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Abstract: In order to fully extract the bearing fault feature information under strong noise 
and variable load, a rolling bearing fault diagnosis method based on multi-scale adaptive 
fusion (MSAF) is proposed. Firstly, a multi-scale feature extraction module is designed, 
which uses convolutional layers of different scales to extract feature information, in order 
to better capture the characteristics of different fault signals. Secondly, a Self-Calibrated 
Convolution (SCC) module is constructed. This module automatically adjusts the weights 
of the convolutional kernels according to the characteristics of the input data, which 
enhances the network's perception of the input data. Thirdly, a lightweight channel 
attention residual module is established, which combines channel attention and residual 
connections, allowing the network to automatically select channels related to fault features, 
thereby reducing information redundancy. Finally, the Softmax probability distribution 
function is used as a classifier to achieve bearing fault classification. By using the bearing 
data set of CWRU for experiment and comparison, it is verified that the method still has 
strong fault diagnosis performance under variable load and variable noise. 

1. Introduction 

As a key component of rotating machinery equipment, rolling bearings are very vulnerable to 
vibration, impact, erosion and wear during operation and work in a complex environment with 
strong noise and variable load for a long time, resulting in frequent bearing failures [1]. Therefore, 
it is necessary to diagnose the fault of rolling bearings and identify different fault states [2]. At first, 
machine learning played an important role in the field of bearing fault diagnosis, including Support 
Vector Machine (SVM) [3], Random Forest (RF) [4] and Logistic Regression (LR) [5]. Xu et al. [6] 
combined empirical mode decomposition (EMD) and support vector machine (SVM) for fault 
diagnosis. Zhang et al. [7] used functional data analysis to extract the autocorrelation function 
fitting coefficients of bearing vibration signals, and used the random forest algorithm to diagnose 
and identify the features after dimensionality reduction. The algorithm constructs the fault feature 
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set and optimizes the random forest parameters through the grid search method to obtain the 
importance ranking of features. Although the above method has a certain effect in fault diagnosis, 
the extracted features are almost shallow features, the ability to extract complex data features is 
poor, and the knowledge and experience of domain experts are needed. 

In recent years, deep learning, as a relatively new and rapidly developing method, was proposed 
by Hinton [8] in 2006 and has been widely used in bearing fault diagnosis. It includes 
Convolutional Neural Network (CNN) [9], Long Short-Term Memory (LSTM) [10] and Deep 
Belief Network (DBN) [11]. In order to fully extract features and suppress the influence of high-
frequency noise on fault diagnosis, Zhang et al. [12] proposed a deep convolutional neural network 
with a wide convolution kernel, which used wide convolution kernel for feature extraction and 
suppressed high-frequency noise. Qu et al. [13] proposed an adaptive one-dimensional 
convolutional neural network algorithm for bearing fault diagnosis to maximisze feature self-
learning. All of the above methods are applied to CNNs, but they often suffer from training 
parameter complexity, which can lead to overfitting problems. In addition, in order to further obtain 
higher fault recognition accuracy under variable load, Tang et al. [14] used the two-dimensional 
time-frequency spectrum of vibration time series and adaptively extracted different fault features 
through CNN for fault diagnosis, which can also have higher fault diagnosis accuracy under 
variable load. Ye et al. [15] used empirical mode decomposition to process the extracted vibration 
signal and convert it into an image, and then used the convolution layer to extract image features to 
achieve fault diagnosis. Liang et al. [16] proposed a parallel convolutional neural network (P-CNN) 
fault diagnosis method, which has good stability in variable load environment. However, the above 
method does not consider the influence of environmental noise on the model diagnosis effect, thus 
reducing its accuracy and generalization ability in fault diagnosis. 

Aiming at the above problems, a rolling bearing fault diagnosis method based on multi-scale 
adaptive fusion is proposed. Firstly, in order to extract the effective information of fault data to the 
greatest extent, a multi-scale feature extraction module is designed. Secondly, the SCC module is 
constructed to improve the network's perception of input data. Thirdly, the ECA-ResNet module is 
constructed, which combines channel attention and residual connection to adaptively enhance 
effective information. Finally, the Softmax function is used as a classifier to realize bearing fault 
classification. 

2. Fault diagnosis model structure based on MSAF 

The working environment of rolling bearings is relatively complex. In fault diagnosis, 
insufficient feature information extraction under strong noise and variable load will lead to low fault 
diagnosis accuracy and poor generalization performance.  

 
Figure 1: Total network structure model. 

In this paper, the data preprocessing is carried out first, and the reconstructed two-dimensional 
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data is used as the model input. Secondly, the local features of fault information are extracted by 
using the constructed multi-scale convolutional neural network. At the same time, the SCC module 
and ECA-ResNet module are designed to adaptively enhance effective information, improve the 
network's perception of input data, and suppress interference information. Finally, the Softmax 
probability distribution function is used as a classifier to realize bearing fault classification. The 
structure is shown in Figure 1. 

2.1. Feature extraction module 

The convolution kernel of traditional CNN extracts features in the local receptive field and then 
integrates the local features, which leads to the loss of some important information in the network 
[17]. The designed feature extraction module shows excellent feature extraction ability in bearing 
fault diagnosis, and its structure is shown in Figure 2. 

                                                       
Figure 2: Structure diagram of multi-scale feature extraction.   Figure 3: ECA_ResNet structure. 
Firstly, for the input two-dimensional data, three convolutional layers of different scales are used 

for feature extraction. Secondly, in order to improve the diagnostic performance of the network, the 
output of each convolutional layer is batch standardized. Finally, by introducing the attention 
mechanism, the model's attention to key information is enhanced. The design of this feature 
extraction module has the potential to improve the accuracy and efficiency of bearing fault 
diagnosis. 

2.2. ECA-ResNet module 

The residual structure allows the training of deep neural networks[18], which makes it easier to 
train deep networks to capture and represent complex features, avoids the problem of gradient 
disappearance[19], and improves the performance of the model. ECA_ ResNet combines residual 
structure and channel attention mechanism to improve the performance of CNN, and its structure is 
shown in Figure 3. Firstly, the output F(x) is obtained by convolution kernels with sizes of 1×1 and 
3×3, respectively. Then, the weights obtained by F(x) and ECA_Net are dot product, and the final 
result is added to the input x. The advantage of this structure is that it can better capture the 
correlation information between features, effectively suppress redundant information interference, 
and improve classification accuracy. 

2.3. Self-calibrated convolution network structure 

Self-calibrated convolution (SCC) introduces adaptive parameters to learn the feature 
representation and transformation of input data [20]. Traditional convolution uses fixed-size 
convolution kernels to extract features when processing input data. However, this fixed-size 
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convolution kernel may not be able to adapt to different input data and has certain limitations on the 
invariance of the input data. Self-calibrated convolution allows the network to automatically adjust 
the weight of the convolution kernel according to the characteristics of the input data, thereby 
improving the network's perception and adaptability to the input data. This adaptability enables the 
network to better adapt to different input data and improve its generalization ability. 

The structure is shown in Figure 4. SCC divides the input X evenly into two parts, and divides 
the convolution kernel K into four equal parts. The specific operation is as follows: Firstly, the 
convolution operation 1K  is performed on the input feature 1X  to generate the output feature 1Y . At 
the same time, the input feature 2X  is fed into channels with different resolutions, in which the low-
resolution channel reduces the feature width in a certain proportion, and after average pooling 
downsampling, a low-dimensional embedding for correcting the high-resolution partial convolution 
kernel is generated. In order to improve the ability to extract fault features, the model performs 
feature extraction on the low-resolution scale and combines the feature information of the low-
resolution channel and the high-resolution channel. Secondly, the convolution and upsampling 
operations are performed. The output calculated by the Sigmoid function is corrected with the 
features extracted by the 3K  convolution. The convolution operation 4K  is performed on the 
corrected features to obtain the output feature 2Y  of the self-correction part. The specific operation 
is shown in Equation (1) ~ (4). 

1 1( )= rT Avgpool X                                                                   (1) 
'

1 1 2( * )X Up T K=                                                                    (2) 
' '

1 1 3 1 1* ( )Y X K X X= σ +                                                              (3) 
'

1 1 4*Y Y K=                                                                       (4) 
Where r represents the sampling rate, Up(·) denotes upsampling, σ  denotes the Sigmoid 

activation function. Finally, the output features from two scale spaces are fused to obtain the output 
feature Y. SCC establishes long-distance spatial and channel dependencies around each spatial 
location through self-correction, thereby generating more discriminative features. 
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Figure 4: Self-correcting convolutional structure.           Figure 5: Diagnostic flow chart 

2.4. Model diagnosis process 

The diagnosis process of the bearing fault diagnosis model based on MSAF is shown in Figure 5. 
As shown in Figure 5, it is mainly divided into data preprocessing, model training and fault 

diagnosis. Different types of bearing fault vibration signals and bearing vibration signal data under 
normal working conditions are collected by sensors or monitoring equipment. The vibration signals 
are divided into single samples and assigned labels to indicate the specific categories. The labeled 
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samples are divided into training set and test set according to the proportion, and the bearing fault 
diagnosis model is constructed and the parameters are configured. The model parameters are 
optimized by backpropagation. If the iterative batch is not reached, the training is continued, 
otherwise the fault classification is performed. 

3. Experimental verification and analysis 

In order to verify the effectiveness of the proposed method, the bearing data set of Case Western 
Reserve University (CWRU) [21] is used for verification. The data set is divided into training set 
and test set. In the training process, the initial learning rate is set to 0.001, and the network is trained 
by exponential learning rate descent method. In order to prevent overfitting, the size of Dropout is 
set to 0.5 and the attenuation rate is 0.9. The software environment of this experiment is 
TensorFlow 1.13.1 version of PyCharm 2022.2.2, and the hardware environment is Intel (R) Core 
(TM) i9-12900H @ 2.50GHz. 

3.1. Data set description 

The bearing test bench of CWRU is shown in Figure 6, which is composed of a motor, torque 
sensor and power meter. The bearing model used in the experiment is SKF6205, and the sampling 
frequency is 12 kHz. The speed of the  motor is 1797 r / min, 1772 r / min, 1750 r / min and 1730 r / 
min, respectively, and the corresponding loads are 0 hp, 1 hp, 2 hp and 3 hp, respectively. The data 
is collected by the acceleration sensor, and then marked as data sets A, B, C and D. The data set 
description is shown in Table 1. In order to better verify the diagnostic performance of the proposed 
method, variable noise, variable operating conditions and variable load experiments are carried out, 
and the proposed method is compared with the other five methods. The comparison methods 
include Inception Residual Block (IRB) [22], ResNet18 [23], LeNet-5 [24], Alexnet [25], and 
1DCNN [26].  

Table 1: Description of the data set  

Data set Rotating speed/ (r/ min) Load/ (hp) 
A 1797 0 
B 1772 1 
C 1750 2 
D 1730 3 

3.2. Variable noise fault diagnosis results and analysis 

In order to test the noise immunity of the proposed method, a variable noise interference 
experiment was carried out. Gaussian white noise with different signal-to-noise ratios is added to 
the original vibration signal to simulate the actual noise environment. 

                            
Figure 6: CWRU experimental platform Figure 7: Diagnostic accuracy Figure 8: Loss outcome map 
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The data with a load of 1hp are selected for experiments, and Gaussian white noises with signal-
to-noise ratios of 3dB, 6dB, 9dB and 12dB are added to the test set to test the diagnostic ability of 
the proposed method. The diagnostic accuracy and loss values are shown in Figure 7 and Figure 8. 

It can be seen from Figure 9 that the accuracy of the proposed method is higher than that of other 
methods. The average accuracy of the IRB method is lower than that of other methods. Although 
the IRB method improves the traditional residual structure and increases the number of convolution 
layers, the network cannot work well because it does not introduce the attention mechanism and has 
too many structural feature parameters. The structures of LeNet-5 and Alexnet methods are 
relatively simple, and the extracted shallow feature information cannot fully reflect the running state 
of the bearing, resulting in a poor diagnosis effect. ResNet introduces residual connections, which 
make it possible to effectively retain the feature information extracted from the shallow layer while 
extracting the deep feature information. However, when the signal-to-noise ratio is 3 dB, the 
accuracy of fault diagnosis can only reach 82.46 %, and the fault cannot be accurately classified. 
The accuracy of the 1DCNN method is only 84.41 % in the case of 3 dB strong noise, and the 
accuracy is low. When the signal-to-noise ratio is 3 dB, the fault accuracy of the proposed method 
can also reach 95.72 %, which further verifies that it has strong anti-noise performance. 

3.3. Variable load fault diagnosis results and analysis 

In the actual industrial process, the load of the bearing often needs to change, which requires the 
model to have strong generalization performance and strong fault diagnosis effects under different 
loads. The data with loads of 0Hp, 1Hp, 2Hp and 3Hp are selected for experiments. One data set is 
used as a training sample, while the other three data sets are used as test samples. 0-1, 0-2, 0-3 
means that the 0Hp data set is used as the training set, while the 1Hp, 2Hp, and 3Hp data sets are 
used as the test sets respectively, and other numbers are used as the training set. The proposed 
method is compared with other methods, and the comparison results are shown in Figure 10. 

       
Figure 9: Results of variable noise          Figure 10: Variable load results 

It can be seen from Fig.10 that the results of the proposed method are higher than those of the 
comparison method in the variable load experiment. The average accuracy of the proposed method 
can reach 98 %. The experimental results show that the proposed method has better generalization 
performance under variable load conditions. This is because under variable load conditions, the 
vibration signal of the bearing will change in different frequency and amplitude ranges, and the 
multi-scale feature extraction module enables the model to adapt to these changes and better extract 
useful features. In addition, the SCC module helps to improve the robustness of features. It can 
suppress noise and irrelevant features under both strong noise conditions and different loads, 
thereby improving the generalization performance of the model.  

3.4. Confusion matrix results and analysis 

In order to further verify the fault classification performance of the proposed method, the 
confusion matrix experiment is carried out on the test results. When the load is 1 HP and the signal-
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to-noise ratio is 3 dB, the confusion matrix experiment results are shown in Figure 11. It can be 
seen from Figure 11 that the comparison methods have different diagnostic errors, but the method 
proposed in this paper only has a deviation in the eighth type of fault. Therefore, this experiment 
shows that the proposed method has good fault classification ability.  

 
(a) IRB method                          (b) LeNet-5 method                          (c) ResNet method 

 
(d) Alexnet method                          (e) 1DCNN method                     (f) In proposed method 

Figure 11: Comparison of confusion matrix 

4. Conclusions  

In order to improve the accuracy and generalization performance of fault diagnosis under strong 
noise conditions, a rolling bearing fault diagnosis method based on MSAF is proposed. Firstly, a 
multi-scale feature extraction module is designed, which uses multi-channel convolution layers of 
different scales to extract features from input data. The main purpose of the design is to ensure that 
the effective information in the fault data is extracted to the maximum extent. Secondly, the SCC 
module is introduced, which can automatically adjust the weight of the convolution kernel 
according to the characteristics of the input data, thereby improving the network's perception of the 
input data. At the same time, the ECA-ResNet module is constructed, which combines channel 
attention and residual connection to adaptively enhance effective information and suppress 
interference information. Finally, the Softmax probability distribution function is used as a classifier 
to realize bearing fault classification. Experiments on CWRU datasets verify that the proposed 
method has high fault accuracy in a strong noise environment, and has good anti-noise and 
generalization performance. 
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