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Abstract: Accurate monitoring of chlorophyll-a concentration in offshore aquaculture areas 

is of great significance for ecological assessment and fisheries management. In this paper, a 

semi-analytical inversion model of chlorophyll-a concentration was constructed based on 

field-measured spectral reflectance data of the water column in the Zhelin Bay aquaculture 

area of Guangdong Province as a research object. The study validated the model using 

Sentinel-2 satellite data, revealing the spatial and temporal distribution characteristics of 

chlorophyll-a concentration in Zhelin Bay. The results showed that the inversion model 

constructed by the sensitive band ratio method had a high estimation accuracy, with a 

relative error of 13.25% and a coefficient of determination of R2 of 0.891. It was found that 

the distribution of chlorophyll-a concentration in the aquaculture area of Zhelin Bay 

showed obvious regional differences, with the highest chlorophyll-a concentration in the 

pond culture area in the north and the west, and the relatively low chlorophyll-a 

concentration in the nets and shell-fisheries culture area. summer and fall were 

significantly higher than those in spring and winter, showing seasonal fluctuations. This 

study provides a scientific basis for pollution monitoring and aquaculture management in 

near-shore waters.  

1. Introduction  

In recent years, as the impacts of human activities and climate change on coastal ecosystems 

continue to intensify, the problem of eutrophication in nearshore waters, especially in coastal 

aquaculture area, has become increasingly serious, posing a direct threat to the aquaculture industry 

and marine ecosystems[1,2]. Nearshore mariculture plays a crucial role in the global fishery industry. 

Its scale has been continuously expanding, and its impact on the marine ecological environment has 

become increasingly significan[3,4]. Since the 1990s, China's aquaculture industry has developed 

rapidly, and China has become one of the countries with the largest aquaculture output in the 

world[5]. While bringing huge economic benefits, mariculture has caused serious damage to the 

offshore ecological environment, resulting in a series of water pollution problems[6]. Chlorophyll-a 

(Chl-a) , as a key bioindicator of water eutrophication, reflects changes in the concentration of 

phytoplankton and can effectively indicate the degree of eutrophication in the water column, which 
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is an important parameter for assessing the health of marine ecosystems[7]. Accurate monitoring of 

Chl-a concentrations in aquaculture areas is important for developing scientific fisheries 

management strategies, assessing water quality and improving ecosystem health; however, 

traditional discrete sampling methods are time-consuming, labor-intensive and have limited spatial 

coverage, which makes it difficult to meet the real-time monitoring needs of large aquaculture 

areas[8]. In contrast, remote sensing technology has the advantages of rapid, large-scale and periodic 

acquisition of surface information, and is able to efficiently collect water quality data in large-scale 

waters, which provides the possibility of long-term spatial and temporal dynamic monitoring of 

Chl-a concentration[9]. 

In the field of remote sensing estimation of Chl-a content in water bodies, the development of 

inverse modeling has become a significant advancement for water quality monitoring, particularly 

in dynamic aquatic environments. Traditional methods commonly utilize reflectance spectra to infer 

the concentration of water body constituents by examining the absorption and scattering properties 

of optical elements within the water[10,11]. These models, while valuable, often depend on empirical 

and semi-analytical approaches that have been widely implemented for quantitative Chl-a 

estimation across diverse water types[12,13]. However, the adaptability of these models is limited by 

their assumptions, which tend to be overly idealized concerning water body optical properties, thus 

reducing their generalizability in complex and variable water quality conditions[14,15]. 

Machine learning approaches, including support vector machines, neural networks, and random 

forests, are increasingly applied to water quality parameter inversion and have demonstrated strong 

non-linear fitting capabilities alongside greater accuracy[16]. Unlike traditional models, machine 

learning-based inversion techniques are better suited for handling complex interactions between 

variables such as phytoplankton, suspended sediments, and colored dissolved organic matter, all of 

which significantly influence Chl-a concentration[17-19]. These models have shown to enhance the 

accuracy of Chl-a concentration estimation markedly, providing higher robustness in varied water 

conditions. However, they remain highly dependent on large datasets and substantial computational 

resources, necessitating further optimization to improve practical usability and reduce 

computational load. 

In terms of remote sensing platforms, a range of satellite data sources has been utilized for Chl-a 

concentration inversion, with notable success achieved across various platforms. Data from 

satellites such as Landsat TM, OLI, MODIS, and SeaWiFS have been employed effectively in water 

quality assessments[20]. MODIS and SeaWiFS, owing to their high temporal resolution, facilitate 

extensive, long-term monitoring of water quality on a large scale; however, their lower spatial 

resolution constrains their applicability in smaller, more intricate water bodies[21]. TM and OLI 

provide improved spatial resolution suitable for medium-scale water quality monitoring but still 

lack the detail required for capturing the complexities of nearshore environments[22]. 

In addition, in order to improve the inversion accuracy, researchers have recently introduced 

multi-band combination and spectral analysis methods to enhance the ability of the model to 

recognize different water quality features[23].Gitelson et al. (2003) proposed a three-band 

combination method, which improved the estimation accuracy of the Chl-a concentration by 

combining the reflectance of different bands, especially for turbid water bodies containing a large 

amount of suspended solids. The analysis based on the red-edge band further improves the 

sensitivity and applicability of the model to Chl-a changes, especially for aquaculture-intensive 

areas[24,25]. Based on such improvements, remote sensing technology is becoming an indispensable 

tool in water quality monitoring, which can quickly and effectively provide ecological information 

on water bodies at large scales and over long periods of time, providing important support for 

fisheries management and environmental protection. 

In conclusion, although certain achievements have been made in the remote sensing monitoring 
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of chlorophyll-a in offshore aquaculture areas, there are still many deficiencies in model 

universality, consideration of environmental factors and data processing. Further in-depth research 

and improvement are needed to enhance the monitoring and management ability of the offshore 

aquaculture ecological environment. In the context of the many challenges faced by the global 

offshore ecological environment, it is crucial to accurately monitor the water quality of offshore 

aquaculture areas. This study takes the aquaculture area of Zhelin Bay in Guangdong as the object, 

focuses on the remote sensing estimation of chlorophyll a content, deeply analyzes its 

spatio-temporal distribution characteristics and influencing factors, and provides a valuable 

reference basis for offshore aquaculture pollution monitoring and management. 

2. Data and methods 

2.1 Study sites 

Zhelin Bay is located in the southern part of Raoping County, Chaozhou, Guangdong, with a 

unique geographical location. Its longitude and latitude range from 116°55′E - 117°05′E and 

23°31′N - 23°38′N (see Fig. 1). It is adjacent to multiple towns and islands. The average water 

depth is 4.8 meters, and the tidal type is an irregular semi - diurnal tide with an average tidal range 

of 1.69 meters. After years of development, it has become an important cage - culture area in the 

southern coastal area and is also facing serious eutrophication problems. 

 
*Drawing No. GS (2019) 1822 

Figure 1 Location of Zhelin Bay 

2.2 Data Collection 

60 sampling points were carefully set up in the oyster - culture area, pond - culture area, tidal - 

flat - culture area, floating - raft - culture area, cage - culture area and near - shore sea area of Zhelin 

Bay. These sampling points were representative and could fully cover the typical water - quality - 

change characteristics of different culture types and areas. During the joint field surveys on May 3, 

June 11, August 10 and September 3, 2018, the FieldSpec4 spectrometer of ASD Company was 

used to collect the water - body spectral data in the spectral range of 350nm - 2500nm with a 

sampling interval of 1.5nm. The water - surface measurement technology was adopted to measure 

the spectral curves of the standard plate, water body and skylight in turn at each sampling point. 

The water - body remote - sensing inversion rate data were obtained by using the ViewSpecPro 

software. The chlorophyll - a concentration was determined by using the UV - 2550 UV 
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spectrophotometer in the laboratory according to national standards. Among them, 45 samples were 

used to construct the model and 15 samples were used for model - error testing. 

The Sentinel - 2 satellite 1C data with cloud cover less than 10% and synchronous with ground 

measurement in 2018 (from January to December) were downloaded from the European Space 

Agency Data Center. The Sen2Cor module of the SNAP software was used for atmospheric 

correction. The cirrus clouds were removed through a semi - empirical algorithm and the remote - 

sensing reflectance data were obtained. Then, the water - body area of Zhelin Bay was extracted by 

using the Normalized Difference Water Index (NDWI) combined with multi - scale segmentation 

and spectral, geometric and texture features to lay a foundation for subsequent research. 

2.3 Methods 

In this study, the three - band model and the Normalized Difference Chlorophyll Index (NDCI) 

model in the semi - empirical analysis model were used for remote - sensing estimation of the 

chlorophyll - a content in water bodies. The three - band model reasonably selected the band 

combination according to specific physical principles to minimize the interference of other water - 

body components on the chlorophyll - a estimation and ensured the applicability of the model to a 

certain extent. The NDCI model was constructed based on the absorption peak of chlorophyll - a 

near 665 - 675nm and the reflection peak near 700 - 710nm, which could effectively avoid the 

influence of suspended solids in water on short - wave spectra and had high sensitivity to 

chlorophyll - a in turbid water bodies. In terms of model evaluation, the Root - Mean - Square Error 

(RMSE) and the Mean Absolute Percentage Error (MAPE) were introduced as measurement 

standards to accurately quantify the estimation error of the model and ensure the scientific and 

reliable evaluation of the model accuracy. 

3. Results 

3.1 Analysis of Water - body Spectral Characteristics 

The in - depth analysis of the 350 - 1000nm spectra of the water body in Zhelin Bay revealed its 

rich spectral characteristics (see Fig. 2). In the 400 - 500nm band, due to the strong absorption of 

short - wave blue - violet light by chlorophyll a and yellow substances, although the water - body 

reflectance increased with the increase of wavelength, it was at a relatively low level as a whole. 

The spectral characteristics in this band were closely related to the distribution of phytoplankton 

and provided important clues for the identification of phytoplankton concentration. The first 

reflection peak in the 550 - 580nm band was attributed to the weak absorption of carotenoids and 

chlorophyll in this band and the strong scattering of non - algal substances in the water body. This 

reflection peak not only reflected the characteristics of non - algal suspended particulate matter but 

also could assist in the analysis of water - quality composition. The reflectance trough near 670nm 

was the result of the strong absorption of chlorophyll a by high - density algae and was often used 

to monitor the change of algae concentration. The reflection peak in the 690 - 710nm band was due 

to the local minimum of the total absorption coefficient of water and chlorophyll here, and its peak 

height and position provided a key basis for the quantitative evaluation of the eutrophication degree 

of water bodies. The reflectance curve in the 750 - 780nm band tended to be stable, indicating that 

the spectral characteristics of the water body changed little in this interval and were mainly affected 

by the absorption and scattering of the water body itself. The small reflection peak near 800nm 

might be related to the increase of water - body scattering particles, and the continuous decrease of 

the reflectance in the 820 - 1000nm band was closely related to the absorption characteristics of the 

water body for long - wavelength light. 
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Fig. 2 The curve of sample measured spectral reflectance 

3.2 Construction and Validation of Chl - a Inversion Model 

To improve the data quality and the significance of spectral characteristics, the water - body 

reflectance data were standardized and the first - order differential spectral analysis was carried out. 

The results showed that the correlation between the standardized 510nm and 710nm bands and the 

chlorophyll - a concentration reached 0.83, and the correlation between the first - order differential 

spectra of 560nm, 675nm and 700nm bands and the chlorophyll - a concentration was close to 0.9, 

indicating that these bands were sensitive to the change of chlorophyll - a concentration and suitable 

for modeling. Through the comparative analysis of different models, it was found that the quadratic 

model constructed with Rrs(700nm)/Rrs(675nm) had the highest fitting accuracy, with the 

determination coefficient R² reaching 0.891 and the significance level of 0.002 (see Table 1). At the 

same time, combined with the Sentinel - 2 satellite band settings, it was determined that the B5 

(705nm), B4 (665nm) and B3 (560nm) bands performed outstandingly in the model. The quadratic 

model with Rrs(B5)-Rrs(B4)/Rrs(B5)+Rrs(B4) as the inversion factor and the linear model of 

Rrs(B5)/Rrs(B4) both had high fitting degrees, further verifying the validity and stability of the 

model . 

According to the validation results of the optimal model, the scatter plot of chlorophyll-a 

measured values and predicted values was plotted (see Fig. 3). From the figure, the coefficient of 

determination of the model reaches 0.817, which indicates that the model has good stability and 

applicability in the inversion of chlorophyll-a concentration in the near-shore sea area, and basically 

meets the requirements of water quality monitoring in the near-shore sea area. 

Table 1 Accuracy comparison of different chlorophyll-a inversion models 

Model Types Linear Equation X variable  r2 F P 

Ratio method 
y=38.461x-3.267 

Rrs (700) / 

Rrs (675)  
0.896 18.32 0.002 

y=53.079x-16.303 Rrs (B5) /Rrs (B4)  0.812 15.75 0.004 

Three-band 
y=58.903x-18.536 [1/Rrs (675) -1/Rrs (700) ]×Rrs (560)  0.807 9.78 0.003 

y=-89.438x+93.723 [1/Rrs (B4) -1/Rrs (B5) ]×B3 0.754 12.08 0.008 

NDCI 
y=-10.465x+8.35 

Rrs (700) -Rrs (675nm) / 

Rrs (700nm) +Rrs (675)  
0.901 17.54 0.001 

Y=53.162x-13.07 Rrs (B5) -Rrs (B4) /Rrs (B5) +Rrs (B4)  0.891 13.64 0.002 
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Fig. 3 Comparison of measured and predicted errors    Fig. 4 chlorophyll-a concentration inversion map  

3.3 Estimate of chlorophyll-a Concentration 

Based on the optimal inversion model of chlorophyll-a content, combined with the 

quasi-simultaneous acquisition of Sentinel - 2A satellite data, the spatial distribution map of 

chlorophyll-a content in Zhelin Bay was generated (see Fig. 4). The results showed that the 

chlorophyll-a concentration in the aquaculture area was significantly higher than that in the 

non-farming area, especially in the western and northern reclamation areas. The highest 

chlorophyll-a concentration was found in the net-pen culture area in the middle of the bay, and the 

second highest was found in the shellfish culture area, where some water bodies showed high 

concentration aggregation, reaching the level of the phenomenon of water bloom. 

3.4 Seasonal Variation Characteristics of chlorophyll-a 

There were significant temporal and spatial differences in the chlorophyll-a content in the marine 

aquaculture area of Zhelin Bay, and the overall trend of the aquaculture area in the bay increased 

first and then decreased, while the overall trend of the pond aquaculture area in the bay increased 

first, then decreased and increased (see Fig. 5).  

First, from an annual perspective, the chlorophyll-a concentration in Zhelin Bay showed more 

significant cyclic fluctuations in different seasons. Spring and fall were usually the peak periods of 

chlorophyll-a concentration, while the concentration was relatively low in summer and winter. This 

phenomenon is closely related to the seasonality of aquaculture activities. Warmer water 

temperatures and increased aquaculture densities in spring led to an increase in chlorophyll-a 

concentrations. In fall, chlorophyll-a concentrations rose again due to the peak of aquaculture 

activities. 

Secondly, in terms of monthly changes, the analysis results showed that the chlorophyll-a 

concentration in Zhelin Bay increased gradually between January and September, reached a peak 

and then decreased gradually from October to December. In particular, during the summer months 

of June to August, the chlorophyll-a concentration, although higher than that in winter, showed a 

small overall trend of decreasing and then increasing. This may be related to the management 

measures of culture activities (e.g., water change and use of oxygenation equipment), which were 

frequent in the culture area during the high temperature period in summer and reduced the 

accumulation of some chlorophyll-a concentrations. 

In addition, combining the distribution maps drawn from the long time series data, spatial 

differences in the variation of chlorophyll-a concentrations in different regions could be observed. 
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For example, chlorophyll-a concentrations were higher in pond culture areas in the north and west, 

while lower concentrations were observed in net-pen culture areas and shellfish culture areas. This 

difference in spatial distribution reflects the different effects of different types of aquaculture 

activities on chlorophyll-a concentrations. In particular, chlorophyll-a concentrations tended to be 

higher in the paddock and pond aquaculture areas than in the more mobile net box aquaculture areas 

due to poor water mobility and inconvenient water exchange. 

In summary, the long time series characterization of chlorophyll-a concentration in Zhelin Bay 

revealed its seasonal change pattern and the concentration differences in different aquaculture areas. 

The results of this long-time observation provide a scientific basis for the management of 

eutrophication in aquaculture areas, pointing out that the breeding density should be reasonably 

controlled in high-density aquaculture areas, and effective water quality management measures 

should be taken to reduce the impact of eutrophication on the ecological environment. 

 

Fig. 5 Temporal and spatial distribution map of chlorophyll-a content in Zhelin Bay 

3.5 Long time series characteristics of chlorophyll-a 

 

Fig 6. Spatial distribution map of chlorophyll-a content from 2010 to 2023 in Zhelin Bay 

In order to reveal the long-term trend of chlorophyll-a concentration in the aquaculture area of 

Zhelin Bay, this study used Sentinel-2 satellite data from 2010 to 2023, combined with long time 

series observations. Annual trend were explored by mapping the changes in chlorophyll-a 
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concentration over different time periods (see Fig. 6). There is a significant interannual variation in 

Zhelin Bay breeding area. The content of chlorophyll-a in the water body in the bay showed an 

increasing trend from 2010 to 2017, but decreased from 2018 to 2023. Meanwhile, in the western 

coastal waters of Seamount Island, chlorophyll-a was perennial high, which is a eutrophication 

sensitive area. The content of chlorophyll-a in the water breeding area increased first and then 

decreased from 2010 to 2023. Among them, the content of chlorophyll-a was higher in 2013 and 

2018, while was lower in 2014-2015 and 2019-2020. 

4. Discussion 

The aquaculture mode and density have a significant impact on the spatial distribution of 

chlorophyll-a concentration. In pond aquaculture areas, due to poor water mobility and high 

aquaculture density, nutrients are difficult to be diluted and diffused. As a result, the chlorophyll-a 

concentration is significantly higher than that in cage aquaculture areas and other areas with better 

water mobility. This is consistent with the results of other related studies and fully demonstrates the 

crucial role of the water exchange rate in the process of eutrophication. 

The climatic conditions of high temperature and heavy rainfall in summer have an important 

impact on the eutrophication of aquaculture water bodies. High temperature promotes the growth of 

phytoplankton and accelerates the accumulation of chlorophyll-a. Heavy rainfall increases surface 

runoff, carrying a large amount of nutrients into water bodies, further exacerbating the degree of 

eutrophication. On this basis, this study further emphasizes the enhancing effect of the synergistic 

action of temperature and rainfall on the spatio-temporal fluctuations of chlorophyll-a concentration, 

revealing the complex mechanism of climatic factors in the process of eutrophication more 

comprehensively compared with previous studies. 

Tidal activities are one of the important factors affecting the chlorophyll-a concentration in 

nearshore water bodies. They not only directly change water mobility but also affect the diffusion 

range of aquaculture waste. In ponds and reclamation areas with weak tidal activities, nutrients are 

prone to accumulate and the chlorophyll-a concentration is relatively high. In areas with strong tidal 

activities, frequent water exchange helps to dilute nutrients and slow down the eutrophication 

process, which is in line with the research conclusions of other studies on the impact of tides on the 

water quality of aquaculture areas, reconfirming the important ecological function of tides in the 

offshore ecosystem. 

5. Conclusions  

This study constructed and verified the chlorophyll-a inversion model through the analysis of 

ground - sampling data and satellite remote - sensing data. The spectral characteristics of the water 

body in Zhelin Bay were analyzed, and the spatial - temporal distribution characteristics of 

chlorophyll-a concentration were explored. The chlorophyll-a concentration in the aquaculture areas 

of Zhelin Bay showed significant spatial differences, with the concentration in ponds and polder 

areas higher than that in nets and shellfish aquaculture areas, which was mainly due to the poor 

mobility of the water body in the former area, which made it easy for nutrients to accumulate. In 

addition,  chlorophyll-a concentrations showed seasonal fluctuations in time, with peaks in spring 

and fall, and relatively low levels in summer and winter, indicating that culture density and climatic 

conditions jointly affected the spatial and temporal dynamics of chlorophyll-a. Further analysis 

showed that culture density, water body mobility, tides and climatic conditions (especially high 

temperature and heavy rainfall in summer) had important effects on chlorophyll-a concentration. 

High summer temperatures promoted phytoplankton growth, while surface runoff from rainfall 

significantly exacerbated the eutrophication process by inputting large amounts of nutrients into the 
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water body. The results provided a scientific basis for the remote - sensing monitoring of water 

quality and the prevention and control of eutrophication in Zhelin Bay and other similar mariculture 

- affected areas. However, there were still some limitations in this study. For example, the influence 

of other factors such as different types of aquaculture organisms and changes in weather conditions 

on the accuracy of the model was not fully considered. In addition, at present, a perfect offshore 

aquaculture pollution assessment and monitoring system has not been established, which is difficult 

to meet the urgent needs for fine-grained and dynamic monitoring of water quality in actual fishery 

management and environmental protection. Future research could focus on further improving the 

accuracy of the model and exploring more effective remote - sensing monitoring methods, 

effectively deal with environmental problems such as eutrophication and promote the sustainable 

development of offshore aquaculture. 
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