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Abstract: The numerical simulation has been done for the linear stability of plane Poiseille 

flow by varying the fluid velocity in the local flowing field. The analysis of the results 

showed that the influence of varying the fluid velocity on the linear stability bears some 

common characteristics. The relation curves between the unstable zone area encircled by the 

neutral curves and the different normal coordinates can be divided into four different 

functional regions, the approximately unchanged region of neutral curves, the region 

trending to stability, the region trending to instability, the obscure region trending to stability 

or instability. The susceptible region of stability change is made of the region trending to 

stability and the region trending to instability or unstable region. But that in which form the 

flowing field changes the unstable zone area encircled by the neutral curves depends on the 

forms of velocity changes. This study result will provide a fine platform for both the 

experimental study of the hydrodynamic stability and the further improvement of the 

coalescence theory.  

The theory of flow stability was initially proposed to explain the transition of flow from laminar 

to turbulent flow, as the cause of the transition was attributed to the instability of laminar flow. The 

problem it studies is: in a flow that was originally laminar, if there is a disturbance for some reason, 

how will this disturbance evolve. If various disturbances eventually attenuate and the flow returns to 

its original laminar state, then the laminar motion is stable. On the contrary, if certain disturbances do 

not attenuate, the original laminar flow will either transform into another type of laminar flow, or 

transition to turbulence, then the laminar flow is unstable[1]. The stability of flow is not limited to the 

transition from laminar to turbulent flow, and the formation of many complex flow fields is related to 

some unstable mechanism. The diversity of the world stems from its instability[2].  

Although linear stability theory cannot describe the entire process of transition, it cannot be applied 

to stages where nonlinear effects play an important role. But it can indicate which velocity profile is 

unstable, which frequencies have the fastest vibration growth, and indicate how to change the 

parameters controlling flow to delay transition[3]. Saric's research results indicate that if most of the 

wings of a large transport aircraft can maintain laminar flow, it can save 25% of fuel[4]. Thibert[5] 

pointed out that frictional resistance generally accounts for 50% of the total resistance of subsonic 

transport aircraft, while laminar resistance is 90% less than turbulent resistance. Therefore, studying 

the theory of flow stability has important application background for the design of aerospace, ships, 
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vehicles, etc. Based on this, a deep understanding of the transition mechanism and control of the 

transition process of the boundary layer is a prerequisite for accurately calculating aerodynamics and 

heat conduction[2]. 

Schmid[6] demonstrated through analysis of the energy flow between Fourier harmonics that linear 

mechanisms do play a major role in providing energy for the growth of disturbances during transition. 

Reddy[7] believes that the transition in Poiseuille flow also undergoes classical transition phenomena, 

namely first (T-S wave) instability and second instability. Luo Jisheng, Wang Xinjun, and others[8] 

used a time model to directly simulate the "sudden change" process of incompressible channel flow 

from laminar to turbulent transition. They found that the change in the stability characteristics of the 

mean flow profile played a crucial role in the "sudden change" process, while the stability 

characteristics of the mean flow profile changed significantly after disturbance correction, manifested 

as a significant increase in the unstable region and amplification rate of linear stability, a significant 

increase in the unstable region surrounded by the neutral curve, and an increase in the linear growth 

rate, which means that more waves are easily and quickly excited, ultimately leading to the generation 

of turbulence.Afterwards, the author conducted direct numerical simulations of incompressible 

boundary layer turbulence and discovered similar mechanisms. It was also found that if the initial 

disturbance is not antisymmetric in the spanwise direction, the spanwise average flow is not zero, 

which has a significant impact on stability and indicates that the turbulence obtained from numerical 

simulation is not completely random[9].Huang Zhangfeng et al[10] conducted direct numerical 

simulations of the boundary layer transition process on a supersonic flat plate with an incoming Mach 

number of 4.5 using a time model.The research shows that although the second mode T-S wave is 

more unstable in laminar flow, the first mode unstable wave plays a decisive role in the sudden change 

of laminar flow into turbulence.However, some semi empirical theories have led to satisfactory 

predictions of transition in two-dimensional and axisymmetric incompressible flows, with the more 

refined being the direct use of linear stability theory, which is also useful for quantitative research. 

Recent studies have shown that stability theory is also useful for studying coherent structures after 

transitions. 

There are many factors that affect flow stability, such as Reynolds number, upstream turbulence 

intensity, wall roughness, volume force, heat conduction, etc. The suction and blowing in of the 

boundary layer also have an impact on the stability of the boundary layer flow. Generally speaking, 

suction increases the stability of the flow while blowing promotes the instability of the flow. There 

are also some factors that affect the stability of laminar flow, such as the compressibility of the fluid. 

At present, in the engineering calculation of turbulence, in addition to predicting the place or time 

of transition, it is sometimes necessary to accurately simulate the transition process to make the 

connection between laminar and turbulent sections more in line with the actual situation and improve 

calculation accuracy, which is not easy. If we can find more regularity in the transition process, it will 

be helpful for solving the above problems. The change in flow stability before the transition 

breakdown process in this problem is the most common and urgent problem in engineering and 

technical problems. 

In the past, research on the stability of flow (including numerical simulation and experimental 

methods) has mainly focused on the study of external factors on the stability of boundary layer flow, 

without studying the regularity of the impact of small details on flow stability. However, this is 

important for us because theoretical workers, experimental researchers, and engineering technicians 

urgently need some regularly analyzed knowledge as practical guidance. Therefore, this study is 

based on this consideration. This study includes two aspects: the impact of changes in symmetric and 

asymmetric velocities in planar Poiseuille flow on flow stability; The effect of changes in the average 

flow velocity profile on favorable coalescence conditions in a planar Poiseuille flow[11,12]. This study 

will extend the theory of flow stability to the study of coalescence theory. 
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1. Methods of numerical simulation 

1.1 Calculation method 

 

Fig. 1 Sketch of computational domain of plane Poiseille flow 

The computational domain of the planar Poiseille flow studied in this article is shown in Figure 1. 

Dimensionalize the Navier Stokes equation and the continuity equation, using a reference length of 

half groove width h, a velocity U at the center (at y=0), and a pressure P using 𝜌𝑈2 dimensionless. 

The Reynolds number Re is 𝑈ℎ/𝛾, where 𝛾 is the kinematic viscosity coefficient. The control 

equation and continuity equation are: 
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Among them, u is the velocity vector, and its components are u, v, and w, which correspond to 

the x, y, and z-axis directions, respectively.  is the gradient operator, and 2  is the Laplace 

operator. The steady-state laminar solution for the two-dimensional flow of equation (1) is: 
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Here, C is an arbitrary constant. To study whether the laminar flow is stable, it is necessary to 

assume that the flow deviates from the original flow. Therefore, velocity and pressure can be 

expressed as: 

uuu  0
, ppp  0

                            (3) 

u and p  represent the disturbance velocity and pressure. By substituting equation (3) into 

equation (1) and subtracting the equations satisfied by 
0u and 

0p , assuming that the perturbation 

momentum and its derivatives are small enough that their second-order terms can be omitted, a 

linearized perturbation equation can be obtained: 
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For convenience, the apostrophes on u and p  will no longer be added. Due to the fact that 

the coefficients in equation (4) also do not include t, x, and z. When solving u  and p in this way, 

the method of separating variables can be used and written as: 
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Among them, cc. represents conjugate complex numbers. By substituting equation (5) into 

equation (4), we can obtain the equations that û and p̂ satisfy. Written in component form: 

pivDuuL ˆReˆ)Re(ˆ
0  , )ˆRe(ˆ pDvL  , 

piwL ˆReˆ  , 0ˆ)ˆˆ(  vDwui                         (6) 

 )Re()( 0

222   uiDL .and û should satisfy the boundary conditions: when 1y , 

0ˆ u . 

If the disturbance is also two-dimensional, i.e. 0ˆ w and 0 , then the above equation is 

transformed into a two-dimensional disturbance equation: 
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When the boundary condition is 1y , 1y . 

The equations of three-dimensional problems can be transformed into two-dimensional 

equations through the Squire transformation method. Therefore, the equation for a three-

dimensional problem can be obtained in the same form as the equation for a two-dimensional 

problem. However, the three-dimensional problem still has an unknown function, which can be 

solved by solving another equation. It is obtained by multiplying   by the first equation of 

equation (6), subtracting   by the third equation: 

vDuwuL ˆ)Re()ˆˆ( 0                             (8) 

By solving equation (6), 
1u  and 

1v  can be obtained. Because of vv ˆ
1  , the right end of 

equation (8) is known, and after solving wu ˆˆ   , together with wuu ˆˆ
1   , û and ŵ  can be 

solved separately. 

Due to the homogeneous boundary conditions, there are generally only meaningless zero 

solutions. Only when the parameters  ,  , Re , etc. in the equation satisfy certain relationships, 

can there be non-zero solutions. So, the linear stability problem is actually solving an eigenvalue 

problem. 

The Orr-Sommerfeldequation satisfied by equation (7) is: 
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When the boundary condition is 1y , 0ˆˆ  vDv . 

This article uses the finite difference method to discretize equation (6) in the y-direction. The 

finite difference format used is Malik's suggested compact difference format with two-point 4th 

order accuracy, which is: 
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Where   is any sufficiently smooth function, it can be a vector function. The biggest feature 

of this format is that it only involves the functions and derivatives of two grid points, so it is also 

applicable to variable spacing. A more detailed calculation method can be found in reference [2]. 

By substituting the calculation result of equation (6) into the O-S equation, a complete system 

of equations for 
121

ˆ,ˆ,ˆ  Nvvv can be obtained. The coefficient matrix of this system of equations is 

a banded diagonal matrix with a bandwidth of only 5. The Gaussian elimination method can be 
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used to calculate the value of its determinant. The usual method for solving eigenvalues is the 

müller method, which can be used to obtain new eigenvalues and their corresponding feature 

functions[2]. 

1.2 Research Methods 

There are two methods for studying flow stability in this article: blowing in method and suction 

out method. The so-called blowing in method refers to the way in which the fluid is blown in the 

direction of the flow direction to rapidly increase the velocity of the local flow field at that 

location, that is, the acceleration mode; The suction mode refers to the deceleration mode in which 

fluid is sucked out in the opposite direction of the flow direction to rapidly reduce the velocity of 

the local flow field at that location.Each way of changing speed can correspond to two forms of 

velocity distribution: symmetric and asymmetric. Due to the fact that the average flow profile of 

a planar Poiseuille flow is a symmetrical parabolic curve, the so-called symmetrical type refers 

to the distribution of the magnification and reduction of the speed that changes symmetrically on 

both sides of the axis of the standard average flow profile; On the contrary, it is asymmetric.  

Due to the fact that the Navier Stokes equation and the continuity equation are dimensionless 

equations, the normal calculation domain is [-1,1], the calculated grid points are 129, and the 

distribution of variable spacing grid points is )cos( Njy j   , Nj ,,2,1,0  , 128N . For the 

growth rate pattern, the velocity at a certain grid point is expressed as: tuu jj  0
, where the increase 

and decrease multiples, it  1.0 , 20,,12,11 i , Nj ,,2,1,0  , and 
0ju represent the velocity 

at an unchanged grid point on the average flow profile; Similarly, the speed at a certain grid point in 

deceleration mode is the same as that in acceleration mode, except for 0,,8,9 i . 

In principle, the linear stability of flow field flow is characterized by the instantaneous maximum 

growth rate of the neutral stability curve. However, in order to enable theoretical researchers and 

engineering technicians to more intuitively observe the impact of velocity changes on flow 

stability,This article uses the area enclosed by the neutral curve to express the linear stability of 

instantaneous flow, which can basically reflect the main characteristics of statistical analysis of flow 

stability. Therefore, the area enclosed by the neutral stability curve is the integral of the closed curve 

in the    plane. For convenience in the following discussion, the area enclosed by the neutral 

stability curve is abbreviated as UZANC (The unstable zone area enclosed by the neutral curves), and 

the symbol S represents the area value. 

2. Result analysis and discussion 

From Figure 2(a), it can be seen that when 1572.0026.0  y ,the area enclosed by a curve with a 

smaller value of the multiplication factor t can decrease rapidly , while the area enclosed by the curve 

with a large t value has little change in UZANC. However, the overall trend is that UZANC tends to 

be smaller than the area enclosed by the standard neutral curve. From the cross-sectional view at point 

0960.0y in Figure 2(b), it is evident that the neutral curve disappears at t=0.0~0.34, hence this region 

is referred to as the trending stable region; On the contrary, when 3061.01572.0  y  is present, the 

area of a curve with a small increase or decrease factor t can rapidly increase, while a large t value 

corresponds to little change in UZANC. However, the overall trend is that UZANC tends to be larger 

than the area enclosed by the standard neutral curve. This situation can be clearly observed from the 

cross-sectional diagram at 2270.0y in Figure 2(c), and therefore, this area is called a trend unstable 

region. When 3061.0y  is reached, UZANC is almost close to the area enclosed by the standard 

neutral curve, but the curves are all above the standard line, indicating that this region is an unstable 
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region with less significant changes. Moreover, it can be seen from the enlarged graph that as the t-

value decreases, the flow tends to become more unstable. It is worth noting that when 026.00  y  

is present, the flow stability curve does not vary significantly with the t-value, and this region can be 

approximated as the neutral stability curve invariant region. 

 

Fig. 2(a) Under the unsymmetrical and diminished fluid velocity, the curves of the UZANC at 

different normal position, y. 

 

Fig. 2(b) Neutral curves of stability at 0960.0y . 

 

Fig. 2(c) Neutral curves of stability at 2270.0y . 
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From Figure 3 (a), it can be seen that the area curve enclosed by the neutral stability curve is still 

similar to Figure 2 (a), that is, it undergoes significant changes with the amplification of velocity, and 

this change is more pronounced than Figure 2 (a). When 0206.00  y , this region is the region 

where the neutral stability curve remains unchanged;It can be clearly seen from the cross-sectional 

view at point 0960.0y  in Figure 3 (b) that UZANC reaches its maximum at t=2.0, and the peak in 

Figure 3 (a) corresponding to this point is greater than the peak in Figure 2 (a). Therefore, when 

1430.00206.0  y  is in an unstable region;When 2690.01430.0  y  approaches the stable region 

of the neutral curve, that is, UZANC will significantly decrease or even disappear in this region as 

the increase or decrease factor t increases, as evidenced by the cross-sectional diagram at Figure 3 (c) 

1824.0y . Furthermore, from the cross-sectional view at 1422.0y  in Figure 3 (d), it can be 

observed that the neutral stability curve splits into two symmetrical parts at t=2.0 as the increase or 

decrease factor t increases; When 2690.0y  is reached, the area enclosed by the neutral curve is 

almost close to the standard line and below it, which is a stable region with less significant changes. 

And from the enlarged graph, it can be seen that as the value of t increases, the flow tends to become 

more stable. Furthermore, it can be seen that the regions in Figure 3 (a) are closer to the wall area 

compared to Figure 2 (a). 

 

Fig. 3(a) Under the unsymmetrical and enlarged fluid velocity, the curves of the UZANC at 

different normal position, y. 

 

Fig. 3(b) Neutral curves of stability at 0960.0y . 

y

S

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2 t=1.1

t=1.3

t=1.5

t=1.7

t=1.9

t=2.0

t=1.0





-1 -0.5 0 0.5 1

0.4

0.6

0.8

1

1.2

t=1.1

t=1.3

t=1.5

t=1.8

t=2.0

29



 

Fig. 3(c) Neutral curves of stability at 1824.0y . 

 

Fig. 3(d) Neutral curves of stability at 1422.0y . 

Figure 4(a) shows the relationship between the area of the neutral stability curve and the normal 

position of the flow field under symmetric reduction of flow velocity. From Figure 4(a), it can be seen 

that the pattern reflected by the curve in this figure is similar to that in Figure 3(a), except that due to 

the symmetrical reduction of the multiple of velocity, which is equivalent to an increase in the 

amplitude of velocity change. Thus, it leads to a rapid decrease or even disappearance to zero of 

UZANC in the approaching stable region ( 1541.00206.0  y ) as the increment-decrement factor t 

decreases. (see the neutral stability curve at 0960.0y  in Figure 4(b) for details),In the unstable 

region, the UZANC of ( 3135.01541.0  y ) increases significantly as the increase or decrease factor 

t decreases (see the neutral stability curve at 2270.0y in Figure 4(c)). At point 2270.0y , the 

maximum UZANC value is reached, which is more than three times the area enclosed by the standard 

neutral stability curve. When 3135.0y , the flow field exhibits a tendency towards an unstable region 

with insignificant changes. On the other hand, compared with Figure 3(a), the normal position width 

of the two regions in Figure 4(a), namely the sum of the stable and unstable regions, has significantly 

widened. This result is clearly due to the symmetric change in velocity amplitude. 
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Fig. 4(a) Under the symmetrical and diminished fluid velocity, the curves of the UZANC at 

different normal position, y. 

 

Fig. 4(b) Neutral curves of stability at 0960.0y . 

 

Fig. 4(c) Neutral curves of stability at 2270.0y . 
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and stable region (0.1523<y≤0.2694) under different amplification factors t, indicating that the 

stability of the flow field is sensitive to changes in flow velocity in both regions.These two situations 

can be clearly seen from the neutral stability curve at 0960.0y  in Figure 5(b) and the neutral 

stability curve at 1968.0y  in Figure 5(c). Furthermore, from the neutral stability curve at point 

1551.0y  in Figure 5(d), it can be observed that the area enclosed by the neutral stability curve 

rapidly decreases until it disappears when t=1.1~1.3. However, when t=1.67, the neutral stability 

curve reappears and exhibits two symmetrical branches on both sides,When t=1.7~2.0, UZANC 

increases with the increase of t value. However, these neutral stability curves all exhibit symmetric 

branching forms. Therefore, it should be said that different values of t at the same point determine the 

different ways in which the neutral curve is presented. When y>0.2694, the flow field exhibits a trend 

towards a stable region with no significant changes. 

 

Fig. 5(a) Under the symmetrical and enlarged fluid velocity, the curves of the UZANC at different 

normal position, y. 

 

Fig. 5(b) Neutral curves of stability at 0960.0y . 
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Fig. 5(c) Neutral curves of stability at 1968.0y . 

 

Fig. 5(d) Neutral curves of stability at 1551.0y . 

3. Conclusion 
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agglomeration theory of stratified two-phase flow, as this region happens to be the most favorable 

agglomeration region obtained by the author and predecessors based on experiments. Therefore, the 

numerical calculation results of this article support the theory of the favorable agglomeration 

condition region obtained from known experiments. It is worth noting that the coalescence theory 
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average flow velocity profile can lead to diversity in flow stability, but to some extent, there are still 

patterns to follow. 
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