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Abstract: This study proposes a stacking-SHAP method for predicting spontaneous 
combustion temperature, aiming to improve prediction accuracy and explain the 
decision-making process of the black-box model in order to develop targeted solutions for 
different spontaneous combustion fire scenarios. The method first performs data 
preprocessing and the construction of composite indices, then uses the Grey Wolf 
Optimization (GWO) algorithm for hyperparameter optimization of the base learners in the 
stacking fusion model, and finally predicts the test set. Experimental results show that the 
stacking model achieves a coefficient of determination (R²) of 0.989, an average absolute 
error (EMA) of 6.003, a mean squared error (EMS) of 56.708, and an average logarithmic 
error (EMAP) of 6.34%. Comparison with the three base learners (GBDT, RF, and 
XGBoost) indicates that the stacking model outperforms them in terms of prediction 
accuracy and generalization ability. SHAP is used to interpret the stacking model, 
revealing the five most influential features on the prediction of spontaneous combustion 
temperature in the order of their impact: CO > O2/CO > CO2/O2 > CO2 > CO2/CO. 
Finally, ablation experiments confirm the accuracy of the SHAP interpretation method. 

1. Introduction 

Mine fire is one of the main disasters affecting the safety of coal mines [1], and spontaneous coal 
combustion is the main factor causing mine fires, and the prevention and control of spontaneous 
coal combustion has an important position in safeguarding the development of the national 
economy and guaranteeing the energy security [2], and the spontaneous combustion of coal will not 
only cause a large amount of coal resources to be wasted, but also produce a large amount of toxic 
gases, which will jeopardise the personal safety of workers in the underground mines [3], and mine 
safety has been highly valued by the central committee of the Party. Coal mine safety has been 
highly valued by the Party Central Committee, President has repeatedly emphasised that 
"production safety is a matter of people's well-being", and Premier Li Keqiang explicitly proposed 
in the third session of the 13th National People's Congress that "to ensure energy security, the first 
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priority is to promote the clean and efficient use of coal" [4]. Therefore, in the process of coal 
mining, it is necessary to carry out the monitoring of spontaneous coal combustion and ignition, and 
establish the monitoring system of spontaneous coal combustion and ignition. 

2. Literature Review 

The use of indicator gases is an important method for coal spontaneous combustion risk 
prediction, and many scholars have carried out related research. Zhai Xiaowei[5] used XK-VII 
large-scale coal spontaneous combustion experimental bench to simulate the natural ignition 
process of the 4-2 coal seam in Chaijiagou Mine, and analysed the parameters of spontaneous 
combustion characteristics, a single marker gas, and composite marker gases, deduced the range of 
the critical temperature of spontaneous combustion of coal seams and the dry cracking temperature, 
and the preferred indicator gases. An Jingyu[6] A study on the spontaneous combustion 
characteristics of No.2 and No.3 coal in a mine in Northwest China: the critical temperatures are 
73.0°C and 72.1°C, CO is suitable for prediction at full temperature, and C2H4 and C2H6 are the 
preferred indicator gases after the dry cracking temperature. Jiang Heng [7] used grey correlation 
method to calculate the correlation degree values between 11 indicator gas concentrations or 
concentration ratios and coal temperatures, and the gas indicators were preferred based on the 
correlation degree values. H. Jiang [8] used grey correlation method to calculate the correlation 
degree values between 11 indicator gases' concentration or concentration ratio and coal temperature, 
and preferred the gas indicators based on the correlation degree values. Although the research on 
indicator gases has made great progress, the prediction accuracy needs to be improved. 

With the emergence of machine learning, more scholars began to use machine learning 
algorithms to predict the temperature of spontaneous coal combustion. Deng Jun [9] et al. used 
particle swarm optimization algorithm (PSO) to optimize the support vector regression (SVR) 
parameters to establish a PSO-SVR model for coal spontaneous combustion temperature prediction, 
and the prediction accuracy was greatly improved. Zhou X [10] et al. proposed an XGBoost coal 
spontaneous combustion hierarchical early warning model combined with Bayesian optimization 
method, selected O2, CO, C2H4, etc. as indicator gases, and multiple models were compared to 
further validate the universality and stability of the BO-XGBoost model. Lei C [11] et al. proposed 
a coal spontaneous combustion prediction model based on the Random Forest method and based on 
the field data for testing, and also compared the neural network model, multivariate linear 
regression model, and the results showed that the random forest has better accuracy and prediction 
ability. Kong [12] et al. combined the logistic fitting model to fit the analysis of the indicator gas 
data with the curve of the coal temperature change, and established the coal spontaneous 
combustion grading early warning system based on the monitoring of the positive pressure beam 
pipe. And the CSC process was accurately classified into seven warning levels. Kong Biao [13] et al. 
proposed an improved whale optimisation algorithm combined with BP neural network 
(MSWOA-BP) for coal spontaneous combustion temperature prediction model. The validity of the 
model algorithm was verified based on the coal spontaneous combustion temperature rise 
experiments, and the prediction effect and performance of the particle swarm optimization (PSO-BP) 
model, the grey wolf optimization (GWO-BP) model, and the standard whale optimization 
(WOA-BP) model were further compared and analysed, and the results indicated that the 
MSWOA-BP prediction model had a higher prediction accuracy and stability. The introduction of 
machine learning has significantly improved the prediction accuracy, and the above study shows 
that machine learning has been widely used in the field of coal spontaneous combustion, however, 
at this stage of the research, the prediction is mainly carried out by using a separate model, which 
has a single prediction index, and it is difficult to explain the decision-making process of the 
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black-box model. For this reason, the stacking coal spontaneous combustion temperature prediction 
model is established by combining multi-source information fusion, and the SHAP interpretation 
method is used to explain the decision-making process of the model. 

3. Methodology 

In this study, the data were first cleaned, and conforming indicator construction was carried out 
based on the raw data to constitute the temperature prediction indicators. Subsequently, the data 
were preprocessed to remove outliers, fill in missing values, and standardize the data to eliminate 
the effect of magnitude. The processed data were then used for STACKING model training, and 
finally, the decision-making process of the STACKING model was interpreted using the SHAP 
method, as shown in Fig 1.

 

Figure 1 Technical Flow Chart 

3.1 The Stacking Model 

Stacking is a model fusion method [14], which involves an algorithm that integrates several 
different sub-models into a single framework. Its basic structure consists of two layers of algorithms: 
the first is the base learner, and the second is the meta-learner. For each base learner, training sets 
are constructed using a K-fold cross-validation method, which divides the dataset into K subsets. 
Each time, one subset is selected as the test set, while the remaining subsets serve as the training set, 
resulting in K predictions. The predictions from multiple base learners are then used as new features 
to train the meta-learner, which produces the final prediction. The method of model fusion can 
make the prediction better and reduce the risk of overfitting to a certain extent, this study adopts 
5-fold cross-validation to construct a complete model using GBDT, Random Forest (RF), XGBoost 
as base learners and Support Vector Machine (SVR) as meta-learner, shown in Fig 2. 
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Fig. 2 Schematic diagram of stacking model 

 

Fig. 3 Schematic diagram of the grey wolf hierarchy 

3.2 GWO Optimisation Algorithm 

GWO, developed by MIRJALILI and other scholars in 2014, is a meta-heuristic intelligent 
optimization algorithm based on the collaborative behaviour of grey wolf population [15]. The 
position of the grey wolf represents the possible solution of the optimization problem, and the prey 
represents the optimal solution of the problem. The GWO algorithm has the advantages of a simple 
structure, fewer parameters to be adjusted, and faster convergence. The algorithm grey wolf 
population is divided into four classes, and in the establishment of the mathematical model, the first 
four classes of grey wolves are defined as α , β ,δ and ω , and the social classes are shown in Fig. 
3.Grey wolf population hunting behaviour can be described by the following equation: 

( 1) ( )PX t X t A D+ = −                               (1) 

( ) ( )PD C X t X t= −                               (2) 

12 2 (1 ) 2 (1 )t tA r
T T

= − − −                              (3) 

22C r=                                   (4) 

Where X(t) and X(t+1) are the positions of the grey wolf at the t and t+1 iterations; Xp(t) is the 
position of the prey, r1 and r2 are random variables in the interval [0,1], and T is the maximum 
number of iterations. 

Since the location of the prey (optimal solution) is unknown, the model is built based on the 
property thatα (potential optimal solution), β  and δ  have more knowledge about the location of 
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the prey, and the iterative process uses α  , β  andδ  to guide the movement of ω  to achieve 
global optimisation. The positions of α  , β  andδ  are used to update the positions of all grey 
wolves using the following equations: 
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Where Xα  , X β  , Xδ  and X  denote the positions of α  , β  ,δ  and ω  wolves in the n 

iteration respectively, and Dα  , Dβ  and Dδ  denote the distances betweenα , β ,δ  and ω  
wolves and preys respectively, the specific algorithm is shown in Fig 4. 

 

Fig. 4 Schematic Diagram of GWO Algorithm 

3.3 SHAP Method 

The SHAP method is a method for interpreting the prediction results of machine learning models 
[16]. It is based on the Shapley value in game theory and aims to assign importance values to each 
feature to help us understand the contribution of each feature to the model predictions. At the heart 
of the SHAP method is the Shapley value, which is a method for distributing the benefits in a 
cooperative game. Specifically, the Shapley value provides a fair allocation for each feature that 
takes into account the marginal contribution of that participant in different co-operative situations. 
In machine learning, the marginal contribution of a feature is the effect of adding a feature to the 
model output, taking into account other features. The Shapley value corresponding to feature i can 
be calculated using the following formula: 
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Where M is the total number of features; F is the set of all features; f is the original prediction 
model; xi is the specific feature being interpreted; xi’ is the ith feature; S is the subset of features; 

iϕ  is the Shapley value of the feature. 
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3.4 Assessment of Indicators 

In order to evaluate the prediction accuracy of Stacking model, four evaluation indexes, namely, 
coefficient of determination R2 , mean absolute error EMA , mean square error EMS, and mean 
logarithmic error EMAP are used to reflect the prediction performance of the model, and compared 
with various single models to observe whether the prediction accuracy of the Stacking model has 
been improved. 

4. Data Sources and Processing 

4.1 Data Sources 

The principle of spontaneous combustion of coal refers to the process of heating of coal by 
spontaneous reaction with oxygen in the air at room temperature and pressure. In this paper, we 
used the coal samples from each coal seam in Fan Ge Zhuang to carry out the procedure of warming 
experiments, to get the data of temperature and concentration of each gas, and to get the raw data as 
the following Table 1. 

Table 1 Raw Data 

O2(%) CO(%) CO2(%) CH4(%) C2H6(%) C2H4(%) C2H2(%) Temperature 
20.03595 0.10803 0.29793 0.00175 0.00049 0 0 140 
18.83877 0.19264 0.54502 0.00301 0.00104 0.00039 0 150 
17.76794 0.24778 0.66899 0.00392 0.00157 0.00054 0 160 
14.98513 0.51966 1.15373 0.00751 0.00329 0.00125 0 180 
12.99324 0.94913 1.83605 0.01255 0.00557 0.00238 0 200 
10.37657 1.22581 2.18458 0.01543 0.00631 0.00326 0 220 
7.46344 1.88761 2.98663 0.02311 0.00777 0.00523 0 240 

4.2 Data Pre-processing 

Firstly, the outliers of the data are detected, and the adjacent values are replaced for the data 
where the gas concentration suddenly and abnormally increases or decreases, and some of the data 
do not conform to the real data intervals, and the existence of the total gas content is greater than 
100 per cent, which does not conform to the real situation, and is eliminated. Vacant values are 
filled in using neighbouring data fitting, and after filling in, it is checked again whether it is an 
abnormal value, and if it is an abnormal value, it is eliminated. Composite indicators were 
constructed based on the processed data, and the constructed gas difference and inter-gas ratio data 
were introduced into the predictive indicators, as shown in Table 2 below: 

Table 2 Composite Indicator Data 
O2 / N2 O2 / CO O2 / CO2 ΔO2 ΔCO ΔCO2 ΔCH4 Temperature 

0.29355 0.03107 0.00723 0.00175 0.24564 185.46653 67.25052 140 
-1.19718 0.08461 0.24709 0.00126 0.23425 97.79261 34.56528 150 
-1.07083 0.05514 0.12397 0.00091 0.21852 71.70853 26.55935 160 
-2.78281 0.27188 0.48474 0.00359 0.17983 28.83641 12.98842 180 
-1.99189 0.42947 0.68232 0.00504 0.15431 13.68963 7.07673 200 
-2.61667 0.27668 0.34853 0.00288 0.12039 8.46507 4.74991 220 
-2.91313 0.6618 0.80205 0.00768 0.08517 3.95390 2.49895 240 
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In order to eliminate the effect of the dataset's magnitude on the predictive model, the processed 
data was normalised as follows: 

' xx µ
σ
−

=                                   (9) 

Where x’ is the normalised value; x is the value before normalisation; µ  is the mean of the 
data; σ  is the variance of the data. 

5. Model Construction and Analysis of Results 

5.1 Model Construction and Training Stacking-SHAP Model Construction 

Step1:The processed data is divided into training set and test set in the ratio of 7:3, and the 
training set is divided into five subsets on average by using the five-fold cross-validation method, 
each time four of the subsets are input into the three base learners of RF, GBDT, and XGBoost for 
training, and prediction of the remaining one subset, and the training is carried out for five times, to 
get the prediction values of the three base learners on the training set. 

Step2: The prediction results of the three base learners are used as new features, which are input 
into the meta-learner, the meta-learner is trained, and the prediction is performed in the test machine 
to constitute a complete stacking coal spontaneous combustion temperature prediction model. 

Step3: The stacking model predictions are compared with the three base learners' predictions, 
and the models are comprehensively evaluated using evaluation metrics. 

Step4: Interpret the stacking model using the SHAP method to derive the extent to which each 
metric influences the model's predicted results. 

5.2 Parameter Optimisation 

Multiple models are integrated in this model and a large number of parameters need to be set, so 
the GWO optimisation algorithm is used to optimise the parameters of each base learner to obtain 
the optimal parameters of the model using R2 as the fitness function. The optimal parameters of 
each model after optimisation are shown in Table 3 below: 

Table 3 Model Hyperparameter Optimisation Results 
Modelling Parameters Optimal parameter values 
 
 
GBDT 

learning_rate 0.1 
max_depth 5 
min_samples_leaf 1 
min_samples_split 5 
n_estimators 100 

 
 
RF 

n_estimators 107 
max_features 0.8 
min_samples_split 2 
min_samples_leaf 1 
max_depth 10 

 
 
 
XGBoost 

n_estimators 174 
max_depth 1 
learning_rate 0.2 
min_child_weight 1.5 
subsample 1 
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5.2 Forecast Results and Comparative Analysis 

The parameter optimised model was embedded in stacking model for training, and one of the 
coal seam sample data was selected for testing to get the final prediction results, and the results of 
comparing the prediction results of the four models with the real values are shown in Fig. 4: 

  

GBDT model RF model 

  

XGBoost model Stacking model 
Fig. 4 Comparison of Predicted Results 

Table 3 shows the comparison of the evaluation indexes of different models in the test set, where 
the value of R2 is in the range of [0, 1], and the closer it is to 1, the higher the accuracy of the 
model; EMA is the average of the absolute difference between the predicted value and the true 
value, which reflects the accuracy of the model's prediction; EMS is the average of the squared 
difference between the predicted and the true value, which emphasises the effect of larger errors; 
EMAP is the average of the ratio of the absolute error to the true value, which is expressed as a 
percentage, reflecting the relative error; and is the average of the ratio of the absolute error to the 
true value, expressed as a percentage, which reflects the relative error. The mean is the ratio of the 
absolute error to the true value, expressed as a percentage, reflecting the relative error. 

Table 3 Results of Evaluation Indicators 

Model R2 EMA EMS EMAP 
GBDT 0.955 9.987 231.230 8.21 per cent 

RF 0.970 9.471 151.596 10.66 per cent 
XGBoost 0.948 13.664 267.601 12.44 per cent 
Stacking 0.989 6.003 56.708 6.34 per cent 

Through model comparison, it can be seen that the stacking model is the most effective, with 
higher prediction accuracy and the strongest generalisation ability, its coefficient of determination 
R2 is 0.989, the average absolute error EMA is 6.003, the mean squared error EMS is 56.708, and the 
average logarithmic error EMAP is 6.34%, and all the four evaluation indexes are optimal, and the RF 
model is the most effective among the three base-learners, with the results of R2 being 0.970, EMA 
being 9.471, being 151.596 and being 10.66%. 9.471, EMS is 151.596, EMAP is 10.66%, the 
prediction performance of the four models is ranked as stacking >  RF >  GBDT >  XGBoost. 
stacking model has a certain improvement in prediction effect compared to the three individual 
models, which is of great significance for the prediction of spontaneous combustion temperature of 
coal with high accuracy. 
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5.3 Interpretation of the model 

In order to reveal the degree of contribution of each indicator in the model to the prediction 
results, the relationship between the input features in the stacking model and the prediction results is 
analysed using the SHAP method, and the global interpretation of some features is shown in Fig. 5, 
in which the horizontal coordinates of the feature importance plot represent the Shapley values of 
the features, and each point has to represent the degree of contribution of each feature in the sample, 
and the blue to red colour represents the degree of contribution is getting bigger and bigger. If a 
feature has a long-tailed distribution, it means that it will have a great influence on the prediction 
results; the bar chart shows the average Shapley value of the features, and the larger the average 
Shapley value, the greater the influence of the features on the prediction results in the whole sample. 
It can be seen that the five features with the greatest degree of influence on the prediction of coal 
spontaneous combustion temperature are in order CO>O2/CO>CO2/O2>CO2>CO2/CO, the global 
interpretation of the features of the map demonstrates the dominant factors in the spontaneous 
combustion of coal fuming, which has an important significance for the implementation of specific 
measures [17]. 

 

Figure 5 Global Interpretation Result Chart 
Figure 6 shows the feature local interpretation plots for the sample data from two of the coal 

seams, the local interpretation plots provide insight into the individual sample predictions and help 
us to analyse how the model makes decisions based on the features. At the start of the decision plot 
there will be a baseline value representing the average prediction when the model does not have any 
input features, if a feature has a positive Shapley value this means that the feature is driving the 
predicted temperature up. Conversely, a negative Shapley value means that the feature is driving the 
predicted temperature down. The closer a feature is to the baseline value, the less impact it has on 
the prediction of the current sample. Conversely, the further away from the baseline value the 
feature is the more impact it has on the prediction. 
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Fig. 6 Local Interpretation Result Map 

5.4 Ablation Experiments 

In order to study the effect of each feature on the model prediction more deeply and to verify the 
degree of feature contribution explained by the SHAP method, this study carries out ablation 
experiments, retrains the model by deleting certain input features with high Shapley values in the 
stacking model, and analyses the effect of the deleted features on the model prediction accuracy 
according to the prediction results [18]. In this study, five groups of experiments are set up to delete 
the five features with the highest mean values and analyse them in comparison with the model 
before deletion. In order to eliminate chance, one coal sample data is fixed as the test set for each 
group of experiments, and the rest of the coal samples are used as the training set. 

 

Fig. 7 Graph of Ablation Experiment Results 
Figure 7 shows the prediction performance results of the stacking model ablation experiments, 

which can visualise the changes after the ablation experiments. It can be seen that among the five 
features selected for deletion, the one with the greatest impact on the model performance is CO, and 
after deleting the features, the model's R2 decreases to 0.952, and the model's average absolute error 
EMA, the mean squared error EMS and the average pairwise error EMAP increase; and the one with the 
least impact on the model performance is , and after deleting the features the model's decreases to 
0.977. The smallest impact on the model performance is CO2 / CO, and after removing the features, 
the model's R2 decreases to 0.977. The input indexes influence the model's prediction performance 
in the order of CO>O2/CO>CO2/O2>CO2>CO2/CO, which contributes to the same extent as the 
indexes interpreted by the SHAP method, which also verifies the accuracy of the SHAP's 
interpretation of the model's decision-making process and the indexes. 
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6. Conclusion  

In order to further improve the accuracy of coal autogenous combustion temperature prediction 
and increase the interpretability of the black-box model, this paper proposes an interpretable model 
based on stacking-SHAP for coal autogenous combustion temperature prediction. The main work 
includes: (i) the construction of composite indicators on the data; (ii) the prediction of spontaneous 
coal combustion temperature by stacking integrated model; (iii) the optimisation of the GWO 
optimisation algorithm on the basis of the base learner in the stacking model to improve the 
accuracy of the model prediction; (iv) the use of the SHAP method to explain the decision-making 
process of stacking both globally and locally; and (v) the use of the ablation experiments to explore 
the effect of the indicators on the model prediction and to validate the accuracy of SHAP. Finally, 
the following conclusions are obtained:  

(1) The stacking model is optimised by hyperparameters and finally the accuracy of temperature 
prediction in the test set is high its coefficient of determination R2 is 0.989, mean absolute error EMA 
is 6.003, mean square error EMS is 56.708 and mean logarithmic error EMAP is 6.34%. 

(2) The stacking model shows a large improvement in prediction performance when compared to 
the three base learners GBDT, RF, and XGBoost. 

(3) The SHAP method was used to interpret the stacking model, and the features that contributed 
more to the model decision were shown, of which the five features that contributed the most were, 
in order, CO>O2/CO>CO2/O2>CO2>CO2/CO. 

(4) The ablation experiment retrains the model by deleting the five metrics with the greatest 
degree of contribution, indicating that the degree of influence on the model's predictive 
performance is in the order of CO>O2/CO>CO2/O2>CO2>CO2/CO, which is roughly the same as 
that interpreted by the SHAP method, verifying the accuracy of the SHAP method. 
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