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Abstract: The aim of this study is to optimise the soil sampling scheme through machine 

learning and approximation algorithms to improve the efficiency of soil sampling work. 

The research methodology included calculating straight-line distances between sampling 

points using Haversine's formula and applying a clustering model and path-planning 

algorithm to determine the most efficient sampling routes. The main results show that the 

use of Haversine's formula, K-means clustering algorithm and Christofides' algorithm can 

significantly reduce the time required for soil sampling and increase the efficiency of the 

work. In addition, the paths were optimised for equalisation by the greedy algorithm to 

ensure that the daily working time was more balanced and within the allowed time frame. 

The study concludes that the proposed method not only optimises the soil sampling 

schedule but also ensures that the working hours are balanced and within the stipulated 

time limits. 

1. Introduction 

Soil survey is a crucial basic work for national food security. By conducting a comprehensive 

soil check-up on various types of agricultural land such as arable land, garden land, forest land, 

grassland and other land that has not been fully utilised [1], we can fully understand the actual 

situation of soil quality and soil resources, which provides a strong scientific basis for guaranteeing 

food production and guarding the red line of arable land [2, 3]. However, in the face of the vast and 

complex geographic environment, how to efficiently complete the collection of soil in multiple 

locations under the double constraints of time and resource conditions has become an urgent 

problem [4]. 

2. Reference Review 

Research on shortest paths has focused on both static and dynamic paths [5]. Static shortest path 

algorithms are used in situations where the network topology is stable, while dynamic shortest path 

algorithms are used in situations where the topology changes frequently. In environments where the 

network topology changes frequently, it is too expensive to reconstruct the shortest path tree using 
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Dijkstra's algorithm, so a series of dynamics are proposed on the basis of the static Dijkstra's 

algorithm. The DSPT algorithm proposed in paper [6] is more efficient than the static Dijkstra 

algorithm, but lacks algorithmic analysis and experimental data. Reference [8] proposes an 

algorithm to reconstruct SPT based on the current SPT based on [7]. Among them, the algorithm 

proposed in reference only applies to the change of one edge, and the algorithm proposed in 

reference [8] addresses the case of multiple edges with reduced weights. The algorithm based on 

Ball-and-String model proposed in reference is the best dynamic update algorithm available. 

3. Optimal Path Planning Programme 

In order to better organise the programme, we will carry out the sampling task based on the eight 

points (31, 44, 61, 83, 100, 115, 147, 158) arranged by the office for the working group. Assuming 

that these points are passable in a straight line and maintain a speed of 20km/h, we will find the 

optimal path and the shortest working time of the working group for this day. 

We first need to calculate the straight line distance between the points. Here we use Haversine's 

formula for its calculation and the formula is as follows: 
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2
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Where r represents the radius of the Earth, φi and φj represent the latitude of the points pi 

and pj , and θi, θj represents the longitude of the points pi and pj. In the calculation process, we 

approximate the spherical plane of the Earth as a plane and calculate the Euclidean distances, i.e., 

straight-line distances, between the eight points using Haversine's formula. Finally, we visualise the 

data using Python, as shown in Figure 1. 

 
 

 

Figure 1 Straight-line distances between 

eight points 
Figure 2 Optimal route after screening 

We construct the TSP problem using the distances between points as inputs. We find the most 

efficient work route without considering the travelling time of the working group from the site to 

the first working point and the last working point back to the site. The implementation steps are as 

follows: 

STEP 1. Determine the location of the point at which the working group needs to carry out its 

tasks: this is usually represented by a node. 

STEP 2. Determine the distance between work point locations: usually expressed in terms of side 

weights. 

STEP 3. Conditions for establishing the optimal path: each point works and works only once, 

and each point is passable in a straight line. 

STEP 4. Path optimisation: shortest total distance/shortest total working time. 

We have derived a complete map between the eight working points based on the TSP problem. 
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Due to the small amount of data and to avoid errors caused by calling the library, we use an 

exhaustive approach to filter the best routes. In order to get the shortest time to complete the work 

on the same day, we first calculate the travelling time between the points based on the travelling 

speed. In order to get the shortest working time to complete the work on the same day, we calculate 

the travelling time between points according to the required travelling speed. Where V represents 

the travelling speed, V = 20km/h. It is assumed that the travelling time tij is proportional to the 

distance dij and the travelling speed v is a constant: 

tij =
dij

v
 

We should also consider the working time of the working group at each point, assuming that the 

working time of each point pi is ωi and the total working time T is the sum of the working time 

and travelling time of all the points, and finally the formula for the total time is as follows: 

T =∑ωi

n

i=1

+∑ti,i+1

n−1

i=1

 

Combined with the above analysis, we use Python to solve the above model and visualise the 

optimal path as shown in Fig. 2. The optimal path is 44->61->158->83->147->100->31->115, and 

the total working time for sampling according to the optimal path is 6.68 hours. 

4. Holistic path planning based on K-means clustering model 

Based on the principle of proximity and the condition of working on eight points per day, we 

need to divide all sampling points. In order to improve the efficiency, we need to give the optimal 

paths of the working group for each day and the corresponding working time, and then compare the 

working time of all the optimal paths to get the maximum and minimum values. 

We firstly calculate the distance between each point according to the latitude and longitude of 

each point, combined with Haversine's formula, and we randomly select some representative data 

for display, as shown in Table 1 

Table 1 Distances between points 

Point A 
Point 

B 
Gap Point A Point B Gap Point A Point B Gap 

1 2 4.55 99 181 16.27 38 181 26.41 

2 50 14.01 112 146 2.03 42 74 18.94 

7 42 0.16 129 210 2.05 63 96 5.56 

19 145 8.28 146 159 1.65 75 217 9.22 

From some of the data presented in the table above, it can be seen that there are large differences 

in the length of the distances between the various points, some of which are very close to each other, 

only a few hundred metres apart, and some of which are very far away from each other, being able 

to reach more than 20 kilometres. Then, we calculated the time taken to pass each path: 

tij =
dij

v
 

Next, we divide the data according to the proximity principle and using the eight points as a 

benchmark. We choose to use the K-means clustering algorithm, the key of this algorithm lies in the 

determination of the initial centre of mass in the dataset, and then allocate the data according to the 
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distance between each data and the centre of mass. By calculating the centre of mass and assigning 

data several times, iterative optimization results in the best cluster division. We draw the flow chart 

shown in Figure 3: 

 

Fig. 3 Flowchart of K-means clustering algorithm 

Working with 8 points per day, i.e. each cluster contains 8 data points, since there are 222 points 

in total, we determined 27 initial centres of mass to divide the points according to the proximity 

principle. Based on the previously calculated distance between two points, we used Python to 

implement the K-means algorithm to divide the points and get the clustering results. And the data 

visualisation is shown in Figure 4. 

 

Fig. 4 Classification of clustering results for each site 

The calculated 27 optimal cluster divisions are shown in Figure 3, the clustering results are 

divided based on latitude and longitude, different colours represent different categories, we also use 

dotted circles to indicate the approximate range of the distribution of points in different categories. 

Overall, some of the clusters contain more than 8 points, which is due to a total of 222 points, and 

the remaining 6 points are classified into neighbouring clusters in close proximity. It is easy to find 

that there exist some categories in which the distribution of points is more concentrated and the 

clustering density is higher, while some categories have a larger range of dashed circle contours of 

points, which are loosely distributed and the clustering density is lower. 

Next, we use Christofides algorithm to solve the optimal path. Firstly, we apply Prim or Kruskal 
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algorithm to prefer the edges with small weights to cover all the vertices, so as to obtain a minimum 

spanning tree MST. Then we pick out all the fixed points in the mst that have an odd degree, and 

then we use Hungarian or Blossom algorithm to match the vertices with the minimum weight, and 

use Fleury or Hierholzer algorithm to find the Eulerian circuits, and finally converting them to 

Hamiltonian circuits. To facilitate a systematic understanding of the Christofides algorithm, we 

have drawn the flowchart as shown in Figure 5 below 

 

Fig. 5 Flowchart of Christofides algorithm 

We combined the time to pass on the switching road between the points obtained above, the 

working paths on each point and the 27 optimal cluster divisions obtained through clustering, coded 

and solved using Python software. We obtained the route planning, i.e., the optimal path division, 

for each point in each cluster and solved to obtain the required time, and some of the computational 

results are shown in Table 2 

Table 2 Optimal daily path, i.e., working hours (partial)   

Cluster ID Optimal Route Total Time (hours) 

0 194 -> 159 -> 96 -> 112 -> 177 -> 37 -> 81 -> 135 7.22 

3 97 -> 190 -> 195 -> 191 -> 25 -> 143 -> 128 -> 13 6.49 

6 58 -> 36 -> 48 -> 98 -> 121 -> 65 -> 109 -> 117 -> 108 -> 64 8.62 

11 3 -> 45 -> 131 -> 214 -> 213 -> 39 -> 175 -> 24 6.81 

16 178 -> 114 -> 180 -> 220 -> 66 -> 95 -> 219 -> 212 7.41 

21 179 -> 57 -> 1 -> 110 -> 78 -> 218 -> 11 -> 217 7.12 

24 202 -> 19 -> 20 -> 203 -> 204 -> 200 -> 210 -> 150 7.26 

Analysing the above table, we conclude that the maximum value of the optimal path is path 6 (58 

-> 36 -> 48 -> 98 -> 121 -> 65 -> 109 -> 117 -> 108 -> 64), which takes 8.62 hours, and the 

minimum value is path 3 (97 -> 190 -> 195 -> 191 -> 25 -> 143 -> 128 -> 13) with a working time 

of 6.49 hours. We can find that there are some differences in the total time consumed by different 

paths, but the overall distribution is around 6-8 hours, which also confirms that our calculation 

process and results are more correct and reasonable. 

5. Optimisation scheme for path equalisation based on greedy algorithm 

In reality, the working time was limited to 8 hours and due to the remoteness of the soil sampling 

sites, the working time was extended to a maximum of 8.5 hours. Now, by removing the limitation 
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on the number of sites, we can once again achieve a balanced solution for efficient sampling and 

keep the working hours within the time limit. 

Above, the maximum value of working hours is 8.62 hours, which is obviously out of the 

permitted range, indicating that there are cases of working hours overtime. Meanwhile, in order to 

visualise the fluctuation of the daily working hours, we firstly present the working hours of 27 days 

in the form of a line graph, as shown in Figure 6. 

 

Fig. 6 Line graph of working time before optimisation 

The line graph shows that there is a significant fluctuation in working hours. We chose to 

quantify this fluctuation by calculating the variance of the working time, which was calculated to be 

0.31, indicating that the above scenario has a significant imbalance in working time, which affects 

the overall efficiency of the working group. 

We may assume that the time spent on point work is increased as a percentage of the working 

time, and minimising the time spent on switching between points to pass on the road is the key to 

ensure the efficiency of the work. Therefore, in the selection of points, based on the clustering 

results, the greedy algorithm is used to continuously coordinate and improve the optimal path. 

A greedy algorithm is an algorithm that selects the optimal or best possible solution for each step 

carried out to get the best possible result. This problem uses the greedy algorithm to select a point 

as the starting point, and through continuous iteration, the unvisited nearest nodes are added to the 

path, and finally a more balanced path solution is optimised. Part of the data results are shown in 

Table 3 below 

Table 3 Optimised daily routes and working hours 

Day Optimal Route Total Time (hours) 

1 1 -> 57 -> 110 -> 78 -> 218 -> 11 -> 217 -> 179 7.2 

2 2 -> 142 -> 157 -> 4 -> 164 -> 141 -> 132 -> 119 6.6 

3 3 -> 45 -> 131 -> 24 -> 175 -> 39 -> 213 -> 214 6.8 

4 5 -> 10 -> 123 -> 71 -> 100 -> 147 -> 56 -> 52 6.7 

5 6 -> 21 -> 106 -> 148 -> 12 -> 99 -> 144 -> 127 6.9 

6 7 -> 42 -> 23 -> 172 -> 50 -> 62 -> 171 -> 28 7.0 

7 8 -> 54 -> 82 -> 137 -> 68 -> 76 -> 222 -> 221 7.2 

8 9 -> 32 -> 107 -> 22 -> 207 -> 34 -> 208 -> 193 7.4 

The maximum value of the optimal path working time in this scenario is the 10th day, 8.5 hours, 

which meets the maximum allowable working time In addition, we again visualise the data in the 

form of a line graph of the daily working time in the scenario, as shown in Figure 7. 
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Fig. 7 Line graph of optimised working time 

Observing Fig. 7, we can see that although there are still some fluctuations in the daily working 

time, the degree of fluctuation and the degree of fluctuation are both slowed down to a certain 

extent, and the extreme variance is also reduced from 2.1 to 1.9, which means that the gap between 

the daily working time after optimisation becomes smaller. In order to accurately verify the degree 

of work time balance after the optimisation, we calculate that the variance of daily work time after 

the optimisation is 0.27, which is reduced to a certain extent compared with that before the 

optimisation, indicating that the optimisation scheme significantly improves the work balance. 

Moreover, none of the optimised working time is overtime, and most of the working time is not 

more than 8 hours, which is in line with the regulations for special cases. 

6. Conclusion   

In this study, an efficient soil sampling scheme optimisation method is proposed based on 

machine learning and approximation algorithms, and the efficiency of soil sampling is improved by 

calculating the straight-line distance between points and applying the clustering model and path 

planning algorithm. The results show that the Haversine formula for calculating the distance 

between points, the K-means clustering algorithm for dividing the points, and the Christofides 

algorithm for solving the optimal paths can significantly reduce the time required for sampling and 

improve the work efficiency. In addition, the paths were optimised for equalisation by the greedy 

algorithm, which resulted in a more balanced daily working time that was within the allowed time 

frame. 

Despite the results of this study, there are some limitations. For example, this study assumes that 

movement between points can be approximated as a straight line, whereas terrain and road 

conditions may affect this assumption in real situations. In addition, this study mainly analysed 

specific point locations, and the generalisability of its results may be limited. Future studies could 

consider the actual road network and terrain features with the support of more sophisticated 

geographic information system (GIS) data to obtain more accurate travel distance and time 

estimates. At the same time, a more detailed analysis of soil sampling conditions at different points 

could be conducted to further improve the adaptability and practicality of the scheme. 
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