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Abstract: Existing petroleum engineering big data algorithms have issues like poor 

efficiency, insufficient classification accuracy, and poor algorithm adaptability in 

classification tasks by application field. In order to resolve these issues, this paper proposes 

an RNN (Recurrent Neural Network) algorithm, which improves the performance of the 

model in multi-category classification by introducing a combination of ReLU activation 

function and Softmax output layer. By extracting features and optimizing data from 

different application scenarios in the field of petroleum engineering, the algorithm 

effectively improves the classification accuracy and application efficiency of the model. 

Specifically, this paper uses different application fields in petroleum engineering big data 

as classification labels, uses the architecture of a neural network with multiple layers, and 

combines it with the Adam optimizer to improve the training speed and stability of the 

model by adjusting and fine-tuning the model parameters layer by layer. In the training 

process at each stage, special emphasis is placed on the adjustment of hyperparameters and 

the alleviation of the gradient vanishing problem, guaranteeing the effectiveness and 

precision of the classification results in multi-domain data. The findings from the 

experiments demonstrate that the enhanced algorithm has strong future potential and 

practical value, and that it can effectively boost the computation efficiency of huge 

amounts of data in oil and gas engineering as well as the accuracy of classification 

assignments in real-world applications. In the comparison of different activation functions, 

the ReLU activation function (improved model) performed best, with a classification 

accuracy of 0.852, a training time of 125 seconds, an F1-Score of 0.81, and an AUC-ROC 

of 0.9. 

1. Introduction 

In the field of petroleum engineering, given how quickly big data technologies is developing, the 

scale and complexity of data are increasing. Petroleum engineering big data covers a large amount 

of information from various links such as geological exploration, production, equipment monitoring, 

etc. How to efficiently analyze and process this data has become a key factor in improving 

production efficiency, optimizing decision-making, reducing risks and reducing costs. However, 
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traditional classification algorithms often face problems such as low classification efficiency, 

insufficient accuracy and poor algorithm adaptability when processing petroleum engineering big 

data. In order to improve the accuracy and efficiency of big data classification, deep learning and 

neural network technology have emerged as a powerful tool to solve these problems. 

This study suggests a deep learning-based neural network classification algorithm to address the 

issues of precision and productivity in the big data identification task for petroleum engineers by 

industrial field. Through comparative experiments on different activation functions (such as ReLU, 

Sigmoid, Tanh), their effects in the classification of petroleum engineering big data are explored, 

thereby optimizing the performance of the classification model. It is believed that this research will 

offer new ideas and methods for the efficient classification and application of petroleum 

engineering data, and promote the application and development of big data technology in the 

petroleum industry. 

This paper is structured as follows: First, the research background and objectives are introduced, 

and the application requirements and limitations of existing methods in petroleum engineering big 

data classification are explained. Then, the design and optimization process of the proposed deep 

learning neural network model is described in detail, focusing on the selection of activation function, 

loss function and optimization algorithm. Subsequently, a series of experiments are conducted to 

evaluate the impact of different activation functions on classification accuracy and training 

efficiency, and the advantages of the model are demonstrated by comparison with traditional 

machine learning methods. Finally, the main findings of the study are summarized, and future 

research directions and potential improvement plans are proposed. 

2. Related Work 

The field of chemical engineering has seen both new possibilities and obstacles as a result of the 

big data and intelligence-based innovations' lightning-fast growth. More and more studies have 

explored how to apply these advanced technologies to the petroleum industry to improve 

performance in terms of prediction accuracy, optimize production processes, and improve 

equipment maintenance efficiency. Sadat et al. outlined the content, characteristics, and related 

topics of big data, systematically reviewed big data analysis techniques and tools, and explored its 

application in the chemical industry, aiming to promote the implementation of big data in 

engineering processes and provide a practical perspective on big data applications [1]. The 

development of big data and artificial intelligence had provided new ways of exploration for 

petroleum engineering research. Based on data and physical guidance, combined with machine 

learning models, it provided higher prediction accuracy and computational efficiency. Xie et al. 

summarized four physical information embedding mechanisms [2]. Bahaloo et al. reviewed the 

application of AI in upstream process optimization, evaluated the challenges of conventional 

methods, and explored the impact of AI on the future development of the oil industry [3]. Ozowe et 

al. explored the impact of advanced gas injection technology on reservoir management strategies 

and its role in oil and gas recovery, evaluated the effectiveness of injection technologies such as 

CO₂, nitrogen and hydrocarbon gas, and discussed technical advances such as real-time reservoir 

simulation, 4D seismic monitoring, intelligent well technology and machine learning [4]. 

Mohammed et al. introduced the basic concepts and applications of PCA (Principal components 

analysis), explored PCA variants and its role in classification algorithms, and demonstrated how 

PCA improves performance through experiments [5]. Ali et al. optimized KNN (k-nearest neighbor) 

connections by utilizing multithreading and multiprocessors to save computing resources, and 

evaluated the sequential and parallel performance of KNN using six commonly used data sets. The 

study used Spark Radoop to verify the effectiveness and scalability of the method [6]. 
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These studies have provided valuable experience and inspiration for the use of artificial 

intelligence with large data in petroleum engineering. Wang et al. proposed a modified framework 

for a nearby data lake based on creation of a model includes geographical characteristics of coalbed 

methane reservoirs, and established a coupling theoretical model of "field data, laboratory data, 

management data and data management system". The study showed that the model improved the 

computing efficiency by 12% and has broad application prospects[7]. James et al. integrated big 

data with existing business intelligence systems and used deep learning algorithms for analysis. The 

system can automatically analyze reports and generate prediction results to provide managers with 

better decision support. The system helps identify and avoid potential problems through predictive 

analysis and improves management efficiency[8]. Ohalete et al. reviewed the application and 

development of preventative upkeep in the oil and gas sector using data science plus neural 

networks (AI), focusing on evaluating how AI and data science can switch from conventional 

techniques to more sophisticated predictive maintenance plans. The study showed that AI 

algorithms and data analysis significantly improved the accuracy of equipment failure prediction, 

optimized maintenance scheduling, and reduced downtime and operating costs [9]. Melberg and 

Gressgard analyzed how the implementation and application of digital technology in the oil industry 

changes work content, organizational structure and management methods. The study showed that in 

the context of mature technology, efficiency and cost pressure, digitalization bring about 

fundamental changes in the way employees and managers work [10]. Arinze et al. used machine 

learning, deep learning and predictive analysis to improve decision-making efficiency, maximize 

the techniques of exploration, manufacturing, logistics, and refinement, reduce downtime and 

enhance safety. However, challenges remain in terms of technical complexity, regulatory framework, 

network security and data privacy [11]. Weijermars et al. aimed to explore how geologists and 

petroleum engineers can use artificial intelligence tools to improve work efficiency, especially with 

the help of personalized tools provided by commercial platforms [12]. Existing research faces 

bottlenecks in data quality, algorithm interpretability, technical complexity, data privacy and 

security, which limit the extensive use of intelligent machines and big data in the petroleum 

engineering field. 

3. Method 

3.1 Model Architecture Design 

In order to better meet the needs of petroleum engineering big data classification tasks by 

application field, this paper proposes a classification algorithm based on RNN. RNN is particularly 

suitable for processing engineering data with time series and correlation, such as data from various 

stages of oil exploration, development, production, maintenance, etc., and can better capture the 

sequence characteristics and time series changes in the data. 

The input layer, hidden layer, stimulation operate, production level, and various additional 

aspects work together to create a neural network model for the task of automatic classification of 

petroleum engineer big data by utilization field. The model can then be optimized by utilizing the 

proper formulas alongside adjusting the parameters associated with them. 

Assuming that the feature vector of the input data is X, which contains various information in 

petroleum engineering data, such as geological data, production data, or equipment monitoring data. 

The input layer's node count is the same as its feature count N, that is, the input vector NRX  . 

In the hidden layer, assuming that there are L layers, each containing lH  neurons (where l 

represents the number of hidden layers). Each concealed layer's output is the output of the previous 

layer multiplied by the weight matrix lW , plus the bias lb , and then transformed by the activation 
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function. It is expressed by the formula: 

).( 1 llll bHWfH                                (1) 

Among them: lH  is the output vector of the l-th layer; lW  is the weight matrix of the l-th 

layer; lb  is the bias term of the l-th layer; (.)f  is the activation function; 

For the hidden layer, the formula of the ReLU activation function is: 

),0max()(Re xxLU                        (2) 

The advantage of this function is that it is easy to calculate and can effectively alleviate the 

gradient vanishing problem. 

The softmax activate function, which transforms the network's final result into the distribution of 

probability and works well for multi-category classification duties, is typically employed in the 

outcome plane when the model itself performs tasks like classification. The outcome of this layer's 

function is: 
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Among them, iy  is the likelihood of the i-th group; iz  is the input of the :th neuron in the 

output layer (that is, the original output of the network); C is the total number of classification 

categories. 
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Among them: L is the loss value; iy  is the actual label (one-hot encoding); ip  is the 

probability predicted by the model 

The optimization algorithm uses Adam (adaptive moment estimation algorithm), which updates 

the weights by calculating the gradient's refer to or initial-order instance, and deviation, or 

third-order period. The formula is: 
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Among them: t  is the weight at the current moment; L  is the losses function's gradients in 

relation to the amount of fat; tm  and tv  are decay rate hyperparameters, usually set close to 1 

(such as 0.9, 0.999);   is the learning rate, and   is a constant to prevent division by zero. 

Through these designs, the model can be trained and optimized according to the characteristics 

of the input data, and finally perform multi-category classification according to the requirements of 
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the classification task. The combination of the decline in the correlates with cross- Entropy and the 

Adam optimizer ensures the stability and efficiency of the training process. 

3.2 Classification Task Design 

In petroleum engineering big data, data usually comes from different application fields, which 

have different characteristics and requirements. Therefore, the labels of the classification task 

should be defined according to these application fields. 

In petroleum engineering, different application areas involve their own unique data types and 

requirements. In the exploration stage, data related to geological exploration, such as geological 

data, seismic wave data, etc., are mainly processed. These data are used to evaluate the location and 

characteristics of potential oil and gas reservoirs. In the development stage, data usually involves 

the exploitation process of the oil field, including well location design, water injection process, 

drilling data, etc. The goal is to increase oil and gas production and recovery through reasonable 

development plans. The production stage focuses on the production data of oil wells, such as flow 

monitoring, pressure monitoring, equipment status, etc. These data help optimize production 

efficiency, reduce costs, and ensure the stability and safety of the production process. Finally, in the 

maintenance stage, data involves equipment maintenance records, detection data, and fault warnings, 

etc., which are used to ensure the reliability of equipment operation, reduce sudden failures, and 

improve overall operation and maintenance efficiency. Data in these different fields have their own 

characteristics and application requirements, so the specific characteristics of these fields need to be 

considered when classifying. 

According to the characteristics of these application fields, a label can be defined for each 

application field. These labels represent different data application scenarios, and each sample is 

labeled with a corresponding label according to the application field to which it belongs. 

When performing multi-category classification, neural networks usually use a softmax output 

layer. The Softmax function can transform the result of the neural network into its likelihood 

shipping, so that the predicted value of each category is between 0 and 1, and the sum of the 

predicted values of all categories is 1. The goal of the network is to adjust the network parameters 

through training so that the probability of the final output is as close as possible to the category 

corresponding to the true label. 

4. Results and Discussion 

4.1 Experimental Environment 

Hardware: NVIDIA GPU (such as RTX 3080); 

Software: Python 3.x, TensorFlow/Keras, Scikit-learn, Pandas, NumPy; 

Dataset: Large data set of petroleum engineering (including geological data, production data, 

equipment monitoring data, etc., annotated data from different application fields). 

4.2 Comparative Experiments 

Experiment 1: Using traditional SVMs and decision trees and other classic machine learning 

algorithms to classify the same data set, and recording indicators such as classification accuracy, 

training time, and model stability. 

In Figure 1, the experiment compares the performance of traditional machine learning algorithms 

(such as SVM, decision tree, KNN and random forest in the petroleum engineering big data 

classification task. A comprehensive evaluation is performed based on multiple indicators such as 

33



classification accuracy, training time, F1-Score and AUC-ROC. In terms of classification accuracy, 

SVM performs best, reaching 0.852, slightly higher than random forest (0.837). Decision tree 

(0.823) and K-nearest neighbor (0.805) are relatively low, indicating that these traditional 

algorithms perform relatively poorly in complex petroleum engineering data classification tasks. In 

terms of training time, decision tree is clearly ahead with a training time of 50 seconds, followed by 

K-nearest neighbor (75 seconds). In contrast, the training time of support vector machine and 

random forest is 125 seconds and 95 seconds, respectively. Although the training time is longer, 

their classification accuracy is higher, showing their advantages in processing complex data. In 

terms of F1-Score, support vector machine takes the lead again; reaching 0.81, indicating that the 

model has a good balance between precision and recall. Random forest (0.78) and decision tree 

(0.77) follow closely, while K nearest neighbor has a lower F1-Score of 0.74, showing its 

shortcomings in processing petroleum engineering big data. The performance of the AUC-ROC 

curve is consistent with the trend of classification accuracy. The AUC-ROC values of support vector 

machine and random forest are 0.9 and 0.88, respectively, indicating that they have high stability 

and strong classification ability in distinguishing different categories. The AUC-ROC values of 

decision tree and K nearest neighbor are 0.87 and 0.84, respectively, which are relatively low, 

indicating that they are more unstable in classification performance. 

SVM Decision Tree KNN Random Forest
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Figure 1. Performance of traditional machine learning algorithms 

Table 1. Model stability analysis (standard deviation of multiple trainings) 

Algorithm 

Classification 

Accuracy Std. 

Dev. (%) 

Training Time 

Std. Dev. 

(seconds) 

F1-Score Std. 

Dev. 

AUC-ROC 

Std. Dev. 

SVM 1.2 8.5 0.02 0.01 

Decision Tree 1.5 5.2 0.03 0.02 

KNN 1.8 7 0.04 0.03 

Random Forest 1.3 6.3 0.02 0.01 

The SVM is the most stable in terms of the standard deviation of various indicators. Its 

classification accuracy standard deviation is 1.2%, the training time standard deviation is 8.5 

seconds, and the F1-Score standard deviation and the standard deviations for AUC-ROC are 0.02 

and 0.01. respectively, showing that its model has high consistency in multiple experiments and 
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good robustness. In contrast, although the decision tree is relatively stable in terms of classification 

accuracy and training time, its F1-Score standard deviation is 0.03 and AUC-ROC standard 

deviation is 0.02, which is slightly higher than SVM, indicating that its performance in some 

experiments fluctuates greatly, especially in the balance between precision and recall, showing a 

certain instability. The stability of the KNN algorithm is poor, with a standard deviation of 1.8% for 

classification accuracy, 7 seconds for training time, 0.04 for F1-Score, and 0.03 for AUC-ROC, all 

of which show that the model fluctuates greatly in different experiments and exhibits low reliability, 

especially in the F1-Score and AUC-ROC indicators. The stability of the random forest is between 

SVM and decision tree, with a standard deviation of 1.3 for classification accuracy, 6.3 seconds for 

training time, 0.02 for F1-Score and 0.01 for AUC-ROC, respectively, indicating that it exhibits 

good stability and low fluctuations in classification tasks, especially in AUC-RO and F1-Score, 

which are similar to SVM, as shown in Table 1. 

SVM Decision Tree KNN Random Forest

0.0

0.2

0.4

0.6

0.8

1.0

A
U

C
-R

O
C

Algorithm

 AUC-ROC

 

Figure 2. Comparison of AUC-ROC curves 

In the comparison of AUC-ROC in Figure 2, the SVM performs best with an AUC-ROC score of 

0.9, indicating that it has a strong ability to distinguish different categories. This shows that SVM is 

very effective in classification tasks, especially for scenarios that require high-precision 

classification. The decision tree algorithm has an AUC-ROC score of 0.87, which is slightly lower 

than SVM, but still performs well. This shows that despite its excellent performance, it may not be 

as good as SVM in some cases, probably because decision trees are prone to overfitting problems in 

complex data. The KNN algorithm has an AUC-ROC score of 0.84, the lowest of the four 

algorithms. This suggests that KNN may have some difficulties in distinguishing categories, 

especially when there is noise in the data or when the distribution between classes overlaps greatly. 

Its lower score indicates that KNN is not as robust as other algorithms in this particular task. 

Random forest has an AUC-ROC score of 0.88, which is relatively stable and ranks second only to 

SVM. Although lower than SVM, random forest is still highly competitive on complex data sets 

because it can combine the advantages of multiple decision trees and can effectively handle the 

complexity in the data. 

Experiment 2: In the improved deep learning model, different activation functions (such as 

Sigmoid, Tanh, etc.) are used for comparison to observe their effects on the model effect. 

The experiment investigates how deep learning model performance is affected by several 

activation functions (Sigmoid, Tanh, and ReLU). The best activate function for the classification job 

of petroleum industry large data is determined by comparing the performance of different activation 

functions in terms of model classification accuracy, training duration, F1-Score, model peace of 
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mind, etc. 

Sigmoid Tanh ReLU (Improved Model)

0.0

0.2

0.4

0.6

0.8

1.0  Classification Accuracy  AUC-ROC  F1-Score  Training Time (seconds)

Activation Function

C
la

ss
if

ic
at

io
n 

A
cc

ur
ac

y/
A

U
C

-R
O

C

/F
1-

S
co

re

0

20

40

60

80

100

120

140

160

 T
ra

in
in

g 
T

im
e 

(s
ec

on
ds

)

 

Figure 3. Performance of different activation functions 

In the comparison of different activation functions, the ReLU activation function (improved 

model) performs best, with a classification accuracy of 0.852, a training time of 125 seconds, an 

F1-Score of 0.81, and an AUC-ROC of 0.9. Compared with Sigmoid and Tanh, the ReLU activation 

function showed higher accuracy and faster training speed in the classification task. This shows that 

ReLU can effectively alleviate the gradient vanishing problem and improve the training efficiency 

and stability of the model. The classification accuracy of the Tanh activation function is 0.841, the 

training time is 140 seconds, the F1-Score is 0.8, and the AUC-ROC is 0.89. Although its 

classification accuracy is higher than Sigmoid, its training time is longer, and its F1-Score and 

AUC-ROC are slightly lower than ReLU, indicating that Tanh may not be as efficient as ReLU in 

some cases. The Sigmoid activation function has a classification accuracy of 0.825, a training time 

of 135 seconds, an F1-Score of 0.78, and an AUC-ROC of 0.88, which is the worst performance 

(see Figure 3). Although Sigmoid may be effective in some tasks, its lower accuracy and higher 

training time indicate that ReLU and Tanh may be more appropriate in this task. 
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Figure 4. Error analysis (loss value) under the influence of activation function 
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In the comparison of loss values, the ReLU activation function (improved model) performs best, 

with an average training loss of 0.18 and a final loss of 0.12, showing lower training loss and better 

model convergence. This shows that the ReLU activation function can optimize the model more 

effectively, thereby accelerating the training process and improving the final performance of the 

model. The average training loss of the Tanh activation function is 0.21, and the final loss is 0.16. 

Compared with ReLU, Tanh's loss value is slightly higher, although it still performs well. Tanh may 

encounter certain gradient vanishing problems during training, resulting in relatively high loss 

values. The average training loss of the Sigmoid activation function is 0.23, and the final loss is 

0.18, which is the highest among the three activation functions, as shown in Figure 4. This shows 

that Sigmoid converges slower than ReLU and Tanh during training, and fails to achieve good 

results in the final loss. 

5. Conclusion 

This paper proposes a neural network classification algorithm based on deep learning, aiming to 

improve the efficiency and accuracy of the classification task of petroleum engineering big data by 

application field. By introducing the ReLU activation function and the Softmax output layer, 

combined with the Adam optimizer, we successfully improve the performance of the model in 

multi-category classification and significantly improved the classification accuracy and application 

efficiency. According to the study findings, the neural network framework based on deep learning 

outperforms more conventional machine learning algorithms (like support vector algorithms, 

decision trees, K nearest neighbors, and random forests) in terms of precision of classification, 

educating time, and model durability. In particular, in the selection of activation functions, the 

ReLU activation function shows better performance than Sigmoid and Tanh, which is manifested in 

lower training loss, faster convergence speed, and higher classification accuracy. In addition, for 

different activation functions, the experiment further analyzes their impact on training loss and final 

loss. The experimental results show that the ReLU activation function can effectively reduce 

training loss, ensure that the model converges quickly during training, and ultimately achieve better 

classification results. Future research can further explore the combination of different deep learning 

architectures and optimization algorithms to further improve classification accuracy and model 

generalization capabilities, and provide support for big data processing and intelligent development 

in the oil industry. 
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