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Abstract: With the rapid development of industrialization and urbanization, industrial 

wastewater discharge, excessive use of agricultural fertilizers and pesticides, and improper 

waste disposal have all led to the intensification of water pollution, making the development 

of efficient and economical water treatment technologies increasingly important. Aiming 

at the adsorption effect of modified biochar on arsenic ions (As(V)) and roxarsone (ROX) 

in water bodies, a model was established and systematically analyzed based on polynomial 

regression theory. This study explores the effects of reaction temperature, solution pH, and 

adsorbent dosage, three key factors, on adsorption efficiency. By combining ridge 

regression with GridSearchCV, mathematical optimization techniques were employed to 

identify the conditions for maximum adsorption capacity. The optimal adsorbent dosage 

was found to be 0.2 g/L, the optimal temperature was 17.47°C, and the optimal pH value 

was 5.02. These findings provide a scientific basis and decision support for the application 

of modified biochar in water treatment, with significant environmental and economic 

implications. 

1. Introduction 

Due to natural processes and human emissions, a significant amount of waste is released into water 

bodies, posing severe threats to human and wildlife survival [1]. Common methods for treating 

arsenic and ROX in water currently include physical-chemical methods, chemical methods, 

biological methods, and adsorption methods [2]. Among these, adsorption is a relatively mature and 

straightforward wastewater treatment technique, with the preparation of efficient and economical 

arsenic adsorption materials being the technological core of this method. 

In a study conducted by Benis K Z et al., it was discovered that under the experimental conditions, 

a hybrid adsorption mechanism predominantly involving heterogeneous multilayer chemisorption 

was more likely to occur [3]. This finding highlights the complexity of the adsorption process and the 

need for a deeper understanding of the underlying mechanisms. Sun Y et al., in their research, 

identified that the dosage of the adsorbent and the pH level of the solution are the key factors that 

influence the adsorption capacity of arsenic on modified biochar. They also found that the adsorption 
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process of arsenic onto biochar is endothermic, meaning it requires heat to proceed [4]. Furthermore, 

Kirmizakis P et al. assessed the effectiveness of iron-modified biochar in treating arsenic-laden 

simulated wastewater. They employed both standard chemical monitoring techniques and real-time 

monitoring of the adsorption process to evaluate its potential [5]. This comprehensive approach 

provides a robust evaluation of the biochar's performance in removing arsenic from water. 

Previous studies, although having achieved certain progress, still have some shortcomings. Some 

research may rely too heavily on a single adsorption mechanism theory and fail to fully consider the 

complexity of the adsorption process. Additionally, previous studies may lack systematic approaches 

for optimizing adsorbents and precisely controlling adsorption conditions, leading to inaccuracies in 

predicting adsorption efficiency and stability. In contrast, this paper constructs an adsorption model 

based on polynomial regression theory, incorporating Ridge Regression and GridSearchCV, 

providing a solid theoretical foundation and data support for practical water treatment. 

2. The model in this paper 

2.1 Polynomial Regression 

Polynomial fitting is a widely used tool in the field of mathematical modeling, which involves 

fitting a series of data points obtained through experiments or observations into a polynomial function 

to reveal the underlying relationships between these data points. The core of this method lies in 

approximating these data points using a polynomial function containing unknown parameters, aiming 

to gain a deeper understanding of the trends and patterns hidden behind the data. 

In the process of polynomial fitting, we first assume that these data points are generated by a 

specific polynomial function that contains some yet-to-be-determined parameters. Subsequently, we 

employed the least squares method for fitting the data points, which involves seeking a set of 

parameter values that minimize the discrepancy between the polynomial function determined by these 

parameters and the actual data points. This method finds the optimal parameter values by minimizing 

the sum of squared errors, thus ensuring the accuracy of the fitting results. 

Through this fitting process, we can determine the specific form of the polynomial function and 

obtain the best estimated values for each parameter. Ultimately, the polynomial function derived from 

this fitting can not only be used to predict the values of new data points but also help us analyze the 

trends and patterns within the data. This makes polynomial fitting play an important role in scientific 

research, engineering applications, and other fields requiring data analysis. By unveiling the 

relationships hidden within the data, polynomial fitting provides decision-makers with a powerful 

tool, enabling them to better understand complex phenomena and make more informed decisions 

based on this understanding.  

 

Figure 1 Schematic of Polynomial Fitting Principle 
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As shown in Figure 1, polynomial fitting that simultaneously considers multiple degrees of 

independent variables exhibits high accuracy. The general form of polynomial fitting is as shown in 

Equation (1). 

𝑔(𝜇) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑘𝑥𝑘                      (1) 

2.2 Ridge Regression and GridSearchCV 

Ridge regression, also known as Tikhonov regularization, is a particularly effective technique for 

addressing regression problems, especially when dealing with issues caused by multicollinearity 

among features. This method introduces an L2 regularization term into the loss function, penalizing 

the size of the model coefficients, thereby reducing model complexity and effectively preventing 

overfitting [6]. The addition of the L2 regularization term not only enhances the model's 

generalization ability but also mitigates the impact of feature correlation, making the model more 

stable.  

GridSearchCV is a widely used cross-validation technique in the field of machine learning. It 

systematically traverses through given parameter candidate combinations, training and validating 

each set of parameters to find the optimal hyperparameter settings. The core of this method lies in 

ensuring that each parameter combination is thoroughly evaluated during the model selection process, 

thereby enhancing the model's predictive performance and stability. By employing cross-validation, 

GridSearchCV not only reduces the risk of overfitting but also optimizes across multiple parameter 

dimensions, which is crucial for improving the model's generalization ability and adaptability. 

Through this approach, we can identify the hyperparameters that best suit the current data and 

problem from a large number of parameter combinations, thereby constructing a model with superior 

performance. 

(2) The least squares method commonly used in regression analysis is an unbiased estimation. For 

a well-posed problem, X is typically column full-rank. 

(3) By employing the least squares method, the loss function is defined as the square of the 

residuals, with the objective of minimizing this loss function. 

(4) This optimization problem can be solved using the gradient descent method or directly using 

the following formula [7].  

𝑋𝜃 = 𝑦,                                         (2) 

‖𝑋𝜃 = 𝑦‖2 .                                      (3) 

𝜃 = (𝑋𝑇𝑋)−1𝑋𝑦
𝑇.                                    (4) 

3. Results 

3.1 Polynomial Regression Model Results 

We will explore the specific effects of reaction temperature, solution pH, and adsorbent dosage on 

the removal rates of As(V) and ROX. By establishing and validating generalized linear models (GLM), 

we will examine the main effects of each factor and their interactions to determine the influence of 

different factors on adsorption. We selected a quintic polynomial model for evaluation. Additionally, 

given the use of a feature model that includes polynomials, we will also refer to a quadratic polynomial 

model when interpreting the regression coefficients in practice. 

A three-dimensional surface plot depicting the removal rates of As(V) and ROX at fixed pH is 

shown in Figure 2. 

3



 

 

Figure.2. Three-dimensional surface of As (V) and ROX removal efficiency 

As can be seen from the figure, the removal efficiency of pentavalent arsenic does not change much 

throughout the treatment process, showing a relatively stable state, which may mean that the removal 

efficiency is less affected by the treatment conditions, or the treatment technology has limited effect 

on pentavalent arsenic. In contrast, the removal efficiency of the ROX showed more significant 

fluctuations, especially under certain conditions, where the removal efficiency increased, suggesting 

that the removal effect of the ROX may be more sensitive to the treatment conditions. 

Specific model parameters are shown in Table 1.  

Table.1. Specific model parameters 

Item As(V) model coefficients ROX model coefficients 

Adsorbent Dosage 255850.618 2892543.52 

Temperature 328.598791 -88.1166162 

pH -0.002961164 -0.017484137 

Adsorbent dosage×Temperature 6.22195928 -48.9782416 

Adsorbent dosage×pH -778.507618 1028.95203 

Temperature×pH 2.9021034 21.1537008 

Adsorbent dosage² 2.73536065 -111.010026 

Temperature² 1.59246448 2.59883645 

pH² 307.493516 -125.441753 

Adsorbent dosage×Temperature×pH -0.009174942 -0.277500053 

These coefficients indicate:  

1) The removal rate of As(V) is significantly affected by temperature, with each unit increase in 

temperature leading to an approximately 328.60% increase in removal rate. An increase in pH value 

slightly reduces the removal rate, but the nonlinear effect of pH has a positive impact on the removal 

rate. Increasing the dosage of adsorbent is very effective in enhancing the removal rate of As(V), and 

its positive impact strengthens with increasing dosage. 

2) The removal rate of ROX decreases significantly with increasing temperature, with each unit 

increase leading to an approximately 88.11% reduction in removal rate, indicating that high 

temperatures may be unfavorable for ROX adsorption. The pH value has a minor effect on ROX 

removal efficiency, but the nonlinear effect has a significant negative impact. An increase in adsorbent 

dosage has a substantial positive effect on ROX removal efficiency; however, beyond a certain dosage, 
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the positive effect diminishes, possibly due to the saturation of adsorption sites. 

3.2 Solving Multi-Objective Optimization 

Based on the adsorption model established in Section 3.1, we have conducted optimizations using 

various algorithms to seek the optimal adsorption conditions for maximizing benefits. 

Adsorption isotherms are curves that represent the relationship between the amount of adsorbate 

adsorbed by the adsorbent and the concentration of the substance at a constant temperature. Commonly 

used adsorption isotherm models include the Langmuir and Freundlich isotherm models [8].  

Taking the Langmuir equation as an example, the adsorption capacity of each component can be 

expressed as: 

𝑄𝐴𝑆(𝑉) =
𝑄
𝑚𝑎𝑥，𝐴𝑆(𝑉)

×𝐾
𝐿，𝐴𝑆(𝑉)

×𝑚

1+𝐾
𝐿，𝐴𝑆(𝑉)

×𝑚
                        (5) 

𝑄𝑅𝑂𝑋 =
𝑄
𝑚𝑎𝑥，𝑅𝑂𝑋

×𝐾
𝐿，𝑅𝑂𝑋

×𝑚

1+𝐾
𝐿，𝑅𝑂𝑋

×𝑚
                         (6) 

where 𝑄𝑚𝑎𝑥，𝐴𝑆(𝑉)  and 𝑄𝑚𝑎𝑥，𝑅𝑂𝑋  is the maximum adsorption capacity of the Langmuir 

adsorption isotherm 

where 𝐾𝐿，𝐴𝑆(𝑉) and 𝐾𝐿，𝑅𝑂𝑋 is the adsorption coefficient of the Langmuir adsorption isotherm 

Combining Equations 5 and 6, the total adsorption can be expressed as a function of the decision 

variables T, pH, and m. 

𝑄𝑡𝑜𝑡𝑎𝑙(𝑇, 𝑝𝐻,𝑚) =
𝑄
𝑚𝑎𝑥，𝐴𝑆(𝑉)

×𝐾
𝐿，𝐴𝑆(𝑉)

×𝑚

1+𝐾
𝐿，𝐴𝑆(𝑉)

×𝑚
+

𝑄
𝑚𝑎𝑥，𝑅𝑂𝑋

×𝐾
𝐿，𝑅𝑂𝑋

×𝑚

1+𝐾
𝐿，𝑅𝑂𝑋

×𝑚
           (7) 

When designing this optimization adsorption experiment, not only should the maximization of the 

total adsorption capacity be pursued, but also the adsorption capacities of As(V) and ROX should be 

balanced. To this end, the coefficient of variation (CV) was introduced to weigh the adsorption 

capacities of As(V) and ROX. 

First, calculate the standard deviation and mean of the adsorption amounts of As(V) and ROX 

separately, and then compute their coefficient of variation. Next, to balance the adsorption amounts of 

As(V) and ROX during the optimization process, the coefficient of variation is incorporated into the 

objective function. The mean, standard deviation, and coefficient of variation of As(V) and ROX are 

calculated separately to assess the key indicators of central tendency and dispersion in the dataset. The 

optimization results of different models, along with the mean squared error (MSE), mean absolute 

error (MAE), and coefficient of determination (R²), are shown in Table 2. 

Table.2. Model parameters 

 MSE MAE R2 
Condition 

(Adsorbent dosage, 

temperature, pH) 

Maximum adsorption 

capacity 

RSM 10.287 2.522 0.934 0.20g, 15.00℃, 3.00 47.08 

RSM+PSO 10.287 2.522 0.934 0.20g, 15.00℃, 3.00 47.08 

Ridge Regression and 

GridSearchCV 
9.609 2.353 0.939 0.20g, 15.00℃, 3.00 45.84 

Random Forest and 

RandomizedSearchCV 
43.42 3.778 0.557 0.20g, 15.00℃, 3.00 45.31 

The comparison in the table indicates that Ridge Regression and GridSearchCV perform the best 

in maximizing total adsorption, with the highest R² value and lower error. The formula for total 
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adsorption is shown in Equation 8. 

𝑄 = 73.6476 − 126.3301𝑚 + 0.0363𝑇 − 0.287𝑝𝐻 − 0.0035𝑇2 + 2.408𝑝𝐻2 − 52.8201𝑚2 +
0.1063𝑚 × 𝑇 + 4.4693𝑚 × 𝑝𝐻 + 0.0085𝑇 × 𝑝𝐻               (8) 

Through multi-factor regression analysis of the adsorption process, the optimal adsorption 

conditions were determined to be an adsorbent dosage of 0.20g, a temperature of 15.00℃, and a pH 

value of 3.00. Under these conditions, the total adsorption capacity was maximized, reaching 47.08. 

4. Conclusions and outlooks 

We established a removal rate model through polynomial regression fitting. A systematic study on 

the effects of different conditions on adsorption revealed that higher temperatures promoted the 

adsorption of As(V) but inhibited that of ROX; an increase in pH adversely affected the removal rate 

of As(V) but had a lesser impact on that of ROX; an increase in adsorbent dosage significantly 

improved the removal rates of both As(V) and ROX, but as the dosage of adsorbent increased, the 

improvement in ROX removal rate began to diminish, indicating saturation. Furthermore, by 

comparing different optimization algorithm models, we identified the ridge regression and 

GridSearchCV total adsorption optimization models. Based on this, the optimal conditions were 

determined: an adsorbent dosage of 0.20 grams, a temperature of 15.00°C, and a pH of 3.00. Under 

these conditions, the total adsorption capacity reached a maximum of 47.08. This model was 

established based on the systematic collection and analysis of a large amount of experimental data, 

ensuring the adequacy and representativeness of the data. This not only improved the prediction 

accuracy of the model but also enhanced its reliability and credibility in practical applications. 

When attempting to improve the fit by using higher-order polynomials, there is a risk of overfitting. 

We can limit the complexity of the model through L1 and L2 regularization, which helps prevent the 

model parameters from becoming too large during training, thereby reducing the risk of overfitting. 

Additionally, training and validating the model on different subsets of data can provide a more accurate 

estimate of its performance on unseen data. In the future, the model could also be extended to include 

more types of pollutants, studies on multi-pollutant interactions, targeted optimization, and other areas. 

Provides a solid theoretical foundation and data support for the promotion of modified biochar in 

practical water treatment applications. 
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