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Abstract: TWith the rapid development of artificial intelligence technology, significant 

progress has been made in the field of image generation and translation. However, 

traditional Generative Adversarial Networks[1] (GAN) face issues such as training 

instability, mode collapse, and artifacts in image translation tasks. This paper proposes an 

improved method based on U2-Net[2] for visible to infrared image translation. By 

introducing the Criss-Cross Attention (CCA) [3]module into the deep layers of U2-Net, the 

model's ability to capture global information is enhanced, and a frequency domain loss 

function is used to optimize the image quality. Experimental results show that the improved 

model outperforms the original U2-Net in multiple evaluation metrics. 

1. Introduction 

In modern society, image information plays a major role in how people acquire information, 

especially in fields such as transportation and healthcare, where cameras are ubiquitous. However, 

under harsh weather conditions (e.g., heavy fog, low light), traditional visible light cameras struggle 

to capture clear image information. In contrast, infrared cameras, based on infrared light with 

wavelengths ranging from 3000nm to 15000nm, can clearly capture objects in low-light conditions 

by detecting their thermal emissions. 

With the advancement of artificial intelligence technology, generative models have been widely 

applied in image generation and translation tasks. How to obtain infrared images using generative 

adversarial networks (GANs) without adding specialized infrared capture equipment has achieved 

significant results in image translation tasks. Excellent models like Pix2Pix[4] and CycleGAN 

[5]are based on cGAN[6], which is an optimization of GAN, and are widely applied in image 

generation,.but GAN-based models face instability during training and are prone to mode 

collapse[7]. Additionally, these methods only focus on pixel-level differences and neglect 

frequency domain constraints. 

Journal of Image Processing Theory and Applications (2025) 
Clausius Scientific Press, Canada

DOI: 10.23977/jipta.2025.080105 
ISSN 2560-6239 Vol. 8 Num. 1

39



 

2. Research Objectives 

The research objectives of this paper are to improve the U2-Net model to enhance the quality of 

visible to infrared image translation. The specific goals are: 

1) Introduce the Criss-Cross Attention (CCA) module into the deep layers of U2-Net to enhance 

the model’s ability to capture global information. 

2) Improve the loss function by introducing frequency domain constraints to optimize the quality 

of the generated images. 

3) Validate the effectiveness of the improved model through experiments and compare it with 

existing methods. 

3. Related Work 

3.1. Image Generation and Translation 

Image generation and translation is an important research direction in the field of computer 

vision[8]. Generative Adversarial Networks (GANs) have been widely used in image translation 

tasks as the foundation of generative models. Conditional Generative Adversarial Networks 

(CGAN)-based models like Pix2Pix and CycleGAN can achieve image translation across domains. 

CycleGAN can even perform image translation across different styles without aligned image pairs, 

and its model's capability increased rapidly during its development. Notable advancements in image 

generation quality include models such as StyleGAN[9],, which has been thoroughly analyzed and 

improved to achieve superior image quality, and Glow[10], a generative flow model that utilizes 

invertible 1x1 convolutions to enhance image generation . 

3.2. On of U2-Net in Image Segmentation 

U2-Net is an improved model based on U-Net, widely used in image segmentation tasks. 

Compared with traditional U-Net[11], U2-Net has significant improvements in accuracy and detail 

capturing ability. The multi-level structure of U2-Net allows it to better capture global and local 

information of the image, which is especially useful in medical image segmentation and other fields. 

Moreover, U2-Net has also been used in generative models like CycleGAN as part of the image 

generator. In the broader field of image segmentation, several important methods have been 

proposed, including Fully Convolutional Networks (FCNs)[12], which significantly advanced the 

field of semantic segmentation, and SegNet[13], a deep convolutional encoder-decoder architecture 

that improved segmentation performance . 

4. Research Method 

4.1. Model Structure Improvement 

First, we replace the original U-Net with U2-Net because U2-Net performs excellently in image 

segmentation tasks. U2-Net primarily relies on convolution operations, which effectively capture 

shallow information but have limitations in handling deeper image information. To enhance the 

model's ability to capture global information, we introduce the Criss-Cross Attention (CCA) module 

into the deep layers of U2-Net. The CCA module can focus on the relationships between pixels, 

enhancing the model's understanding of global features. 

40



 

4.2. Loss Function Improvement 

Traditional image generation tasks usually use L1 loss, which calculates the pixel difference 

between the generated image and the target image. However, L1 loss only considers pixel-level 

differences and ignores frequency domain information. To further optimize the quality of generated 

images, we introduce frequency domain constraints in the loss function by calculating the difference 

between the generated image and the target image in the frequency domain, enhancing the model's 

ability to capture global frequency information. 

 

Figure 1: Architecture of U²-Net with Criss-Cross Attention (CCA) 

As figure 1, the green parts represent the original components of U2Net. The mode 

lU2NET_CCAconsists of the two parts shown on the right side of the figure. The upper part,RES-L, 

adjusts L to obtainRSU-6,RSU-5, and RSU-4. These modules, together withCCA, form 

theU2NET_CCAmodel. The top-most part is RSU-7, which includes RSU-6, RSU-5, and RSU-4, 

varying only by the number of layers. RSU-4F differs from the others as it uses dilated convolutions 

to maintain the input and output sizes, serving only to constrain the features. Additionally, the CCA 

module is incorporated, which does not alter the input-output dimensions. 

The entire experimental process starts with the input visible light image . The image is first 

transformed into the frequency domain via FFT, resulting in . The visible light image  is passed 

through the model, generating the image _, which corresponds to the frequency domain 

representation . The original dataset image  corresponds to the real infrared image , and its 

frequency spectrum is denoted as . The improved loss function consists of the total output, which 
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is the L1 loss combined with the L1 loss after the frequency domain transformation. 

5. Experimental Results 

5.1. Dataset and Evaluation Metrics 

We used the publicly available LLVIP[14] dataset for the experiments, and additional data under 

low-light conditions were added to improve the model's generalization ability. Evaluation metrics 

include: 

 MAE (Mean Absolute Error): Measures the pixel-wise differences between the generated and 

target images. 

 MSE (Mean Squared Error): Measures the pixel-wise differences between the generated and 

target images. 

 PSNR (Peak Signal-to-Noise Ratio): Measures the quality of the generated image. 

 SSIM (Structural Similarity Index): Measures the structural similarity between the generated 

and target images. 

 FFT-L1: Frequency domain L1 loss, measures the difference between the generated and target 

images in the frequency domain. 

5.2. Results Analysis 

The experimental results show that the improved model outperforms the original U2-Net across 

multiple evaluation metrics. The specific results are shown in the table 1 below: 

Table 1: Ablation Study on CCA and FFT Los 

Method MAE MSE PSNR PSNR FFT-L1 FFT-L1 

U²-Net 9.832 5. 28 35.12 7.87 9. 25 34.87 

+ CCA 9.730 5. 25 36.21 8.89 9.23 35.65 

+ FFT Loss 8.028 4. 23 37.34 8.91 8.21 36.12 

From the table, we can see that after introducing the CCA module and frequency domain 

constraints, the model's performance improves significantly, particularly in PSNR and SSIM. 

6. Conclusion 

In this paper, we propose an improved method for visible to infrared image translation, building 

upon the U2-Net architecture. The key innovation of our approach is the incorporation of the Criss-

Cross Attention (CCA) module into the deeper layers of U2-Net, which significantly enhances the 

model's ability to capture long-range dependencies and global context information, thus improving 

the quality of the generated infrared images. In addition to this, we introduced frequency domain 

constraints into the loss function, leveraging the spatial frequency information to guide the model 

toward more accurate and realistic image translation. This combination of spatial and frequency 

domain optimization improves the model's performance, especially in terms of preserving fine 

details and mitigating artifacts during translation. 

Experimental results demonstrate that the improved model outperforms the original U2-Net on 

multiple evaluation metrics, including Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity 

Index (SSIM), which are critical indicators of image quality. The incorporation of the CCA module 

and frequency domain constraints leads to a noticeable enhancement in both visual quality and 

quantitative performance, making the model more effective in various practical applications that 

require high-quality image translation. 
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6.1. Future Research Directions  

While the current improvements have shown promising results, there are several exciting 

avenues for future research in this field: 

Integrating with Image-to-Image Translation Models: One of the key future directions is to apply 

the improved U2-Net model as a generator within advanced image-to-image translation frameworks 

such as Pix2Pix or CycleGAN. By doing so, we aim to generate even more accurate and detail-rich 

infrared images by leveraging the model's enhanced capability in both spatial and frequency 

domains. This could lead to better results in tasks such as style transfer, domain adaptation, and 

image synthesis across different modalities. 

Application in Denoising Networks and Diffusion Models: Another promising direction is 

applying the improved U2-Net model in denoising networks, particularly for use in diffusion 

models. These models are increasingly used in fields such as medical imaging, where noise 

reduction plays a crucial role in enhancing image clarity and diagnostic accuracy. The enhanced 

feature extraction capabilities of the improved U2-Net model can help preserve fine details while 

effectively removing noise from the images, leading to more accurate reconstructions. 

Optimization of Image Translation Effects: Further optimization of image translation effects 

could be achieved by comparing the performance of the improved U2-Net model against various 

other image distributions, such as images with different contrast levels, illumination conditions, or 

spatial resolutions. By identifying the most effective distribution for specific tasks, future models 

can be trained to handle a wider variety of input conditions and thus provide better performance 

across more diverse real-world scenarios. Additionally, optimizing the model's ability to deal with 

challenging image conditions, such as low-light or high-noise environments, could significantly 

enhance its practical utility. 

Real-Time Image Translation: As a future enhancement, the real-time application of visible-to-

infrared image translation could be explored. While the current model achieves great performance, 

further optimization in terms of speed and computational efficiency is needed for real-time 

applications, such as surveillance, autonomous vehicles, or remote sensing. This could involve 

exploring model compression techniques, faster inference strategies, or using specialized hardware 

to accelerate the process. 

Exploration of Multi-Modal Translation: Another potential direction is to explore multi-modal 

image translation, where the model is trained to translate not only from visible light to infrared but 

also across other modalities, such as thermal images, medical scans, or multi-spectral imagery. This 

would make the model highly versatile and applicable to a broader range of image translation tasks, 

making it a powerful tool in fields such as security, healthcare, and environmental monitoring. 

In conclusion, while the improvements presented in this paper represent a significant step 

forward in the field of visible-to-infrared image translation, further research and exploration are 

required to enhance its applicability and robustness in various real-world scenarios. 
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