
Research on the Control of Chaotic Systems Based on the 
Small Gain Theorem 

Guanbo Wang  

Beijing Camford Royal School, Sitongbei, South Xiangshan Road, Haidian District, Beijing, China 
asdfjk0731@163.com 

Keywords: Nonlinear Systems, Input-to-State Stability (ISS), Small Gain Theorem, 
Chaotic Systems 

Abstract: This paper discusses the input-to-state stability (ISS) of nonlinear systems and 
applies the small gain theorem in the control of chaotic systems. Firstly, the concept of 
ISS is defined and provides a way to determine whether the system is ISS. Secondly, a 
feedback control method is designed using the small gain theorem to make the origin of 
the new chaotic system globally asymptotically stable. Finally, simulation results verify 
the effectiveness of the control method. 

1. Introduction 

Chaotic systems are widely present in nature [1] and engineering applications [2], but their 
unpredictability and complexity often pose challenges. By studying the control and synchronization 
of chaotic systems, we can improve our understanding of these systems and develop more 
controllable and predictable methods [3] - [5]. This helps scientists and engineers better utilize 
chaos phenomena to solve a range of practical problems, thereby improving the performance and 
stability of the system. 

Chaotic systems are characterized by sensitivity to initial conditions, which is also common in 
many nonlinear dynamic systems. These systems exhibit unpredictable and complex behavior, 
making them crucial for research and control, particularly in fields such as engineering [6], biology 
[7], and economics [8]. As emphasized in [9], the inherent nonlinearity of chaotic systems requires 
the development of robust control strategies to ensure stability and the required performance. 

In modern control theory, the Input State Stability (ISS) attribute provides a powerful framework 
for analyzing and designing control systems. The concept of ISS links the behavior of system states 
with input signals, ensuring robust performance even in the presence of interference. The small gain 
theorem is a key tool for determining the stability of interconnected systems, especially for chaos 
and nonlinear dynamics.  

Recent studies [10-12] have explored various chaos control methods. These methods include 
feedback control and synchronization techniques aimed at stabilizing chaotic behavior and ensuring 
global asymptotic stability. 

The small gain theorem plays a crucial role in chaos control by providing a framework for 
analyzing and stabilizing interconnected subsystems. This theorem ensures that if each subsystem is 
stable, the entire system can also be stable. This is crucial for controlling complex chaotic systems 
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with multiple interacting components. It helps to design feedback controllers that can effectively 
suppress chaotic dynamics. 

The structure of this article is as follows. Section 2 introduces chaotic systems and outlines the 
problem of controlling chaotic behavior in nonlinear systems. In Section 3, we reviewed key 
definitions and theorems, including Input State Stability (ISS) and Small Gain Theorem, which are 
crucial for understanding the stability conditions of chaotic systems. In Sections 4 and 5, we applied 
the small gain theorem to design a feedback controller for chaos control, ensuring global asymptotic 
stability. Finally, Section 6 introduced numerical simulations to verify the effectiveness of the 
proposed control strategy in stabilizing chaotic systems. 

2. Manuscript Preparation  

Chaos control is an important problem in nonlinear dynamics and control theory, where the goal 
is to stabilize unstable equilibrium points in a chaotic system. Chaotic systems exhibit sensitive 
dependence on initial conditions and unpredictable long-term behavior. The design of effective 
control strategies for such systems is challenging due to their inherent nonlinearities and high 
sensitivity. 

The primary problem addressed in this paper is how to use the small-gain theorem to design a 
chaos control method that ensures the global asymptotic stability of the origin for a given chaotic 
system. This involves leveraging ISS properties and feedback control mechanisms to achieve 
stabilization. 

3. Basic Definitions 

Definition 1 Consider the following nonlinear system: 

( , )x f x u=                                   (1) 

When state nx R∈ , input mu R∈ , in which (0,0) 0f = , and ( , )f x u locally satisfies Lipschitz 
condition on n mR R× . The input of the system (1): : [0, ) mu R∞ →  is a piecewise continuous 
bounded function, and the norm 

0
( ) sup ( )

t
u u t

∞
≥

⋅ = is defined on the set of all piecewise continuous 

bounded functions, resulting in the model space which is denoted as mL∞ . If there exists a KL 
function Equation ( , )β ⋅ ⋅  and K-Class function ( )γ ⋅ , for any input ( ) mu t L∞∈  and initial state

0 nx R∈ , the following holds: 
0 0( , ) ( , ) ( ( ) )x t x x t uβ γ

∞
≤ + ⋅ , 0t > ； 

Then the system (1) is Input-to-State Stable (ISS), and ( )γ ⋅ is the gain function [7].        
Definition 2 For the system (1), if for the 1C function : nV R R→ , there is a K∞  function 

( ) ( ) ( )α α α⋅ ⋅ ⋅、 、  and a K-Class function ( )χ ⋅ such that for all nx R∈ , then  

( ) ( ) ( )x V x xα α≤ ≤                               (2) 

and ( ) ( , ) ( )Vx u f x u x
x

χ α∂
≥ ⇒ ≤ −

∂
are exist, then V is the ISS-Lyapunov function [13]. 

Here are two theorems for determining whether a system is ISS:     
Theorem 1 System (1) is ISS if and only if an ISS-Lyapunov function exists. 
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In this case, the gain function 1( ) ( )r rγ α α χ−=   can be obtained. 
Theorem 2 Consider system (1), for the 1C function : nV R R→ , if and only if K∞ function 

( ) ( ) ( )α α α⋅ ⋅ ⋅、 、  and a K-Class function ( )σ ⋅ such that for all nx R∈ and mu R∈  , function 

(2)and ( , ) ( ) ( )V f x u x u
x

α σ∂
≤ − +

∂
 exist, The function V is ISS-Lyapunov function. 

The specific proof of this theorem can be found in reference [9]. 

4. Small gain theorem 

Consider the system 

1 1 1 2

2 2 1 2

( , )
( , , )

x f x x
x f x x u
=

 =





                                    (3) 

in which, 2
2

nx R∈ mu R∈ and 1 (0,0) 0f = , 2 (0,0,0) 0f =  Supposed that the first subsystem, 
when 1x is considered to be the state and 2x is the input, is ISS and has a gain function 1 ( )γ ⋅ ; For 
the second subsystem, when 2x it is considered to be the state and input 1x and u , it is ISS and has 
a gain function 2 ( )γ ⋅ . 

The expression of the small gain theorem is as follows: 
Theorem 3 If the condition 1 2( ( ))r rγ γ <  holds, for all 0r > , system (3) is viewed as a system 

with state 1 2( , )x x x= and input u , and it is ISS. 
The specific proof of this theorem can be found in reference [13]. 
If the conditions of theorem 3 are satisfied, when , then the origin of the system (3) is 

globally asymptotically stable. 
Consider the following new chaotic system:               

2

( )x a y x
y bx cy xz
z x hz

 = −
 = + −
 = −







                               (4) 

When a=20,b=14,c=10.6,h=2.8, the system exhibits chaotic behavior and has three unstable 
equilibrium points: 1 (0,0,0)E , 2 ( ( ), ( ), )E h b c h b c b c+ + + , 3 ( ( ), ( ), )E h b c h b c b c− + − + + . 

Take the initial value x(0)=y(0)=z(0)=20, and the chaotic attractor of the new system is shown in 
the figure1.  

 
Figure 1: Chaotic attracto 
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5. Control Design 

Using ( , , )E x y z  to represent any points in 1 2 3, ,E E E . The feedback control is designed below 
to make the points ( , , )E x y z globally asymptotically stable. 

First, translate the point ( , , )E x y z to the origin, and for this purpose, make a transformation: 

1

1

1

x x x
y y y
z z z

= −
 = −
 = −

 

Then, the system (1) is transformed into the following form: 

 
1 1 1

1 1 1 1 1 1 1
2

1 1 1 1

( )

2

x a y x
y bx cy x z x z xz
z x xx hz

 = −
 = + − − −
 = + −







 

Apply control 1 2 3, ,u u u  to system variable 1 1 1, ,x y z  respectively, then the controlled system is 

   
1 1 1 1

1 1 1 1 1 1 1 2
2

1 1 1 1 3

( )

2

x a y x u
y bx cy x z x z xz u
z x xx hz u

 = − +
 = + − − − +
 = + − +







 

It can be selected using the ISS control method: 

1 11

2 2 1
2

3 1

0 0
0 0
0 0 1

u xk
u k y
u x

    
    =     
     −    

 

The controlled system can be written as follows: 

                   
1 1 1 1 1

1 1 1 1 1 1 1 2 1

1 1 1

( )

2

x a y x k x
y bx cy x z x z xz k y
z xx hz

= − +
 = + − − − +
 = −







                   (5) 

It is only necessary to prove that under certain conditions, the origin of the system (5) is globally 
asymptotically stable. 

If the parameters of the system (5) satisfy such conditions: 

  
1

1

22max( , 2 ) ( ) x

k a
b z x c k x M

<
 + < − + − −

                (6) 

Then the origin of the system (5) is the global asymptotic stability. 
Proof: Consider a subsystem of the system (5)  

1 1 1 1 1( )x a y x k x= − +  

View 1 1,y z as the input and x  as the state, and define the function 21( )
2

V x x= ,  
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thus 

2
1 1 1 1( )V k a x ax y= − + . 

Pick any 1 10 a kε< < −  and set 1
1 1

( ) ar r
a k

χ
ε

=
− −

,  

Then 
2

1 1 1 1 1( )x y V xχ ε≥ ⇒ ≤ − . 

If we take 21( ) ( )
2

r r rα α= = , thus the subsystem (I) is ISS and has a gain function

1
1 1

1 1

( ) ( ) ar r r
a k

γ α α χ
ε

−= =
− −

  . 

Consider subsystem (II)  

   1 1 1 1 1 1 1 2 1

1 1 12
y bx cy x z x z xz k y
z xx hz
= + − − − +

 = −





 

Define 2 2
1 1 1 1

1( , ) ( )
2

V y z y z= + , then there is 

2 2
1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1( 2 ) ( )V y y z z x by y z xz c k y hz xy z x y z= ⋅ + ⋅ = − + + + − − −

   

1

2 2 2 2 2 2
1 1 1 1 2 1 1 1 1 1 1( 2 ) ( )( ) ( ) ( )xx b y z y x z c k y z x y z M y z≤ + + + + + + + + +  

1

2 2
1 1 1 2 1 1max( , 2 )( ) [ ( )]( )xx b z x y z x M c k y z≤ + + + + + + +  

1

2 2 1/2 2 2
1 1 1 2 1 12 max( , 2 )( ) [ ( )]( )xx b z x y z x M c k y z≤ + + + + + + +  

Pick a sufficiently small 2ε , 
When

12 22 max( , 2 ) ( ) xb z x c k x M ε+ < − + − − − , let 2
2( )r rα ε= be a K-class function,

2 2
2 1 1 1 1( ) ( ( , ) )TV y z y zε α≤ − + = − . 

By definition, the function 1 1( , )V y z is the ISS-Lyapunov function of the subsystem (II.), which 
is stable by theorem 3, the input state of the subsystem (II.). From comment 1, take the gain 
function as                     

1
2 2 2( ) ( ) ( )r r rγ α α χ χ−= =   

Where 
1

2
2 2

2max( , 2 )
( )

( ) x

b z x
r r

c k x M
χ

ε
+

=
− + − − −

, 

Apparently, at this point, 
1

2 1
2 2 1 1

2max( , 2 )
( ( ))

( ) x

b z x ar r r
c k x M a k

γ γ
ε ε

+
= ⋅ <
− + − − − − −

( ), ( ), ( )x t y t z t

holds.  
Therefore, by small gain theorem the system (5) is asymptotically stable at the origin [12]. 
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6. Result of simulation 

Taking the initial state of the system as x(0)=y(0)=z(0)=20, we can see from figure 2 thatis 
bounded and satisfies                                          

30x < , 40y < , 80z <  

Select
1

30xM = 2 ( ( ), ( ), )E h b c h b c b c+ + + . For the equilibrium point, it is noted that at this 

time a=20, b=14, c=10.6, h=2.8, take the parameter 1 22, 200k k= = − to satisfy (6), and the initial 
value of the selected system is x(0)=10, y(0)=30, z(0)=-20, and the following figure can be 
obtained. 

 
Figure 2: The curve trajectory of ( ) ( ) ( )x , ,t y t z t  

7. Conclusion 

Through the small gain theorem and ISS control method, the origin of the new chaotic system 
can be effectively made globally asymptotically stable. Simulation results further confirm this and 
show that the proposed control strategy is effective. 
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