
A Graph Embedding Algorithm Based on Reinforcement

Learning for Solving Fuzzy Multi-Objective Flexible Job

Shop Scheduling Problem

Weiyuan Wang1,*, Fuqing Zhao1

1School of Computer and Communication, Lanzhou University of Technology, Lanzhou, China

*Corresponding author: wwy19396720686@163.com

Keywords: Multi-objective flexible job-shop scheduling problem, Graph embedding, Fuzzy

disjunctive graph, Reinforcement learning

Abstract: This study delves into the multi-objective flexible job-shop scheduling problem

with fuzzy time (MOFFJSP), addressing complex and dynamic production environments,

with the goal of minimizing the maximum completion time and total machine workload

(TMW). A graph embedding algorithm based on reinforcement learning (GEARL) is

proposed in this article, consisting of four modules: population initialization, fuzzy

disjunctive graph, policy model, and solution set optimization processing. Diverse initial

populations are constructed using different rules tailored to the problem. A fuzzy

disjunctive graph is designed to transform individual data information into graph

information. Graph embedding technology is utilized to extract individual feature

information and generate corresponding optimization strategies through the policy model.

Solution set optimization processing involves performing non-dominated sorting on the

entire population to filter out advantageous individuals to guide subsequent optimization

directions. Experimental results demonstrate that the GEARL algorithm exhibits significant

advantages in solving the MOFFJSP.

1. Introduction

As manufacturing enterprises continue to expand, the urgent need to reduce machine workload

while improving production efficiency has prompted traditional manufacturing enterprises to

accelerate transformation and upgrading [1]. Compared to traditional workshop scheduling issues,

the flexible job shop scheduling problem (FJSP) is more complex, requiring not only the rational

arrangement of processing sequences but also the precise allocation of machine resources for each

operation [2]. Therefore, FJSP is fundamentally classified as a classic NP-hard problem [3].

In recent years, researchers have conducted in-depth studies on the FJSP. For single-objective

FJSP, existing literature [4-6] has delved into the subject, with goals typically focusing on

minimizing the maximum completion time. However, as manufacturing enterprises continue to

grow in scale, decision-makers need to balance multiple objectives. Consequently, the multi-

objective flexible job shop scheduling problem (MOFJSP) has gradually become a research hotspot.

Industrial Engineering and Innovation Management (2025)
Clausius Scientific Press, Canada

DOI: 10.23977/ieim.2025.080114
ISSN 2522-6924 Vol. 8 Num. 1

118

Zhang et al. [7] studied the distributed MOFJSP, considering both total completion time (TET) and

total energy consumption (TEC), and proposed a super-heuristic algorithm based on Q-learning.

Luo et al. [8] designed a knowledge-guided two-stage memetic algorithm to address multi-objective

energy-saving FJSP, which also considers TET and TEC. Zhu et al. [9] proposed an improved

memetic algorithm for distributed FJSP in production environments, aiming to optimize TET and

TEC. Li et al. [10] focused on energy-saving FJSP under finite worker conditions and proposed a

multi-objective evolutionary algorithm based on reference fuzzy correlation entropy. This article,

when studying MOFJSP, considers both TET and total machine workload (TMW) as objectives and

constructs the corresponding mathematical model.

In actual production workshop scheduling, numerous uncertainties such as raw material

shortages, insufficient power supply, machine failures, lead to uncertainty in job processing times in

FJSP [11]. However, most existing theoretical models typically assume fixed values for processing

times, which significantly differ from real production environments. Therefore, to better adapt to

uncertain environments, this article introduces fuzzy numbers into MOFJSP, expanding it to fuzzy

MOFJSP. Chen et al. [12] proposed a multi-objective hybrid immune algorithm for solving fuzzy

FJSP with variable processing speeds, considering fuzzy TET and fuzzy TEC. Abdel-Basset et al.
[13] introduced a hybrid fuzzy flexible job shop scheduling algorithm (HFFSA) for fuzzy FJSP.

Triangular fuzzy numbers (TFN) are introduced into MOFJSP in this article, as this model more

accurately reflects real production situations.

In the past, evolutionary algorithms such as ant colony optimization (ACO) [14], artificial bee

colony (ABC) [15], memetic algorithm (MA) [16], etc., have been widely adopted to find optimal

solutions within a reasonable time frame. However, these algorithms often face challenges such as

convergence difficulties, cumbersome parameter tuning, and computational complexity when

dealing with increasingly complex models. With the rapid development of artificial intelligence

technology, introducing reinforcement learning (RL), neural networks, etc., into scheduling

problems can significantly improve solution accuracy. Hu et al. [17] combined mathematical

programming methods, RL, and metaheuristic algorithms to propose a learning-oriented multi-

objective artificial bee colony algorithm to solve dynamic FJSP. Akram et al. [18] proposed a multi-

objective black widow spider algorithm to address multi-objective dynamic FJSP. Chen et al. [19]

designed a reinforcement learning algorithm integrated with long short-term Memory (LSTM)

networks to solve dynamic FJSP. Zhang et al. [20] optimized FJSP by introducing attention

mechanisms and RL frameworks for intelligent agents. Park et al. [21] combined graph neural

networks (GNN) and RL, using disjunctive graphs to extract common JSP indicators. Based on this,

this article introduces GNN and RL to solve fuzzy FJSP.

In the research background mentioned above, this article proposes a fuzzy time-aware FJSP at

the problem level, considering both TET and TMW as objectives. A graph embedding algorithm

based on reinforcement learning (GEARL) is proposed to solve this problem. The rest of this article

is organized as follows: The second part introduces the basic theory of triangular fuzzy numbers

and defines the MOFFJSP model. The third part presents the GEARL. The fourth part discusses the

experimental results. The fifth part concludes and outlines future work.

2. Definition of the problem

2.1. The fundamental theory of TFN

Fuzzy set theory is a generalization and extension of classical set theory, with its core being the

introduction of membership functions to quantify the degree of an element's membership in a set. A

fuzzy set 𝐴̃ is defined by formula (1). Here, 𝑥 is any element in the fuzzy set 𝐴̃, 𝑢𝐴̃(𝑥) serves as the

119

membership function quantifying the possibility of 𝑥 belonging to set 𝐴̃, and 𝑋 is the fixed domain

of the fuzzy variable.

𝐴̃ = {𝑥, 𝑢𝐴̃(𝑥)|∀𝑥 ∈ 𝑋}, 0 ≤ 𝑢𝐴̃(𝑥) ≤ 1 (1)

Classical sets are deterministic sets, where 𝑢𝐴̃(𝑥) = 1 implies that the element 𝑥 completely

belongs to the set. Formula (2) represents the classical set.

𝐹 = {𝑥, 𝑢𝐴̃(𝑥) = 1|∀𝑥 ∈ 𝑋} (2)

𝑓(𝑥) =

{

0, 𝑥 ≤ 𝑡1
𝑥 − 𝑡1
𝑡2 − 𝑡1

, 𝑡1 < 𝑥 ≤ 𝑡2

𝑡3 − 𝑥

𝑡3 − 𝑡2
, 𝑡2 < 𝑥 < 𝑡3

0, 𝑥 ≥ 𝑡3

 (3)

In addressing practical scheduling problems, due to the uncertainty of job processing times, TFN

are introduced. As shown in Figure 1, 𝑡1 represents the earliest processing time, 𝑡2 represents the

most likely processing time, 𝑡3 represents the latest processing time. TFN are typically represented

as a triplet 𝑇𝐹𝑁 = (𝑡1, 𝑡2, 𝑡3) , and the triangular membership function is defined as shown in

formula (3).

Given two triangular fuzzy numbers 𝐴̃ = (𝑎1, 𝑎2, 𝑎3) and 𝐵̃ = (𝑏1, 𝑏2, 𝑏3), three operations are

introduced: addition, comparison, and maximum value selection.

(1) Addition operation

𝐴̃ + 𝐵̃ = (𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 + 𝑏3) (4)

(2) Comparison operation

Case 1: 𝑦1(𝑥̃) = (𝑥1 + 2𝑥2 + 𝑥3)/4, If 𝑦1(𝐴̃) > 𝑦1(𝐵̃), then 𝐴̃ > 𝐵̃, otherwise 𝐴̃ < 𝐵̃.

Case 2: 𝑦2(𝑥̃) = 𝑥2, when 𝑦1(𝐴̃) = 𝑦1(𝐵̃), If 𝑦2(𝐴̃) > 𝑦2(𝐵̃), then 𝐴̃ > 𝐵̃, otherwise 𝐴̃ < 𝐵̃.

Case 3: 𝑦3(𝑥̃) = 𝑎3 − 𝑎1, when 𝑦2(𝐴̃) = 𝑦2(𝐵̃), 𝑦3(𝐴̃) > 𝑦3(𝐵̃), then 𝐴̃ > 𝐵̃, otherwise 𝐴̃ < 𝐵̃.

(3) Maximum value selection operation

If 𝐴̃ > 𝐵̃, then 𝐴̃⋁𝐵̃ = 𝐴̃; otherwise, 𝐴̃⋁𝐵̃ = 𝐵̃.

x

u(x)

1

t1 t2 t3

Figure 1: TFN

2.2. The notations of MOFFJSP

The notations of MOT2FJSP are described as follows.

120

Notations Description

𝑛 Total number of jobs.

𝑚 Total number of machines.

𝑖 Index of machine.

𝑗, 𝑘 Index of job.

ℎ𝑗 Total number of operations of job j.

𝑙 Index of operation.

𝑝̃𝑖𝑗ℎ The fuzzy processing time of the h operation of job j on machine i.

𝑠̃𝑗ℎ The fuzzy start time of the h operation of job j.

𝑐̃𝑗ℎ The fuzzy completion time of the h operation of job j.

𝐿 A sufficiently large positive number.

𝐶̃𝑚𝑎𝑥 The fuzzy maximum completion time of a schedule.

𝑊𝑖 The total workload of machine i.

𝐽 Collection of jobs, 𝐽 = {1,2,3, . . . , 𝑛}.
𝑀 Collection of machines, 𝑀 = {1,2,3, . . . , 𝑚}.

𝐻𝑗 Collection of operations for job j, 𝐻𝑗 = {1,2,3, . . . , ℎ𝑗}.

𝑥𝑖𝑗ℎ = {
1,
0,

If operation 𝑂𝑗ℎ selects machine i.

Otherwise.

𝑦𝑖𝑗ℎ𝑘𝑙 = {
1,
0,

If 𝑂𝑖𝑗ℎ processed before 𝑂𝑖𝑘𝑙.

Otherwise.

2.3. The MILP of MOFFJSP

The MILP (Mixed Integer Linear Programming) model is an abstract method, the construction of

which is aimed at simplifying and handling complex problems [22]. The MILP description of

MOFFJSP is given as follows:

Objective function: 𝑚𝑖𝑛(𝐶̃𝑚𝑎𝑥, 𝑊𝑖) (5)

s.t. 𝑠̃𝑗ℎ + 𝑥𝑖𝑗ℎ × 𝑝̃𝑖𝑗ℎ ≤ 𝑐̃𝑗ℎ, (∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽, ℎ ∈ 𝐻𝑗) (6)

𝑐̃𝑗ℎ ≤ 𝑠̃𝑗(ℎ+1), (∀𝑗 ∈ 𝐽, ℎ ∈ 𝐻𝑗−1) (7)

𝑐̃𝑗ℎ𝑗 ≤ 𝐶̃𝑚𝑎𝑥, (∀𝑗 ∈ 𝐽) (8)

𝑠̃𝑗ℎ + 𝑝̃𝑖𝑗ℎ ≤ 𝑠̃𝑘𝑙 + 𝐿 × (1 − 𝑦𝑖𝑗ℎ𝑘𝑙), (∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐽, ℎ ∈ 𝐻𝑗 , 𝑙 ∈ 𝐻𝑘) (9)

𝑐̃𝑗ℎ ≤ 𝑠̃𝑗(ℎ+1) + 𝐿 × (1 − 𝑦𝑖𝑘𝑙𝑗(ℎ + 1)), (∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐽, ℎ ∈ 𝐻𝑗−1, 𝑙 ∈ 𝐻𝑘) (10)

∑𝑥𝑖𝑗ℎ

𝑚𝑗ℎ

𝑖 = 1

 = 1, (∀ℎ ∈ 𝐻𝑗 , 𝑗 ∈ 𝐽) (11)

∑ ∑ 𝑦𝑖𝑗ℎ𝑘𝑙

ℎ𝑗

ℎ = 1

𝑛

𝑗 = 1

 = 𝑥𝑖𝑘𝑙 , (∀𝑖 ∈ 𝑀, 𝑘 ∈ 𝐽, 𝑙 ∈ 𝐻𝑘) (12)

121

∑ ∑𝑦𝑖𝑗ℎ𝑘𝑙

ℎ𝑘

𝑙 = 1

𝑛

𝑘 = 1

 = 𝑥𝑖𝑗ℎ, (∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽, ℎ ∈ 𝐻𝑘) (13)

𝑠̃𝑗ℎ ≥ 0, 𝑐̃𝑗ℎ ≥ 0, (∀𝑗 ∈ 𝐽, ℎ ∈ 𝐻𝑗) (14)

𝑊𝑖 = 𝑝̃𝑖𝑗ℎ × 𝑥𝑖𝑗ℎ, (∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽, ℎ ∈ 𝐻𝑗) (15)

The optimization objective of MOFFJSP is defined by function (5). The sequence of operations

for each job is determined according to formulas (6) and (7). Formula (8) sets an upper limit on the

completion time for each job to ensure that the completion time of all jobs does not exceed the total

completion time. Formulas (9) and (10) specify that only one operation is processed on the same

machine at the same time. Formula (11) represents machine constraints, stating that a particular

operation is processed by only one machine at the same time, and formulas (12) and (13) indicate

the existence of cyclic operations on each machine. Formula (14) stipulates that all parameter

variables must be positive. Formula (15) outlines the calculation method for machine workload.

3. Algorithm Section

3.1. The overall framework of the GEARL

Population Initialization

Minimum processing time rule

Minimum machine load rule

Stochastic policy rule

Fuzzy Disjunctive Graph

Data information Graph information

Policy Model

Reinforce

Graph Embedding

Policy network

Get the solution set

Cmax TMW

Figure 2: The overall framework of the GEARL

The overall structure of the algorithm is illustrated in Figure 2, consisting of four modules:

population initialization, fuzzy disjunctive graph information transformation, strategy model

construction, and solution set optimization processing. In the population initialization phase, three

different rules are designed to enhance the diversity of the population and ensure the high quality of

the initial population. The three initialization rules are as follows: the minimum processing time

rule, the minimum machine load rule, and the random strategy rule. In the fuzzy disjunctive graph

module, the data of each individual in the population is transformed into the form of a disjunctive

graph, facilitating the training and learning of the subsequent strategy model. In the strategy model

module, graph embedding technology is utilized to extract individual features, which are then input

122

into a policy network consisting of fully connected layers. This network outputs sequence

adjustment strategies for each individual based on their features, such as the job sequence and

machine sequence. By comparing the performance of new and old individuals in terms of maximum

completion time and total machine load, the values of the corresponding reward functions are

adjusted accordingly. The entire model iteratively updates using the Reinforce algorithm in

reinforcement learning, ensuring that the policy model guides each individual to choose the optimal

evolutionary path through continuous training. In the solution set optimization module, a non-

dominated sorting is applied to the updated population to select the optimal solution set. In

summary, the GEARL algorithm efficiently addresses MOFFJSP through these four closely

collaborating modules.

3.2. Encoding and population initialization

In this paper, two one-dimensional vectors (operate sequence (OS) and a machine sequence

(MS)) are used to represent a solution for MOFFJSP. As shown in Figure 3, OS lists the execution

order of each operation in all jobs, while MS indicates the corresponding machines selected for each

operation. The lengths of OS and MS are equal to the total number of operations in the problem

being solved. By sorting based on the positional correspondence of elements in OS and MS, the

maximum completion time of this solution can be calculated. Combining MS with its corresponding

time information allows for the determination of the total workload of the machines. Ultimately,

this solution is parsed and transformed into a specific fuzzy scheduling scheme.

1 2 3 2 1 3 2

2 1 3 2 3 1 3

Job1

Job2

Job3

O1,1 O2,1 O3,1 O3,2O1,2O2,2 O2,3

O1,1 O1,2 O2,1 O2,2 O2,3 O3,1 O3,2

OS

MS

Figure 3: Representation of the solution

To improve the convergence efficiency of the algorithm and reduce the consumption of

computing resources, three methods for initializing the population have been designed. The

population is evenly divided into three parts, and then constructed according to the following rules

in sequence:

(1) Minimum processing time rule: Firstly, OS is randomly initialized, and based on the principle

of fuzzy number comparison, the machine with the smallest processing time among the currently

available machines is assigned to each operation to minimize the objective of minimizing 𝐶̃𝑚𝑎𝑥.
(2) Minimum machine load rule: OS is randomly initialized, and based on the principle of fuzzy

number comparison, the machine with the minimum machine load is selected for each operation

allocation, aiming to reduce the total machine load.

(3) Random strategy rule: OS and MS are randomly initialized to increase the randomness and

diversity of the population, thereby expanding the search space.

3.3. Fuzzy disjunctive graph

In the fuzzy disjunctive graph module, a fuzzy disjunctive graph was designed for a specific

problem, which effectively transforms sequence information into intuitive graphical information [23].

A triplet 𝐺 = {𝑂, 𝐶, 𝐸} is defined to represent the fuzzy disjunctive graph, as shown in Figure 4.

Here, 𝑂 represents a set of operation nodes, including start and end nodes as well as all intermediate

nodes, each node accompanied by corresponding fuzzy time information. 𝐶 is a set of directed arcs

123

connected by black arrows, explicitly showing the logical relationships between preceding and

succeeding operations within the same job. 𝐸 represents a set of undirected disjunctive arcs, where

arcs of the same color connect operations that need to be performed on the same machine.

Figure 4: Fuzzy Disjunctive Graph of a 3 × 3 Instance

The process of transforming sequence information into graphical information in this module is as

follows: initially, nodes are constructed based on OS, and fuzzy time is normalized by querying the

fuzzy time of operations on the corresponding machines, with the normalized results stored as

weight information in each node. Subsequently, to distinguish between different processing

machines, different colours of dashed lines are used to represent machine information.

Simultaneously, black arrows act as connecting arcs, clarifying the sequence of operations. For a

complete solution, it is essential to determine the direction of disjunctive arcs and the start time of

each operation. By employing an arc-adding strategy, nodes are selected from the arcs of available

machines based on the known MS to establish connections. Ultimately, the information from OS

and MS is transformed into a fuzzy disjunctive graph. This graph not only consolidates all intricate

information but also facilitates subsequent graph embedding operations.

3.4. Policy model

The GEARL algorithm considers the entire population as a synergistic whole, where each

individual in the population becomes a part of the reinforcement learning iterative chain. Through

the policy model, the algorithm can precisely match the most suitable evolutionary strategy for each

individual. Subsequently, the algorithm evaluates key metrics of individuals before and after

evolution, including the change in 𝐶̃𝑚𝑎𝑥 value and machine workload, to calculate the cumulative

reward function based on this evaluation. Therefore, the magnitude of the cumulative reward

function becomes an intuitive scale to measure the quality of the population, aligning well with

Markov decision processes. This not only demonstrates the effectiveness of the evolutionary

strategy but also provides clear guidance for subsequent network updates.

To gain a deeper understanding of the problem characteristics and optimize the solution strategy,

a variant of GNN [24] called graph isomorphic network (GIN) technology is introduced, which

extracts vector information from the fuzzy disjunctive graph and generates feature vectors that

comprehensively represent the entire graph through multiple processing steps. The detailed process

is as follows: 𝐺 = (𝑉, 𝐸) defines the graph, GIN performs 𝑘 update iterations to compute 𝑝 -

dimensional embeddings for each node 𝑣 ∈ 𝑉, and updates according to equation (16), where ℎ𝑣
(𝑘)

 is

the representation of node 𝑣 at iteration 𝑘, ℎ𝑣
(0)

 is its original input feature, 𝑀𝐿𝑃𝜃𝑘
(𝑘)

 is a multi-layer

perceptron with parameters 𝜃𝑘 , followed by batch normalization, 𝜖 is a learnable parameter, and

𝑁(𝑣) is the neighbourhoods of 𝑣.

The extracted graph embedding features ℎ𝑣
(𝑘)

 are then inputted into the policy model, which is

responsible for generating a probability distribution 𝑃(𝑎𝑡) to guide the transformation operations of

Start

O11

O21

O31

O12

O22

O32

O13

O23

O33

End

M1

M2

M3
(1,2,3)

(2,3,4)(2,4,6)

(3,5,6)(6,7,8)

(1,3,5)

124

individuals. The setting of the reward function is closely related to changes in individual target

values: if both target values decrease, the reward is 20 to encourage significant optimization; if any

target value decreases, the reward is 10 to acknowledge partial optimization; if both target values

increase, the reward is 0 as a penalty. The entire model iteratively updates through the Reinforce

algorithm, where each population in each iteration represents one round. The improvement in

cumulative reward value directly reflects the model's ability to more accurately select the optimal

evolutionary strategy based on individual circumstances after training.

ℎ𝑣
(𝑘)
= 𝑀𝐿𝑃𝜃𝑘

(𝑘)
((1 + 𝜖(𝑘)) × ℎ𝑣

(𝑘−1)
+ ∑ ℎ𝑢

(𝑘−1)

𝑢∈𝑁(𝑣)

) (16)

The 6 strategies output by the policy network are designed based on MOFFJSP and are

combined as follows:

OS:

(1): Priority crossover operation on OS, dividing the job set into two parts, exchanging and

duplicating OS segments within subsets, and then integrating and restoring them.

(2): Operation exchange on OS, randomly selecting two segments in the OS sequence and

swapping their positions.

(3): Operation mutation, randomly selecting a segment in OS and inserting it at any OS position.

MS:

(1): Crossover operation on MS, randomly selecting segments at the same position in two MS

and exchanging them.

(2): Mutation operation on MS, randomly selecting a position in MS and replacing it with any

machine from the corresponding optional machine set for the operation.

4. Experimental Results and Analysis

In this section, a detailed evaluation of the proposed algorithm's performance is conducted and

the experimental results are presented. The experiments are based on testing a subset of standard

sets for the fuzzy flexible job shop scheduling problem [25].

GEARL is implemented using the Python programming language. The experimental

environment consists of a Windows 11 Pro 64-bit operating system with a 12th Gen Intel(R) Core

(TM) i5-12500H CPU @ 3.10 GHz and NVIDIA GeForce RTX 3050 Laptop GPU. Each instance

is run 10 times individually, with a termination condition of n*m seconds of CPU time to ensure

fairness in the experiments. In subsequent numerical experiments, unless otherwise stated, the

above experimental settings remain consistent. MOFFJSP is a multi-objective problem. Three

metrics, Hypervolume, Inverted Generational Distance, and C Metric, are used to evaluate the

performance of the GEARL algorithm, considering the completeness, convergence, diversity, and

dominance relationships of the Pareto front.

4.1. Parameter Settings

The GEARL algorithm mainly includes three key parameters: population size 𝑃 ∈
{80,90,100,110} , policy gradient discount rate 𝐺 ∈ {0.8,0.9,1} , and learning rate 𝐿 ∈
{2𝑒−6, 2𝑒−5, 2𝑒−4}. These parameters are determined based on existing literature and preliminary

experimental results. According to orthogonal experimental design, there are a total of 4 × 3 × 3 =
36 different parameter combinations. The optimal parameter combination for the GEARL algorithm

is selected based on the 8 different instances in the test set. Each instance is terminated after n×m

125

seconds of CPU time, run independently 5 times, resulting in a total of 1440 outcomes (36 × 8 ×
5).

Table 1: Presents the ANOVA results for the HV

Source Sum Sq. d. f. Mean Sq. F-ratio p-value

𝑃 0.00044 3 0.00015 14.52 0.0003

𝐺 0.00039 2 0.00020 19.10 0.0002

𝐿 0.00042 2 0.00021 20.68 0.0001

𝑃 ∗ 𝐺 0.00011 6 0.00002 1.73 0.1964

𝑃 ∗ 𝐿 0.00008 6 0.00001 1.30 0.3274

𝐺 ∗ 𝐿 0.00014 4 0.00004 3.50 0.0410

Error 0.00012 12 0.00001

Total 0.00171 35

Table 2: Presents the ANOVA results for the IGD

Source Sum Sq. d. f. Mean Sq. F-ratio p-value

𝑃 54.336 3 18.1119 17.27 0.0001

𝐺 32.479 2 16.2394 15.48 0.0005

𝐿 37.695 2 18.8477 17.97 0.0002

𝑃 ∗ 𝐺 11.894 6 1.9824 1.89 0.1639

𝑃 ∗ 𝐿 14.836 6 2.4727 2.36 0.0972

𝐺 ∗ 𝐿 15.385 4 3.8462 3.67 0.0357

Error 12.587 12 1.0489

Total 179.212 35

The experiment utilized analysis of variance (ANOVA) technique to assess the experimental

results. Before applying ANOVA, three core assumptions were validated: the normality of the data,

homogeneity of variance, and independence among observations. Through rigorous testing

procedures, it was confirmed that the data collected in this experiment did not exhibit significant

biases, meeting the prerequisites for analysis. Subsequently, ANOVA calculations were conducted

for the metrics HV and IGD, and the results were summarized in Tables 1 and 2. By analyzing the

data in Tables 1 and 2, it is evident that when the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is less than the significance level of

0.05, the population size 𝑃, policy gradient discount rate 𝐺, and learning rate 𝐿 significantly impact

the performance of the GEARL algorithm. This discovery indicates that these three parameters are

crucial factors determining the overall efficiency of the GEARL. Furthermore, by comparing the

magnitudes of the F-ratio values, it was observed that the learning rate 𝐿 stands out as the most

prominent influencer among all these significant parameters on the performance of the GEARL.

As shown in Figures 5 and 6, main effect plots regarding each participant were constructed based

on the HV and IGD metrics. From these plots, it is clearly observed that the performance of all

metrics reaches an optimal state when the key parameters are set to 𝑃 = 100, 𝐺 = 0.9, and 𝐿 =
2𝑒−5. This is because setting the population size too large increases the algorithm's time cost during

the search process, thereby hindering overall performance. Conversely, a population size that is too

small restricts diversity within the population, which is also detrimental to performance. Both

excessively high or low discount rates and learning rates can impact the algorithm's performance.

This is due to the high sensitivity of these parameters in the neural network model learning and

optimization process using policy gradient methods. Improper parameter selection can slow down

convergence to some extent and may lead to instability in the training process, thereby affecting the

learning efficiency and final performance of the model within a specified time frame.

126

Figure 5: Main effect plot of HV Figure 6: Main effect plot of IGD

4.2. Comparison with Other Algorithms

This experiment thoroughly validates the effectiveness and superiority of the GEARL algorithm

in the MOFFSP problem by comparing it with three representative multi-objective problem-solving

algorithms. The three comparative algorithms are NSGAIISDR [26], MOEA/D-URAW [27], and

SSCEA [28]. To maintain fairness and consistency in the algorithm comparisons, unified standards

were maintained in several key aspects, including the problem encoding and decoding scheme, the

optimization objectives pursued, and the termination conditions of the experiments. In the

experiment, the three comparative algorithms NSGAIISDR, MOEA/D-URAW, and SSCEA are

denoted by 𝐴1, 𝐴2, and 𝐴3 respectively, while GEARL is denoted by 𝐴. 𝐶1 and 𝐶2 represent the

domination situation of all solutions between 𝐴 and 𝐴1 , and similar comparisons for other

algorithms.

Table 3: Presents the experimental results for HV

Problem 𝐴1 𝐴2 𝐴3 𝐴

Remanu01 0.0407 0.0413 0.0282 0.0460

Remanu02 0.0686 0.0453 0.0333 0.0858

Remanu03 0.0428 0.0298 0.0239 0.0472

Remanu04 0.1136 0.0613 0.0285 0.1196

Remanu05 0.0664 0.0275 0.0200 0.1073

Remanu06 0.0377 0.0191 0.0187 0.0856

Remanu07 0.0481 0.0269 0.0145 0.1396

Remanu08 0.0546 0.0337 0.0153 0.2073

Table 4: Presents the experimental results for IGD

Problem 𝐴1 𝐴2 𝐴3 𝐴

Remanu01 1.3821 1.2571 4.2321 0.8634

Remanu02 8.4384 21.291 35.167 3.0996

Remanu03 5.8900 13.447 20.545 3.2076

Remanu04 12.322 50.802 100.89 5.9585

Remanu05 72.682 177.01 175.61 4.4567

Remanu06 76.689 123.41 129.42 10.833

Remanu07 263.45 368.17 435.60 90.682

Remanu08 390.02 556.12 634.82 136.78

127

Table 5: Presents the experimental results for C (A, B)

Problem 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6

Remanu01 1.00 0.00 0.50 0.00 1.00 0.00

Remanu02 0.89 0.00 1.00 0.00 1.00 0.00

Remanu03 0.87 0.20 1.00 0.00 1.00 0.00

Remanu04 0.85 0.00 1.00 0.00 1.00 0.00

Remanu05 1.00 0.00 1.00 0.00 1.00 0.00

Remanu06 1.00 0.00 1.00 0.00 1.00 0.00

Remanu07 1.00 0.00 1.00 0.00 1.00 0.00

Remanu08 1.00 0.00 1.00 0.00 1.00 0.00

Tables 3-5 provides a detailed display of the performance of the GEARL algorithm and the

comparative algorithms across different metrics, where each cell represents the average value of the

corresponding problem metric, with the best results highlighted in bold. From the Tables 3-5, it is

observed that the GEARL algorithm demonstrates significant advantages on most test sets. While

the algorithm shows relatively shorter running times when handling small-scale problems

(attributed to the limitation of problem size), it does not significantly stand out in terms of metric

performance. However, as the problem scale gradually increases, the superiority of the GEARL

algorithm becomes more apparent. This is mainly due to its longer running time, allowing the

policy model to be thoroughly trained, enabling precise selection of the best evolutionary strategy

for each individual. This strategy selection mechanism greatly accelerates the optimization process

of the population. In contrast, comparative algorithms require a significant amount of time to search

for solutions in the domain. Therefore, when faced with complex and large-scale problems, the

GEARL algorithm demonstrates more prominent performance with its efficient strategy selection

and optimization mechanism.

Figure 7: Interval diagram of

HV

Figure 8: Interval diagram of

IGD

Figure 9: Interval diagram of C

Metric

Figures 7-9 visually present the experimental results of various comparative algorithms,

specifically displaying interval diagrams within a 95% confidence interval for three different

performance metrics. It is evident from the diagrams that in the interval representations of each

metric, the GEARL algorithm exhibits the best mean performance, surpassing the compared

algorithms in all performance metrics. The GEARL algorithm demonstrates stronger robustness in

terms of convergence and result distribution. Combining the experimental data and graphical

analysis mentioned above, the GEARL algorithm, for each population individual, can accurately

provide guidance tailored to current evolutionary needs through its unique policy model, thereby

more rapidly and stably guiding the population to converge to the optimal solution set.

Figure 10 presents a comparison of the Pareto fronts obtained by various algorithms for different

problem instances. The purpose of this graph is to visually showcase the final optimization results

of different algorithms for each problem. Through the macroscopic display of the Pareto front graph,

the significant effectiveness of the GEARL algorithm in solving MOFFJSP is observed. The

128

solution set positions of the GEARL algorithm are superior, closer to the coordinate origin and the

horizontal and vertical axes, indicating excellent performance in reducing both the maximum

completion time and total machine workload. Compared to other algorithms, the GEARL algorithm

can explore and find a higher-quality Pareto optimal solution set within the same computational

time, validating its efficiency and practicality in solving the MOFFJSP.

Figure 10: Pareto front diagram

5. Conclusions and Future work

In this research, GEARL was introduced to tackle the MOFFJSP, aiming to optimize total

completion time and machine total load. The algorithm, structured around population initialization,

fuzzy disjunctive graph, policy model, and solution set optimization modules, effectively guides

population evolution. By utilizing graph information to represent individual data and selecting

tailored evolutionary strategies for each, GEARL demonstrates significant advantages in addressing

the MOFFJSP.

Future endeavours will involve integrating cutting-edge algorithms such as state-of-the-art large-

scale models to further enhance and refine the existing model. The goal is to optimize a broader

range of objectives simultaneously, thereby developing a production scheduling model that better

aligns with real-world requirements

References

[1] SHEN L, DAUZèRE-PéRèS S, MAECKER S. Energy cost efficient scheduling in flexible job-shop manufacturing

systems [J]. European Journal of Operational Research, 2023, 310(3): 992-1016.

[2] SONG W, CHEN X, LI Q, et al. Flexible Job-Shop Scheduling via Graph Neural Network and Deep Reinforcement

Learning [J]. IEEE Transactions on Industrial Informatics, 2023, 19(2): 1600-1610.

[3] GAO K, CAO Z, ZHANG L, et al. A review on swarm intelligence and evolutionary algorithms for solving flexible

job shop scheduling problems [J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(4): 904-916.

[4] FAN J, SHEN W, GAO L, et al. A hybrid Jaya algorithm for solving flexible job shop scheduling problem

considering multiple critical paths [J]. Journal of Manufacturing Systems, 2021, 60: 298-311.

[5] CHEN R, YANG B, LI S, et al. A self-learning genetic algorithm based on reinforcement learning for flexible job-

shop scheduling problem [J]. Computers & Industrial Engineering, 2020, 149.

[6] SUN L, LIN L, GEN M, et al. A Hybrid Cooperative Coevolution Algorithm for Fuzzy Flexible Job Shop Scheduling

[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(5): 1008-1022.

[7] ZHANG Z-Q, WU F-C, QIAN B, et al. A Q-learning-based hyper-heuristic evolutionary algorithm for the

distributed flexible job-shop scheduling problem with crane transportation [J]. Expert Systems with Applications, 2023,

234.

[8] LUO C, GONG W, LU C. Knowledge-driven two-stage memetic algorithm for energy-efficient flexible job shop

scheduling with machine breakdowns [J]. Expert Systems with Applications, 2024, 235.

[9] ZHU N, GONG G, LU D, et al. An effective reformative memetic algorithm for distributed flexible job-shop

129

scheduling problem with order cancellation [J]. Expert Systems with Applications, 2024, 237.

[10] LI W, HE L, CAO Y. Many-Objective Evolutionary Algorithm With Reference Point-Based Fuzzy Correlation

Entropy for Energy-Efficient Job Shop Scheduling With Limited Workers [J]. IEEE Transactions on Cybernetics, 2022,

52(10): 10721-10734.

[11] GAO D, WANG G-G, PEDRYCZ W. Solving Fuzzy Job-Shop Scheduling Problem Using DE Algorithm Improved

by a Selection Mechanism [J]. IEEE Transactions on Fuzzy Systems, 2020, 28(12): 3265-3275.

[12] CHEN X-L, LI J-Q, DU Y. A hybrid evolutionary immune algorithm for fuzzy flexible job shop scheduling problem

with variable processing speeds [J]. Expert Systems with Applications, 2023, 233.

[13] ABDEL-BASSET M, MOHAMED R, EL-SHAHAT D, et al. An efficient hybrid optimization method for Fuzzy

Flexible Job-Shop Scheduling Problem: Steady-state performance and analysis [J]. Engineering Applications of

Artificial Intelligence, 2023, 123.

[14] SHAO W, SHAO Z, PI D. An Ant Colony Optimization Behavior-Based MOEA/D for Distributed Heterogeneous

Hybrid Flow Shop Scheduling Problem Under Nonidentical Time-of-Use Electricity Tariffs [J]. IEEE Transactions on

Automation Science and Engineering, 2022, 19(4): 3379-3394.

[15] ZHAO F, WANG Z, WANG L. A Reinforcement Learning Driven Artificial Bee Colony Algorithm for Distributed

Heterogeneous No-Wait Flowshop Scheduling Problem With Sequence-Dependent Setup Times [J]. IEEE Transactions

on Automation Science and Engineering, 2023, 20(4): 2305-2320.

[16] ZHU K, GONG G, PENG N, et al. Dynamic distributed flexible job-shop scheduling problem considering

operation inspection [J]. Expert Systems with Applications, 2023, 224.

[17] HU Y, ZHANG L, ZHANG Z, et al. Matheuristic and learning-oriented multi-objective artificial bee colony

algorithm for energy-aware flexible assembly job shop scheduling problem [J]. Engineering Applications of Artificial

Intelligence, 2024, 133.

[18] AKRAM K, BHUTTA M U, BUTT S I, et al. A Pareto-optimality based black widow spider algorithm for energy

efficient flexible job shop scheduling problem considering new job insertion [J]. Applied Soft Computing, 2024, 164.

[19] SI J, LI X, GAO L, et al. An efficient and adaptive design of reinforcement learning environment to solve job shop

scheduling problem with soft actor-critic algorithm [J]. International Journal of Production Research, 2024, 62(23):

8260-8275.

[20] ZHANG W, ZHAO F, LI Y, et al. A novel collaborative agent reinforcement learning framework based on an

attention mechanism and disjunctive graph embedding for flexible job shop scheduling problem [J]. Journal of

Manufacturing Systems, 2024, 74: 329-345.

[21] PARK J, CHUN J, KIM S H, et al. Learning to schedule job-shop problems: representation and policy learning

using graph neural network and reinforcement learning [J]. International Journal of Production Research, 2021,

59(11): 3360-3377.

[22] ZHAO F, XU Z, BAO H, et al. A cooperative whale optimization algorithm for energy-efficient scheduling of the

distributed blocking flow-shop with sequence-dependent setup time [J]. Computers & Industrial Engineering, 2023, 178.

[23] BŁAŻEWICZ J, PESCH E, STERNA M. The disjunctive graph machine representation of the job shop scheduling

problem [J]. European Journal of Operational Research, 2000, 127(2): 3173-3185.

[24] WU Z, PAN S, CHEN F, et al. A Comprehensive Survey on Graph Neural Networks [J]. IEEE Transactions on

Neural Networks and Learning Systems, 2021, 32(1): 4-24.

[25] GAO K Z, SUGANTHAN P N, PAN Q K, et al. An effective discrete harmony search algorithm for flexible job shop

scheduling problem with fuzzy processing time [J]. International Journal of Production Research, 2015, 53(19): 5896-

5911.

[26] TIAN Y, CHENG R, ZHANG X, et al. A Strengthened Dominance Relation Considering Convergence and Diversity

for Evolutionary Many-Objective Optimization [J]. IEEE Transactions on Evolutionary Computation, 2019, 23(2): 331-

345.

[27] FARIAS L R C, ARAúJO A F R. Many-Objective Evolutionary Algorithm Based On Decomposition With Random

And Adaptive Weights [J]. IEEE International Conference on Systems, Man and Cybernetics (SMC), 2019.

[28] LIU G, PEI Z, LIU N, et al. Subspace segmentation based co-evolutionary algorithm for balancing convergence

and diversity in many-objective optimization [J]. Swarm and Evolutionary Computation, 2023, 83.

130

