV and IGD metrics. From these plots, it is clearly observed that the performance of all 

metrics reaches an optimal state when the key parameters are set to 𝑃 = 100, 𝐺 = 0.9, and 𝐿 =
2𝑒−5. This is because setting the population size too large increases the algorithm's time cost during 

the search process, thereby hindering overall performance. Conversely, a population size that is too 

small restricts diversity within the population, which is also detrimental to performance. Both 

excessively high or low discount rates and learning rates can impact the algorithm's performance. 

This is due to the high sensitivity of these parameters in the neural network model learning and 

optimization process using policy gradient methods. Improper parameter selection can slow down 

convergence to some extent and may lead to instability in the training process, thereby affecting the 

learning efficiency and final performance of the model within a specified time frame. 
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Figure 5: Main effect plot of HV Figure 6: Main effect plot of IGD 

4.2. Comparison with Other Algorithms 

This experiment thoroughly validates the effectiveness and superiority of the GEARL algorithm 

in the MOFFSP problem by comparing it with three representative multi-objective problem-solving 

algorithms. The three comparative algorithms are NSGAIISDR [26], MOEA/D-URAW [27], and 

SSCEA [28]. To maintain fairness and consistency in the algorithm comparisons, unified standards 

were maintained in several key aspects, including the problem encoding and decoding scheme, the 

optimization objectives pursued, and the termination conditions of the experiments. In the 

experiment, the three comparative algorithms NSGAIISDR, MOEA/D-URAW, and SSCEA are 

denoted by 𝐴1, 𝐴2, and 𝐴3 respectively, while GEARL is denoted by 𝐴. 𝐶1 and 𝐶2 represent the 

domination situation of all solutions between 𝐴  and 𝐴1 , and similar comparisons for other 

algorithms. 

Table 3: Presents the experimental results for HV 

Problem 𝐴1 𝐴2 𝐴3 𝐴 

Remanu01 0.0407 0.0413 0.0282 0.0460 

Remanu02 0.0686 0.0453 0.0333 0.0858 

Remanu03 0.0428 0.0298 0.0239 0.0472 

Remanu04 0.1136 0.0613 0.0285 0.1196 

Remanu05 0.0664 0.0275 0.0200 0.1073 

Remanu06 0.0377 0.0191 0.0187 0.0856 

Remanu07 0.0481 0.0269 0.0145 0.1396 

Remanu08 0.0546 0.0337 0.0153 0.2073 

Table 4: Presents the experimental results for IGD 

Problem 𝐴1 𝐴2 𝐴3 𝐴 

Remanu01 1.3821 1.2571 4.2321 0.8634 

Remanu02 8.4384 21.291 35.167 3.0996 

Remanu03 5.8900 13.447 20.545 3.2076 

Remanu04 12.322 50.802 100.89 5.9585 

Remanu05 72.682 177.01 175.61 4.4567 

Remanu06 76.689 123.41 129.42 10.833 

Remanu07 263.45 368.17 435.60 90.682 

Remanu08 390.02 556.12 634.82 136.78 
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Table 5: Presents the experimental results for C (A, B) 

Problem 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 

Remanu01 1.00 0.00 0.50 0.00 1.00 0.00 

Remanu02 0.89 0.00 1.00 0.00 1.00 0.00 

Remanu03 0.87 0.20 1.00 0.00 1.00 0.00 

Remanu04 0.85 0.00 1.00 0.00 1.00 0.00 

Remanu05 1.00 0.00 1.00 0.00 1.00 0.00 

Remanu06 1.00 0.00 1.00 0.00 1.00 0.00 

Remanu07 1.00 0.00 1.00 0.00 1.00 0.00 

Remanu08 1.00 0.00 1.00 0.00 1.00 0.00 

Tables 3-5 provides a detailed display of the performance of the GEARL algorithm and the 

comparative algorithms across different metrics, where each cell represents the average value of the 

corresponding problem metric, with the best results highlighted in bold. From the Tables 3-5, it is 

observed that the GEARL algorithm demonstrates significant advantages on most test sets. While 

the algorithm shows relatively shorter running times when handling small-scale problems 

(attributed to the limitation of problem size), it does not significantly stand out in terms of metric 

performance. However, as the problem scale gradually increases, the superiority of the GEARL 

algorithm becomes more apparent. This is mainly due to its longer running time, allowing the 

policy model to be thoroughly trained, enabling precise selection of the best evolutionary strategy 

for each individual. This strategy selection mechanism greatly accelerates the optimization process 

of the population. In contrast, comparative algorithms require a significant amount of time to search 

for solutions in the domain. Therefore, when faced with complex and large-scale problems, the 

GEARL algorithm demonstrates more prominent performance with its efficient strategy selection 

and optimization mechanism. 

   

Figure 7: Interval diagram of 

HV 

Figure 8: Interval diagram of 

IGD 

Figure 9: Interval diagram of C 

Metric 

Figures 7-9 visually present the experimental results of various comparative algorithms, 

specifically displaying interval diagrams within a 95% confidence interval for three different 

performance metrics. It is evident from the diagrams that in the interval representations of each 

metric, the GEARL algorithm exhibits the best mean performance, surpassing the compared 

algorithms in all performance metrics. The GEARL algorithm demonstrates stronger robustness in 

terms of convergence and result distribution. Combining the experimental data and graphical 

analysis mentioned above, the GEARL algorithm, for each population individual, can accurately 

provide guidance tailored to current evolutionary needs through its unique policy model, thereby 

more rapidly and stably guiding the population to converge to the optimal solution set. 

Figure 10 presents a comparison of the Pareto fronts obtained by various algorithms for different 

problem instances. The purpose of this graph is to visually showcase the final optimization results 

of different algorithms for each problem. Through the macroscopic display of the Pareto front graph, 

the significant effectiveness of the GEARL algorithm in solving MOFFJSP is observed. The 
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solution set positions of the GEARL algorithm are superior, closer to the coordinate origin and the 

horizontal and vertical axes, indicating excellent performance in reducing both the maximum 

completion time and total machine workload. Compared to other algorithms, the GEARL algorithm 

can explore and find a higher-quality Pareto optimal solution set within the same computational 

time, validating its efficiency and practicality in solving the MOFFJSP. 

 

Figure 10: Pareto front diagram 

5. Conclusions and Future work 

In this research, GEARL was introduced to tackle the MOFFJSP, aiming to optimize total 

completion time and machine total load. The algorithm, structured around population initialization, 

fuzzy disjunctive graph, policy model, and solution set optimization modules, effectively guides 

population evolution. By utilizing graph information to represent individual data and selecting 

tailored evolutionary strategies for each, GEARL demonstrates significant advantages in addressing 

the MOFFJSP. 

Future endeavours will involve integrating cutting-edge algorithms such as state-of-the-art large-

scale models to further enhance and refine the existing model. The goal is to optimize a broader 

range of objectives simultaneously, thereby developing a production scheduling model that better 

aligns with real-world requirements 
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