
CBBGAN: a color-blur balanced generation adversarial 

network for underwater image enhancement 

Haiyang Yao1,a, Ruige Guo1, Yueyue Huang1, Yuzhang Zang2, Xiaobo Zhao3, Tao Lei1, 

Haiyan Wang1,4 

1School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and 

Technology, Xi'an, 710016, China 
2Engineering and Design Department, Western Washington University, Bellingham, WA, USA 

3Department of Electrical and Computer Engineering, Aarhus University, 8200 Aarhus, Denmark 
4School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, 

China 
ayaohy1991@126.com 

*Corresponding author 

Keywords: Underwater Image Enhancement, Multi-stage Residual, Feature Fusion, 

Generation Adversarial Network (GAN), Optical Images 

Abstract: Underwater optical image processing has garnered significant attention in various 

underwater applications. However, the presence of particles and the attenuation 

characteristics of optics in underwater environments lead to color distortion, low contrast, 

and blurring in optical images. Image enhancement techniques play a crucial role in 

improving the effectiveness of underwater image processing. In this study, we propose a 

color-blur balanced generation adversarial network (CBBGAN) for enhancing underwater 

optical images. CBBGAN aims to address color distortion and blurring issues. To address 

color distortion, we introduce the fusion-based Color Compensation module to mitigate 

color variations in the images. Then, the Multi-stage Residual based Generator is proposed 

to enhance the generative capacity of the Generative Adversarial Network (GAN), enabling 

the extraction of multi-dimensional features from the images. Furthermore, we propose a 

Structural Similarity based Joint Loss Function during the training phase, which is used to 

guide network training. We conducted qualitative analysis on different algorithms on three 

public datasets, which intuitively demonstrates that the proposed method effectively 

removes color deviation and blurring issues in images. In the quantitative experiment of 

EUVP, compared with the most advanced algorithms in PSNR and SSIM, CBBGAN has 

improved by 2 and 0.03, respectively. In addition, various indicators on the UFO and UIEB 

datasets also demonstrate the excellent performance of the CBBGAN algorithm. 

1. Introduction 

Underwater vision is crucial for Autonomous Underwater Vehicles (AUVs) in tasks like marine 

fishery, seabed mapping, and underwater exploration [1][2]. High-quality underwater images enhance 

detection and navigation, but imaging is challenged by turbulence, internal waves, irregular 
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scattering, and significant attenuation [3][4][5], leading to color distortion, blurring, and low contrast. 

These issues hinder AUV autonomy, making underwater image enhancement essential. 

Enhancement methods fall into three categories: non-physical, physical model-based, and deep 

learning approaches. Non-physical methods adjust pixel values for visual improvement [6][7][8], but 

often introduce excessive distortion[9][10][11]. Physical model-based methods estimate image 

degradation parameters[12][13][14][15], yet struggle with complex underwater environments [16][17][18][19]. 

Deep learning has made significant progress[20][21][22][23][24], leveraging CNNs, GANs, and 

Transformers. CNNs extract local features[25][26][27][28], while GANs[29][30][31][32] and Transformers 
[33][34][35] capture global features. However, existing methods fail to balance color distortion and 

blurring effectively. 

To address this, we propose a Color-Blur Balanced Generative Adversarial Network (CBBGAN) 

to optimize enhancement. The key contributions are: 

(1) A Fusion-based color compensation module to mitigate color distortion using discriminator 

fusion for accurate correction. 

(2) A Multi-stage Residual-based Generator to extract multi-dimensional features, improving 

detail retention. 

(3) A Joint Loss Function integrating GAN loss, SSIM loss, and gradient loss to optimize both 

color fidelity and sharpness, ensuring superior enhancement results. 

2. Materials and methods Methodology 

2.1. Problem Description 

The underwater physical environment, particularly in the ocean, presents distinctive challenges 

and disruptions to optical images, thus amplifying the complexities inherent in underwater image 

processing. 

On one hand, longer-wavelength light is progressively absorbed with depth. The first to be 

absorbed is the red light. Beyond a depth of 20 meters, the majority of underwater scenes captured 

exhibit predominant hues of blue, green, and blue-green. 

On the other hand, underwater environments are characterized by suspended particles, turbulence, 

and cavitation, which lead to irregular blurring, low contrast, and loss of details in images. Various 

types of optical components are present in underwater environments, resulting in scattering during 

image acquisition, including the direct component, the forward component, and the backward 

component, as depicted in Figure 1. 
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Figure 1: Light propagation characteristics underwater 
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2.2. CBBGAN Architecture 

We have observed that although considerable work has been done to address the blue-green 

color cast and blurring issues in underwater images separately, there is still a lack of a satisfactory 

method that achieves a balance between these two aspects. To address this issue, this research paper 

introduces a Color-blur balanced Generation Adversarial Network (CBBGAN).  

As shown in Figure 2, the CBBGAN learns the mapping between distorted and non-distorted 

underwater images, employing an end-to-end and data-driven training approach. The network 

comprises three main modules: Fusion-based Color Compensation module, Multi-stage Residual-

based Generator module, and Structural Similarity-based multi-loss module. 

2.2.1. Fusion based Color Compensation 

Color variation is a common issue in underwater optical images, so the color compensation 

module is specifically designed to mitigate the impact of color cast. Firstly, the white balance 

method is employed to equalize the gray levels of the RGB channels[36]. For an input image I, the 

red compensation is achieved by: 

          1g rrc r r r gI x I x I I I x I x                                                        (1) 

where Ir and Ig are red and green channel of I, respectively. Ir andIg are averages of Ir and Ig, 

αr=1. And the blue compensation is realized by: 

          1g bbc b b b gI x I x I I I x I x                                                       (2) 

where Ib is blue channel of I, Ib is the averages of Ib, and αb=1. 

Then, we perform Gamma correction and sharpening on the image. Gamma correction aims to 

increase the contrast and enhance the overall brightness of the image by expanding the range 

between dark and light regions. The gamma correction coefficient is obtained by learning. 

The sharpening process is applied to reduce degradation caused by scattering and preserve fine 

details in the image. The sharpened image, denoted as S, is defined as: 

  1 * / 2S M I G I                                                                        (3) 

where M{.} represents the histogram stretching operation. This operation scales the intensity of 

all color pixels in the image, allowing the adjusted pixel values to cover the entire dynamic range. 

Finally, the fused image is obtained by blending the initial color-corrected image with other 

processed versions of the image using a specific weight. This weight is the second learned 

parameter in this module and determines the contribution of each processed image to the final fused 

image. The optimal balance between color correction and other enhancement techniques can be 

achieved, resulting in improved and visually appealing images.  

 

Figure 2: Frame of the CBBGAN 
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2.2.2. Multi-stage Residual-based Generator 

The Generator comprises convolutional and deconvolutional layers, normalization layers, and 

activation layers in various configurations. However, the excessive use of deconvolution layers 

leads to the emergence of checkerboard artifacts in the generated images[37]. These artifacts occur 

due to uneven overlay during the deconvolution process, particularly when the kernel size is not 

evenly divisible by the step size. This uneven overlay is more pronounced in two-dimensional space. 

As shown in Figure 3, the deconvolution with a step size of 2 and a kernel size of 3 results in n－1 

overlays of n inputs in one dimension. In two dimensions, the overlap becomes nearly four times, 

exacerbating the occurrence of checkerboard artifacts in the images. To mitigate this issue, one the 

one hand, we utilize two deconvolutions for feature image up-sampling. The feature input has a step 

size of 2 and uses a convolution layer with a kernel size of 3. Additionally, the up-sampling of the 

feature layer is further achieved through deconvolution with a step size of 2. 

 

         

              

         

              

 

Figure 3: Uneven overlap of different dimensions 

On the other hand, we found that the restriction of deconvolution sizes might decrease the 

feature diversity and learning capacity. We design a multi-stage residual convolution module (Muti-

Conv). Muti-Conv utilizes a three-stage convolution structure to capture features at different levels 

in images and applies residual learning to maintain identity mapping between convolution layers. 

Each stage has convolution layer(s) and LeakyReLU activation(s). Images from the Fusion-based 

Color Compensation module perform two convolutions (first), generating two feature vectors, and 

the two features are combined to obtain stage one vector. 

The stage one vector further performs a convolution and LeakyReLU module to obtain the stage 

two vector(second). The stage one vector and the stage two vector are fused utilizing a skip 

connection layer. Finally, the input feature and the output feature of the last convolution block(third) 

are combined using the residual principle. The convolution core size is set to 3x3, the stride is 2, 

and there are 128 channels, as shown in Figure 4. 

 

Figure 4: Architectures of generator networks. “Conv” denotes convolution layer, whereas 

“Deconv” denotes deconvolution layer. Muti-Conv represents Mixed-convolution Module and 

“BN” represents batch normalization. 
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2.2.3. Discriminator 

The Discriminator distinguishes the differences between the images generated by the Generator 

and their corresponding reference images. The error calculated by the Discriminator is then used to 

provide feedback to each layer of the network. Through parameter updating, the Discriminator 

continuously improves its discrimination ability, resulting in the generated images becoming closer 

to the reference images. The Discriminator in this work adopts the PatchGAN architecture, as 

shown in Figure 5. It consists five convolution layers that are responsible for down-sampling. The 

inputs to the Discriminator are the image from Generator, and its corresponding reference image. 

Each input image is divided into multiple patches, with a size of 4x4 pixels. The convolution layers 

have a kernel size of 2 and the channel numbers are set to 64, 128, 256, and 512 respectively. 

Nonlinear transformation is applied using the LeakyReLU activation function with a parameter of 

0.2. 

 

Figure 5: Architecture of Discriminator networks, Spectral normalization is used in the convolution 

layer of the discriminator. 

2.3. Joint Loss Function 

We introduce the joint loss function that incorporates multiple components, including GAN loss, 

SSIM loss, and gradient loss, to achieve the balance between color-accuracy and clarity in the 

enhanced images. 

2.3.1. Adversarial Loss 

For the mapping function G: X→Y, the adversarial loss can be expressed as : 

   

     

log

log 1

data

noise
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                                                           (4) 

where X is the set of original images and Y is the noise image, D(·) is the  Discriminator, G(·) 

is the Generator. 

2.3.2. SSIM Loss 

Generally, MSE loss is susceptible to light interference. By contrast, Structural Similarity Index 

Measure (SSIM) loss has better performance and retains the content and structure of the image. The 

SSIM loss between the generated image and the real image is defined as: 

 
  
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2 2 2 2

1 2

2 2
,

x y xy

x y x y

C C
SSIM x y

C C

 

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   
                                                      (5) 

where μx prepresents the average pixel size of the generated image, σx is the standard deviation 

of the generated image pixel, μy is the average pixel size of the real image, and σy represents the 

standard deviation of the real pixel. C1=0.02 and C2=0.03 are constant values. Then, the SSIM value 

of each pixel between the real image X' and the converted image G(x) can be calculated by: 
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2.3.3.  Gradient Penalty Loss 

To address the issue of blurry images commonly generated by the Generator, we directly 

penalize the differences in image gradient predictions within the Generator. This approach helps to 

enhance the quality of these images by encouraging sharper edges and finer details. The gradient 

penalty loss is formulated as: 

  , 1, , 1,,
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



                                                     (7) 

where IC is the reference image, IO is the original image, IP=G(IO), α is a number greater than 1. 

2.3.4. Total Loss 

Combining the above three losses, the Joint loss function is: 

                                                     (8) 
where the loss weight γ = 2 is an empirically tuned hyper-parameter. The optimization of 

Discriminator is maximized by (4), and the optimization of Generator is minimized by (6), 

respectively. 

3. Experiment Setting  

In this section, firstly, we explore the underwater image datasets used in this paper. Secondly, we 

discuss the evaluation index of the generated image and the specific parameter settings of the 

experiment. Then, we introduce our test datasets. 

3.1. Training and Validation Datasets 

We conducted experiments on multiple publicly available datasets, including both reference-

based learning effectiveness tests and non-reference generalization experiments. The EUVP 

dataset[22] comprises a vast collection of ocean images which captures under diverse visibility 

conditions[38]. The UIEB dataset[21] consists 890 underwater images of various lighting conditions 

and their corresponding references. Additionally, we incorporate the UFO-120 dataset[39], which 

comprises 1500 paired training underwater images and 120 unpaired testing images. This dataset 

offers a diverse range of underwater scenes, and serves as a valuable resource for evaluating the 

generalization capability of our proposed method. 

3.2. Evaluation Metrics 

To assess the quality of our results, we employ several evaluation metrics. To compare the 

enhanced images with their corresponding reference images, we utilize the Peak Signal-to-Noise 

Ratio (PSNR)[40] and SSIM[41]. The PSNR metric evaluates the dissimilarity between the enhanced 

image and the reference image by the mean square error (MSE). The SSIM evaluates the similarity 

between the two images from brightness, contrast and structure. 

We employ Underwater Image Quality Measure (UIQM)[42] and Underwater Color Image 

Quality Evaluation (UCIQE)[43] to evaluate the quality of non-reference images. The UIQM metric 
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takes into account Underwater Image Colorfulness (UICM), Underwater Image Sharpness Measure 

(UISM), and Underwater Image Contrast Measure (UIConM). The UCIQE metric evaluates the 

color quality of underwater images by considering the color density, saturation, and contrast based 

on the CIELab color space. 

3.3. Parameters setting 

The training and test images are resized to a size of 256×256×3. The Leaky Rectified Linear Unit 

(LReLU) activation function is utilized with a slope of 0.2. The Adam optimization algorithm is 

employed with an initial learning rate of 0.0002. The batch size for training is set to 16. Notably, the 

Discriminator is updated 5 times for each update of the Generator. The training process is 

performed for 100 epochs using the paddle framework on the Tesla V100 platform. 

3.4. Test Datasets 

The first test set is derived from a subset of the EUVP dataset, which includes diverse images 

captured in various water bodies. The second test set consists fuzzy images from the UFO-120 

dataset. The third test set is obtained from a portion of the UIEB dataset, which encompasses 

images captured under different lighting conditions and exhibiting a wide range of colors. These 

test sets are selected to assess the model's performance under different underwater imaging 

scenarios. 

4. Results 

In this section, we present a comprehensive analysis and comparison of the experimental results 

obtained from various underwater image enhancement algorithms, including both traditional and 

state-of-the-art deep learning approaches. Our evaluation includes eleven algorithms for comparison: 

two non-physical model-based methods, GC[44] and HE[45]; two physical model-based methods, 

UDCP[46] and IBLA[17]; seven state-of-the-art depth learning methods UWGAN[22], Shallow-

UWNet[26], FGAN[31], U-Shape Transformer[33], NU2Net[47], SFGNet and P2CNet[28]. 

We conduct both subjective and objective assessments to evaluate our network. The subjective 

evaluation involved visual comparisons of color accuracy and contrast in the enhanced images. The 

objective evaluation relied on metrics above, which provide quantifiable measures of image quality, 

color richness, sharpness, and contrast.  

The analysis and comparison of the experiment results enable us to assess the strengths and 

weaknesses of various underwater image enhancement methods and provided empirical support for 

the efficacy of our proposed CBBGAN approach. 

4.1. Qualitative Evaluation 

The qualitative evaluation results are presented in Figure 6-8 on three datasets: EUVP, UFO-120, 

and UIEB. GC fails to remove water mist, resulting in degraded image quality. HE tends to produce 

excessively bright images, leading to the loss of important details in dark regions. The two physics-

based methods exhibit limitations in removing color deviations. UDCP improves image contrast, 

but lead to oversaturation issues and overall darkening. IBLA also fails to address color biases and 

results in darker images. 

Shallow-UWnet enhances the overall brightness of images, but tends to amplify the presence of 

underwater fog. FGAN and U-Shape perform better than Shallow-UWnet in removing water mist, 

while UWGAN still struggles to effectively correct color deviations in some images. NU2Net 
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performs poorly in addressing color cast issues in underwater images. P2CNet restores the color of 

the image, but is unable to completely remove the blur. In comparison, the CBBGAN demonstrates 

clearer image enhancement results with preserved details. It notably improves the overall color 

saturation and clarity of the images in the test set, surpassing other existing algorithms in terms of 

subjective evaluation. These results indicate the subjective superiority of the proposed algorithm 

over the other compared algorithms in underwater image enhancement 

 

Figure 6: Enhanced results of different methods in test set EUVP 

 

Figure 7: Enhanced results of different methods in test set UFO-120 

 

Figure 8: Enhanced results of different methods in test set UIEB 

4.2. Quantitative Evaluation 

The results of different methods on the EUVP dataset are shown in Table 1. Compared to all 

deep learning methods, our approach achieved the best scores in PSNR, SSIM, and UCIQE, and 

received a suboptimal score in UIQM. PSNR and SSIM have increased by 0.035 and 1.766 

respectively compared to the second place. Note: Red represents the highest score and blue 

represents the second highest score. 

As indicated in Table 2, facing the new underwater environment dataset UIEB, our method 

performed poorly in PSNR and SSIM, but achieved good scores in UIQM and UCIQE. Meanwhile, 

as shown in Fig.8, our method demonstrates the best visual performance in both removing color 

deviation and blurring. 
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Table 1: Results of different methods on test set EUVP 

 SSIM PSNR UIQM UCIQE 

GC 0.764 16.229 2.82 0.37 

HE 0.631 13.738 2.982 0.501 

UDCP 0.574 14.519 1.857 0.514 

IBLA 0.72 18.95 2.197 0.482 

Shallow-UWnet 0.813 22.661 2.926 0.377 

FGAN 0.814 23.511 3.036 0.386 

UWGAN 0.796 21.155 3.100 0.406 

U-Shape 0.805 22.354 3.012 0.403 

NU2Net 0.804 20.36 2.879 0.434 

SFGNet 0.812 20.42 2.890 0.448 

P2CNet 0.795 20.95 2.879 0.434 

CBBGAN 0.849 25.277 3.065 0.436 

Table 2: Results of different methods on test set UIEB 

 SSIM PSNR UIQM UCIQE 

GC 0.743 15.572 2.586 0.336 

HE 0.789 16.606 2.921 0.507 

UDCP 0.494 10.902 1.802 0.513 

IBLA 0.666 15.602 1.833 0.472 

Shallow-UWnet 0.721 16.384 2.968 0.319 

FGAN 0.681 15.714 3.097 0.318 

UWGAN 0.706 15.76 3.196 0.371 

U-Shape 0.801 20.181 2.983 0.432 

NU2Net 0.767 19.612 2.932 0.426 

SFGNet 0.715 18.136 3.005 0.442 

P2CNet 0.779 18.818 2.874 0.396 

CBBGAN 0.752 16.711 3.104 0.514 

Table 3: Results of different methods on test set Test-U and UFO-120 

 Test-U UFO-120 

 UIQM UCIQE UIQM UCIQE 

GC 0.743 15.572 2.586 0.336 

HE 0.789 16.606 2.921 0.507 

UDCP 0.494 10.902 1.802 0.513 

IBLA 0.666 15.602 1.833 0.472 

Shallow-UWnet 0.721 16.384 2.968 0.319 

FGAN 0.681 15.714 3.097 0.318 

UWGAN 0.706 15.76 3.196 0.371 

U-Shape 0.801 20.181 2.983 0.432 

NU2Net 0.767 19.612 2.932 0.426 

SFGNet 0.715 18.136 3.005 0.442 

P2CNet 0.779 18.818 2.874 0.396 

CBBGAN 0.752 16.711 3.104 0.514 

We utilize the UIQM and UCIQE metrics to quantitatively evaluate the performance of different 
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methodologies, and employ a reference-free test set consisting of 60 images from the UIEB and 

UFO-120 datasets. As illustrated in Table 3, the proposed method exhibits robust performance, 

attaining superior results in both UIQM and UCIQE. 

These results validate the effectiveness of the proposed method in enhancing image quality, 

color representation, and overall visual perception, even in the non-reference images. The 

CBBGAN acquires the ability of balancing the color saturation and clarity in image enhancement. 

4.3. Ablation Study  

In order to assess the impact of the Color Compensation, Multi-Conv module and the Joint loss 

function on the ability of the image enhancement, ablation studies are conducted on three different 

datasets: EUVP, UFO-120, and UIEB. These studies compare the performance of the base model 

(Patch GAN) with the enhanced model with Multi-Conv module, Color Compensation and the 

CBBGAN. 

Table 4 indicates that, across the three datasets, the Color Compensation improves the image 

quality metrics to a certain extent. And the Multi-Conv module consistently exhibited 

improvements in image quality metrics compared to the base model. The Multi-Conv module 

demonstrates enhancements in SSIM, PSNR, and UIQM, highlighting its effectiveness in enhancing 

image quality. Furthermore, the CBBGAN also displays significant improvements in terms of SSIM, 

PSNR, UIQM and UCIQE in both UFO-120 and UIEB, verifying the effectiveness of the Joint loss 

function designed in this paper. 

Table 4: Quantitative results of each module on EUVP, UFO-120 and UIEB 

Test set Index Base Base+ Color Base+ Multi CBBGAN 

EUVP 

SSIM 0.831 0.837 0.849 0.849 

PSNR 23.440 24.249 25.252 25.277 

UIQM 2.864 2.831 2.809 3.065 

UCIQE 0.426 0.427 0.429 0.426 

UFO-120 

SSIM 0.760 0.778 0.785 0.796 

PSNR 22.250 23.374 24.479 24.591 

UIQM 2.823 2.791 2.801 2.996 

UCIQE 0.427 0.429 0.434 0.441 

UIEB 

SSIM 0.725 0.731 0.735 0.752 

PSNR 16.330 16.470 16.573 16.711 

SSIM 0.831 0.837 0.849 0.849 

PSNR 23.440 24.249 25.252 25.277 

5. Conclusion 

In this paper, we build a Color-Blur Balanced Generation Adversarial network (CBBGAN) for 

underwater image enhancement. The CBBGAN aims to strike a balance between addressing color 

distortion and blurring issues. In order to address the color cast and blur issues in underwater optical 

images, we develop a Fusion based Color Compensation module, which aims to reduce color 

variation. Additionally, a Multi-stage Residual based Generator in the GAN framework is designed 

to extract multi-dimensional features from images. To enhance the effectiveness of the model in 

addressing color cast and blur issues, we design a Joint Loss Function. 

Experimental results on three public datasets, EUVP, UFO-120, and UIEB, demonstrate that our 

proposed method, CBBGAN, outperforms typical and state-of-the-art methods in terms of four key 
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indicators. The results show that CBBGAN is capable of producing high-quality underwater optical 

images, which in turn can improve the efficiency of AUV underwater tasks. 
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