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Abstract: Cold-rolled steel strip, renowned for its high strength, excellent toughness, and 

other superior properties, is extensively utilized across various industries. However, 

coupling parameters in the continuous annealing process poses significant challenges for 

quality control. To address this issue, this study employs the gradient descent algorithm to 

optimize the process parameters. By defining clear objectives, identifying key parameters, 

establishing a loss function, as well as iteratively updating the parameters, an optimal 

parameter combination is identified, thereby enhancing product quality and production 

efficiency. Experimental results demonstrate that the algorithm exhibits outstanding 

performance in optimizing hardness errors, with a notably low MSE value. Looking ahead, 

research will focus on developing adaptive or real-time optimization systems to propel the 

intelligent development of the steel industry. 

1. Introduction 

Cold-rolled steel strip is a pivotal product in the steel industry, and optimizing its process 

parameters poses a significant challenge. In actual production, the parameters of each stage of 

continuous annealing are tightly coupled, with the heating furnace temperature influencing 

subsequent soaking, cooling, and strip travel speed, posing difficulties for constructing mechanical 

models and complicating online quality control and optimization. 

Recent technological advancements have prompted academia and industry to delve deeply into the 

optimization of cold-rolled steel strip process parameters, yielding significant results. In 

mathematical modeling and simulation, sophisticated techniques are employed to construct more 

precise cold-rolling models, enabling the simulation of cold-rolling processes under various 

parameters for optimization. In the realm of intelligent control, machine learning, neural networks, 

and other intelligent algorithms are introduced to automatically optimize parameters and intelligently 

regulate the cold-rolling process based on real-time data feedback, thereby enhancing production 

efficiency. In terms of new materials and technology applications, materials tailored for cold rolling 

are developed, while innovative technologies such as ultrasonic testing and laser measurement are 

utilized to improve product quality and production efficiency. 

Although technological innovations have enabled the optimization of strip steel process 

parameters to meet standards, the pursuit does not stop there. To overcome the limitations of previous 
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models in real-time detection and considering the correlation between process parameters and strip 

quality, this paper focuses on using the gradient descent algorithm to explore the optimal solution for 

an online quality detection model of strip products. To comprehensively elaborate on the optimization 

model of strip steel process parameters, this paper is divided into five chapters. The first chapter 

serves as an introduction, summarizing the entire paper. The second chapter delves into the theoretical 

framework, laying the foundation for modeling. The third chapter details the experimental procedures. 

The fourth chapter presents the experimental results. The fifth chapter provides a systematic 

conclusion. 

2. Related theorie 

The key to applying the gradient descent algorithm in optimizing the process parameters of steel 

strip production lies in first defining the optimization objectives, such as enhancing the mechanical 

properties of the steel strip or reducing energy consumption, and identifying the critical process 

parameters that influence these objectives, including heating temperature, rolling speed, cooling rate, 

among others[1]. Subsequently, a loss function related to the objectives is established, which quantifies 

the deviation between the parameter settings and the target values. The algorithm then initiates from 

a set of initial parameters and calculates the gradient of the loss function, which indicates how the 

parameters should be adjusted to minimize the loss. 

In each iteration, the parameters are updated in the opposite direction of the gradient, with the aim 

of gradually reducing the value of the loss function until convergence criteria are met. Through this 

process, the gradient descent algorithm identifies a set of optimized parameters for the steel strip 

process, resulting in improved production efficiency and product quality[2]. This model is closely 

integrated with the actual conditions of steel strip production and leverages the iterative optimization 

characteristics of the gradient descent algorithm to achieve efficient optimization of process 

parameters. 

3. Experiment  

3.1 Gradient Descent Optimization of Process Parameters for Steel Strip Production 

The present experiment is aimed at precisely tuning the critical process parameters in steel strip 

production, such as heating temperature, rolling force, rolling speed, and cooling rate, through the 

application of the gradient descent algorithm[3]. This endeavor is undertaken to maximize product 

quality attributes including strength, toughness, and surface quality, as well as production efficiency. 

Article hypothesize that by meticulously adjusting these parameters, essay can significantly reduce the 

defect rate and enhance product consistency and yield. 

In traditional steel strip processes, parameter optimization is crucial for enhancing product quality 

and production efficiency. However, due to the complexity of the processes, challenges such as local 

optima and inefficient optimization are often encountered[4]. The adoption of gradient descent 

optimization for steel strip process parameters enables precise adjustments of parameters like rolling 

temperature and speed, thereby improving production efficiency and product quality. Through 

optimization, the grain size and morphology of the steel can be more effectively controlled, leading to 

enhanced plasticity, toughness, and strength. Furthermore, the gradient descent algorithm aids in 

identifying the optimal parameter combination, further reducing production costs and energy 

consumption. Consequently, the optimized steel strip products can better meet the demands for high 

performance and high added value, and even further expand their application scope in fields such as 

engineering machinery and aerospace, enhancing market competitiveness. 

Therefore, based on prior research and production experience, several process parameters with the 
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most significant impact on steel strip performance are identified[5]. Reasonable initial values are set 

for each selected parameter, according to the standard operating conditions of the existing production 

line, serving as the starting point for the gradient descent algorithm. In each experimental round, the 

settings of each parameter and the corresponding steel strip performance indicators, such as tensile 

strength, yield strength, elongation, and surface roughness, are meticulously recorded. The collected 

data is then cleaned to remove outliers and noise, ensuring accuracy and reliability for subsequent 

analysis.  

A comprehensive evaluation index is defined as the objective function, based on the steel strip's 

performance indicators. This objective function should comprehensively reflect the quality and 

production efficiency of the steel strip, such as the total defect rate, cost-benefit ratio, or overall 

performance score. Numerical differentiation or analytical methods are utilized to calculate the 

gradient of the objective function with respect to each selected parameter. This typically involves first-

order differentiation of the objective function to obtain the sensitivity of each parameter's impact on it. 

Parameter values are adjusted according to the gradient descent formula, with a preset learning rate. 

The choice of learning rate should balance convergence speed and stability, avoiding excessive values 

that lead to oscillation or insufficient values that result in slow convergence. The process of gradient 

calculation and parameter updating is repeated until predefined stopping conditions are met. These 

conditions may include the gradient falling below a threshold, reaching the maximum number of 

iterations, or no significant performance improvement[6]. During the iteration process, close attention 

should be paid to the changes in the objective function value and the impact of parameter adjustments 

on steel strip performance. The specific steps for gradient descent optimization of steel strip process 

parameters are illustrated in the figure 1. 
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Figure 1. Flow diagram of gradient descent optimization process parameters 

Gradient descent algorithm, through iterative updates of parameter values, rapidly converges to 

the optimal solution, significantly enhancing optimization efficiency compared to traditional methods. 

Furthermore, when confronted with high-dimensional parameter spaces and complex coupling 

relationships, the algorithm effectively navigates to find global or near-optimal combinations of 

process parameters[7]. In the optimization of steel strip process parameters, the adoption of gradient 

descent aids steel enterprises in improving product quality, optimizing production processes, and 
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reducing costs. The application of this algorithm contributes to the intelligent and refined 

development of the steel industry. 

3.2 Gradient descent determines the optimal strip process parameter analysis 

This paper designates the product quality index function of the steel strip as ( , , , )Q T F V R , the 

production efficiency index function as ( , , , )E T F V R , and the production cost index function as

( , , , )C T F V R , whereT represents the rolling temperature, F denotes the rolling force, V signifies the 

rolling speed, and R indicates the rolling ratio. 

(1) Product Quality Index Function ( , , , )Q T F V R  

Product quality is primarily influenced by factors such as hardness H , strength S , surface quality 

Sq , internal stress , and crack occurrence rate Cr . It can be formulated as follows: 

 1 2 3 4 5( , , , ) ( , , ) ( , , ) ( , ) (1 ( , )) (1 ( , ))Q T F V R H T F R S T F R Sq F V Cr T F T F             (1) 

Where: The hardness ( , , )H T F R  can be expressed as 

 0 1 2 3( , , )H T F R h hT h F h R     (2) 

Where 0 1 2 3, , ,h h h h are coefficients obtained through extensive experimental data fitting, indicating a 

linear relationship between rolling temperature, rolling force, rolling ratio, and hardness. A higher 

rolling temperature, within a certain range, may promote grain refinement, thus increasing hardness; 

variations in rolling force and rolling ratio also alter the material's microstructure, subsequently 

affecting its hardness[8]. Similarly, the strength ( , , )S T F R can be formulated as 

 0 1 2 3 0( , , ) ,S T F R s s T s F s R s     (3) 

0 1 2 3, , ,s s s s satisfy the temperature change of the fitting coefficient, rolling force, and rolling ratio 

influence the material's microstructure, such as dislocation density and grain orientation, thereby 

impacting its strength. The surface quality ( , )Sq F V can be represented as 

 2

0 1 2( , )Sq F V sq sq F sq V    (4) 

0 1 2, ,sq sq sq are coefficients. A larger rolling force may lead to surface defects like scratches, while 

excessive rolling speed can cause issues like steel strip vibration, affecting surface flatness, hence the 

negative correlation. The internal stress ( , )T F is given by  

 0 1 2( , )T F T F       (5) 

0 1 2, ,   as coefficients. Inappropriate rolling temperatures and forces can result in uneven 

deformation, leading to increased internal stress[9]. The crack occurrence rate ( , )Cr T F is assumed to be 

 0 1 2( , )Cr T F cr crT cr F    (6) 

0 1 2, ,cr cr cr are coefficients. Excessively high rolling temperatures may cause thermal embrittlement, 

while excessive rolling forces can lead to localized stress concentrations, both prone to inducing cracks. 

(2)The production efficiency index function ( , , , )E T F V R   

The production efficiency index function ( , , , )E T F V R is primarily related to the operational stability 

St of the production line, capacity Ca , and material springback B , which can be constructed as: 

 1 2 3( , , , ) ( , ) ( , ) (1 ( ))E T F V R St V F Ca V R B F       (7) 
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Where: Operational Stability ( , )St V F : It is assumed that 2

0 1 2 0 1 2( , ) , , ,St V F st st V st F st st st   being 

coefficients. Excessive rolling speed may lead to unstable equipment operation, and excessive rolling 

force can also impact the stability of the equipment. Capacity ( , )Ca V R : For instance, 

 0 1 2( , )Ca V R ca ca V ca R    (8) 

Where 0 1 2, ,ca ca ca are coefficients. Higher rolling speeds and appropriate rolling ratios contribute to 

increased production output per unit time[10]. Material Springback ( )B F : It is postulated that 

 0 1( )B F b b F   (9) 

0 1,b b as coefficients. Proper setting of the rolling force can reduce material springback, thereby 

enhancing production efficiency, as springback results in adjustments and time wastage in subsequent 

processing steps. 

(3) Production Cost Index Function ( , , , )C T F V R  

The production cost is primarily associated with energy consumption En and equipment wear W , 

and can be formulated as follows: 

 1 2( , , , ) ( , ) ( , )C T F V R En T V W F V    (10) 

Where: Energy Consumption ( , )En T V : It is assumed that 

 3

0 1 2( , )E T V en enT en V    (11) 

0 1 2, ,en en en as coefficients. Higher rolling temperatures and speeds typically consume more energy. 

Equipment Wear ( , )W F V : It is postulated that 

 2

0 1 2( , )W F V w w F w V    (12) 

0 1 2, ,w w w are coefficients. Greater rolling forces and higher rolling speeds accelerate equipment wear. 

(4) Optimization Objective Function ( , , , )O T F V R  

The optimization objective is to enhance production efficiency and reduce production costs while 

ensuring product quality. The objective function can be constructed as:   

 1 2 3( , , , ) ( , , , ) ( , , , ) ( , , , , )O T F V R Q T F V R E T F V R C T F V R      (13) 

Where 1 2 3, ,   are weight coefficients determined based on the importance of product quality, 

production efficiency, and cost in actual production. By adjusting the values of rolling temperatureT , 

rolling force F , rolling speedV , and rolling ratio R , and utilizing methods such as experimentation and 

simulation, the objective function ( , , , )O T F V R  is continuously optimized to achieve its maximum 

value, thereby determining the optimal combination of steel strip process parameters. 

4. Results  

This study conducted a comparative analysis of the accuracy of four optimization algorithms—

Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, and Gradient Descent—for a 

data-driven online quality inspection model for steel strip products. The aim was to validate through 

systematic experimental analysis that the Gradient Descent algorithm is sufficiently precise and can 

serve as a viable solution for optimizing the model's performance. 

The dataset utilized in the experiments was sourced from the actual production environment of a 

steel enterprise, comprising extensive quality inspection data for steel strip products. After 
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preprocessing, the dataset was divided into training and testing sets for model training and validation. 

In terms of model architecture, study adopted a Deep Neural Network as the base model, with the 

number of layers and nodes adjusted according to the experimental requirements. The optimization 

objective was set to minimize the model's prediction error, thereby enhancing prediction accuracy. 

For optimizing the error in predicting the hardness of cold-rolled steel strips, MSE value obtained 

using the Gradient Descent algorithm was 772.2521. Given this low MSE value, by selecting the 

Gradient Descent algorithm as the model for seeking the optimal solution for the steel strip quality 

inspection model. 

Initially, Experimentation employed the Genetic Algorithm to select the most suitable process 

parameters based on their fitness within the problem domain, approximating the optimal solution. The 

Particle Swarm Optimization algorithm was used as an auxiliary model to complement the primary 

model, and a comparative analysis of the results from both models was conducted to obtain an 

approximate solution. The Simulated Annealing algorithm, based on probability, was employed to 

iterate through different parameter indicators and find the optimal state of steel strip performance under 

specific parameters. Considering that the Gradient Descent algorithm finds the values of the 

independent variables that minimize the objective function by computing its derivative, a comparison 

chart of the accuracy of four optimization algorithm models was derived based on their solutions, as 

shown in Figure 2. 

 

Figure 2. Comparison of the accuracy of the four optimization algorithms 

Based on the comprehensive analysis of quality prediction models and continuous casting process 

parameter optimization, to conduct a meticulous analysis of optimization algorithms such as gradient 

descent and obtain a data-driven optimal online detection model for steel strip product quality, this 

paper developed a solution for optimizing the process parameters of steel strips. Furthermore, the MSE 

of the gradient descent optimization algorithm was calculated and is presented in the table 1 below. 

Table.1. Gradient descent optimization error analysis 

MSE  

Optimization algorithms 

 

Gradient descent 772.2521 

The analysis of the MSE for the gradient descent optimization algorithm yielded a result of 
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772.2521 for the MSE value of the gradient descent method. It was found that, in terms of optimizing 

the hardness error of cold-rolled steel strips, the gradient descent algorithm performed best, with a 

sufficiently low MSE. Consequently, the optimal parameter combination after optimization was 

determined to be [0.0543, 0.1386, 0.2193, 0.1418, 0.1546, -0.0026, 0.1486, 0.0713, 0.0899, 0.0072, 

0.1762, 0.0575]. 

5. Conclusions 

This paper delves deeply and comprehensively into the optimization of process parameters for cold-

rolled steel strips. Given the intricate coupling relationships among various parameters in the 

continuous annealing process, constructing an accurate mechanistic model undoubtedly poses a 

formidable challenge. In response to this predicament, the present study diligently investigates and 

implements the application potential of the gradient descent algorithm in this field. By clearly defining 

optimization objectives, meticulously screening and identifying key parameters, scientifically 

constructing a loss function, and conducting multiple rounds of iterative optimization, this paper has 

achieved precise adjustment and control of parameters during the experimental stage. Particularly in 

optimizing the core indicator of hardness error in cold-rolled steel strips, the employed gradient descent 

algorithm has demonstrated exceptional performance. While maintaining a low MSE value, it has 

successfully uncovered the optimal parameter combination and validated its remarkable effectiveness 

through practical verification. This achievement not only enhances the product quality of cold-rolled 

steel strips but also lays a solid foundation for subsequent research.  

Looking ahead, the research on optimizing the process parameters of cold-rolled steel strips can be 

further deepened on this basis.  
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