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Abstract: The satellite clock bias (SCB) with high sampling rate is needed in precise point 

positioning, and the sampling interval of SCB provided by the analysis center is relatively 

large, so SCB with large interval must be interpolated and encrypted by interpolation 

methods. Three interpolation methods are used to interpolate SCB from 5-minute sampling 

intervals to 30-second sampling intervals, and the interpolated results are compared and 

analyzed with the published SCB for 30-second sampling intervals. The results show that 

the accuracy of linear interpolation method is the highest, followed by cubic spline 

interpolation method and then Lagrange interpolation method. In addition, the interpolation 

accuracy of the three interpolation methods is the highest for GPS IIF and IIIA satellites 

launched in recent years, followed by IIR-M satellites launched in the middle of the period, 

and then IIR satellites launched in the early period. 

1. Introduction 

Precise Point Positioning (PPP) technology is a high-precision positioning technology in the 

field of satellite navigation and positioning, which takes the data collected by a single receiver as 

the main observation value, and uses post-processing precision ephemeris as well as precision 

satellite clock bias (SCB) to carry out PPP, which has the advantages of low cost of construction, 

not restricted by the distance of action, flexible operational mobility, and many advantages [1-3]. To 

achieve centimeter-level positioning accuracy in PPP technology, precise satellite orbits and clock 

bias must be incorporated into the equations as known parameters for position determination. At 

present, the GPS ultra-fast orbit products provided by the International GNSS Service (IGS) and its 

affiliated analysis centers are able to meet the requirements of PPP technology [4, 5]. The sampling 

rate of the receiver in actual positioning is generally 30s, 15s or even denser, but the sampling 

interval of the SCB provided by IGS is 5 min. therefore, certain interpolation methods must be 

adopted to encrypt or fit the precision interpolation of SCB at larger intervals, so as to obtain the 

precision SCB at any moment, which is crucial for improving the accuracy of the PPP technology 

[6-8]. 
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Currently, the commonly used SCB interpolation methods include linear interpolation, Lagrange 

interpolation, generalized extended approximation, Newton interpolation, sliding polynomial 

interpolation, Hermite interpolation, spline function interpolation, and Chebyshev's fitting and least 

squares curve fitting [9-16]. Literature [9] introduced the generalized delay interpolation method 

into SCB interpolation for the first time, and compared and analyzed the accuracy with Lagrange 

interpolation and cubic spline interpolation, and got the conclusion that the method has high 

interpolation accuracy. Literature [10] used Lagrange interpolation and Chebyshev's fitting method 

respectively to interpolate the precision SCB of GPS satellites from 15 min to 5 min and compared 

the interpolation accuracy, and found that the interpolation result of Chebyshev's fitting method has 

higher accuracy. Literature [11] utilized linear interpolation, Lagrange interpolation and quadratic 

Hermite interpolation to interpolate the precision SCB of GPS satellites from 5min to 30s and 

compared the interpolation accuracy, and found that the quadratic Hermite interpolation method has 

the highest interpolation accuracy considering the clock speed. These studies only analyzed the 

interpolation accuracy of 15min and 5min precision SCB products released by IGS analysis center, 

and did not analyze the interpolation accuracy of 5min precision SCB products released by GNSS 

analysis center of Wuhan university in China. 

In order to fully analyze the interpolation accuracy and practical effect of linear interpolation, 

cubic spline interpolation and Lagrange interpolation, the after-the-fact precision SCB product with 

a sampling interval of 5min released by the GNSS analysis center of Wuhan University is used, and 

the three kinds of interpolation methods are applied to interpolate the precision SCB with a 

sampling interval of 5min to the SCB with a sampling interval of 30s, and some useful conclusions 

are obtained by comparing and analyzing the results of the interpolation and that of the precision 

SCB with a sampling interval of 30s released by the GNSS analysis center of Wuhan University. 

The interpolation results are compared and analyzed with the precision SCB of 30s sampling 

interval released by Wuhan university GNSS analysis center, and some useful conclusions are 

drawn. 

2. Principle of Satellite Clock Bias Interpolation Algorithm 

2.1 Linear Interpolation 

Linear interpolation [11] is an interpolation method for one-dimensional data, which allows 

numerical estimation based on the two data adjacent to the left and right of the point to be 

interpolated in a one-dimensional data sequence. The most important feature of the linear 

interpolation method is that its formula is simple and easy to program and implement. Assuming 

that the SCB corresponding to the moments  and  are  and  respectively, the 

interpolation polynomials through the points  and  can be expressed as 

follows: 

(1) 

where  ,  are linear interpolation basis functions with respect to the moments  and 

, which can be expressed as , . 

The interpolating basis functions  and  are obtained by substituting them into Eq. (1): 
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  (2) 

The SCB data can be linearly interpolated using equation (2). 

2.2 Cubic Spline Interpolation 

Assuming that cubic spline interpolation [12-13] is carried out for the SCB corresponding to 

 time is ,respectively, it is necessary to construct the spline 

function  firstly, and let the expression of this spline function on the interval  can be 

expressed as follows: 

 
(3) 

where . 

The function  needs to fulfill the following two conditions: 

(1) Interpolation condition: . This ensures that the spline function 

passes through the given data point . 

(2) Continuity condition: at the inner node, the spline function  and its first-order and 

second-order derivatives  should be kept continuous, i.e.,

, where . The above conditions 

ensure the smoothness and continuity of the spline function, so that the curve obtained by 

interpolating between the SCB data points is both smooth and can meet the interpolation 

requirements. 

2.3 Lagrange Interpolation 

Lagrange interpolation [10, 14-16] is a classical polynomial interpolation method that allows a 

polynomial to be constructed to approximate a certain function based on a given set of data points. 

Assuming that for a given  different interpolating nodes  whose corresponding SCB 

are  , a n  sub-interpolating polynomial can be constructed as: 

 
(4) 

where  are all polynomials of the  order and are called Lagrange basis 

function or interpolating basis function. 

The interpolating basis functions can be simplified as: 
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 need to be met: 

 

(7) 

This follows from the fact that all  nodes  are zeros of a polynomial  of the 

 order: 

 

(8) 

where,  is the coefficient to be determined, which is then obtained from equation (7): 

 

(9) 

From this, the final result can be obtained as: 

 

(10) 

The SCB data can be Lagrange interpolated using equation (10). 

3. Experiment and Analysis 

3.1 Experimental Data Sources 

In order to fully analyze the accuracy and practical effect of the three SCB interpolation methods 

in this paper, the after-the-fact precision SCB data with sampling intervals of 5min and 30s on day 0 

of week 2023 released by GNSS analysis center of Wuhan university are used to conduct simulation 

experiments. There are more than 30 GPS satellites in orbit in this time period, and their on-board 

clocks are of the following five types: BLOCK IIR-Rb clock, BLOCK IIR-M-Rb clock, BLOCK 

IIF-Rb clock, BLOCK III-A-Rb clock and BLOCK IIF-Cs clock. Since the on-board clocks of the 

BeiDou system are basically the same as those of the GPS system, in order to make the results of 

the study provide some references for the BeiDou satellite navigation system of our country in the 

research of SCB interpolation and encryption, the satellites of GPS IIF-Rb PRN06, GPS IIR-M-Rb 

PRN07, GPS III-A-Rb PRN11, and GPS IIR-Rb PRN19 are randomly selected for the experiments. 

The clock bias data of these satellites are experimented. Their related information is shown in Table 

1. 

Table 1: Selected satellite related information. 

Satellite 

number 
Clock type SVN 

Orbital 

plane 
NORAD 

Launch 

time 
Trends in clock bias 

PRN 06 IIF-Rb 67 D4 39741 2014.5.17 positive monotonically decreasing 

PRN 07 IIR-M-Rb 48 A4 32711 2008.3.15 monotonically increasing negative value 

PRN 11 III-A-Rb 78 D5 48859 2021.6.17 negative value monotonically decreasing 

PRN 19 IIR-Rb 59 C5 28190 2004.3.20 positive monotonically increasing 
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The variations of the precision SCB time series of these four satellites at the 6h 5min sampling 

interval before day 0 of GPS week 2023 are shown in Figure 1, with a positive monotonically 

decreasing trend in the clock bias time series of PRN01, a negative monotonically increasing trend 

in the clock bias time series of PRN07, and a negative monotonically decreasing trend in the clock 

bias time series of PRN11, and a negative monotonically decreasing trend in the clock bias time 

series of PRN19. The clock bias time series of PRN19 has a positive monotonically increasing trend. 

In addition, the selected satellites are fully representative of the GPS IIR and IIR-M satellites 

launched in the early period, the GPS IIF satellites launched in the middle period, and the GPS III-A 

satellites launched in the recent years. 

  
(a) PRN06 (b) PRN07 

  
(c) PRN11 (d) PRN19 

Figure 1: Chart of clock bias variation of PRN06, PRN07, PRN11 and PRN19 satellites. 

3.2 Experimental Results and Analysis 

At present, the sampling intervals of the precision SCB products released by the GNSS analysis 

center of Wuhan university are 5min and 30s. In order to fully compare and analyze the accuracy of 

the three kinds of SCB interpolation models in this paper, the precision SCB with a sampling 

interval of 5min is used as the data to be interpolated at 6h before the 0th day of the week of GPS 

2023, and the linear interpolation model, the cubic spline interpolation model, and the Lagrange 

interpolation model are established respectively to interpolate the 5min sampling interval to the 30s 

sampling interval SCB, the precision SCB of 5min sampling interval is interpolated to the SCB of 
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30s sampling interval. As this experiment uses the precision SCB products released by Wuhan 

university GNSS analysis center, its own error is less than 0.1ns, so it can be used as the true value, 

the SCB obtained by the interpolation model of the three SCB interpolation model is used as the 

calculated value, and the difference between the true value and the calculated value can be obtained 

as the error of the interpolation model. The Mean Squared Error (MSE) and Mean Absolute Error 

(MAE) (the specific calculation formula is shown in equations (11) and (12)) are used as the 

evaluation indexes to test the degree of interpolation effect of the three interpolation models. 

Among them, MSE is more sensitive to large errors because the square of the error amplifies the 

large error, and the smaller the value of MSE, the interpolation result of the model is more accurate. 

While MAE treats all errors equally and does not amplify or minimize any deviation, the smaller 

the value of MAE, the closer the interpolation result of the model is to the true value. If the MSE 

value of the interpolated model is large but the MAE value is relatively small, this may indicate that 

the model has some large anomalous errors. On the contrary, if the MAE value is large but the MSE 

value is relatively small, this may indicate that the model has a more uniform error distribution. The 

simultaneous use of these two-evaluation metrics provides a more complete picture of the model's 

performance on different types of errors as a way to compare the interpolation accuracy of these 

three interpolation models. See Figure 2-Figure 4 and Table 2 for details. 

 (11) 

 (12) 

Figure 2 shows the variation of linear interpolation error for satellites PRN06, PRN07, PRN11 

and PRN19, Figure 3 shows the variation of cubic spline interpolation error for satellites PRN06, 

PRN07, PRN11 and PRN19, Figure 4 shows the variation of Lagrange interpolation error for 

satellites PRN06, PRN07, PRN11 and PRN19, and Table 2 shows the satellite statistical results of 

the clock bias interpolation errors. 
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(c) PRN11 (d) PRN19 

Figure 2: Linear interpolation errors of PRN06, PRN07, PRN11 and PRN19 satellites. 

  
(a) PRN06 (b) PRN07 

  
(c) PRN11 (d) PRN19 

Figure 3: Cubic spline interpolation errors of PRN06, PRN07, PRN11 and PRN19 Satellites. 
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(a) PRN06 (b) PRN07 

  
(c) PRN11 (d) PRN19 

Figure 4: Lagrange interpolation errors of PRN06, PRN07, PRN11 and PRN19 Satellites. 

Table 2: Comparison of accuracy of different interpolation models for satellite clock bias. 

(unit: MSE/ns2, MAE/ns) 

Method 
Evaluation 
indicators 

PRN06 PRN07 PRN11 PRN19 Average 

Linear 
interpolation 

MSE 0.0002 0.0108 0.0002 0.0124 0.0059 

MAE 0.0075 0.0753 0.0085 0.0808 0.0430 

Cubic spline 
interpolation 

MSE 0.0001 0.0129 0.0002 0.0145 0.0069 

MAE 0.0077 0.0825 0.0092 0.0871 0.0466 

Lagrange 
interpolation 

MSE 0.0003 0.0418 0.0005 0.0386 0.0203 

MAE 0.0119 0.1488 0.0169 0.1397 0.0793 

This can be seen by combining Figure 2-Figure 4 and analyzing Table 2: 

Overall, for the interpolation accuracy of the SCB, the linear interpolation method has the 

highest interpolation accuracy, and its average mean square error can reach 0.0059ns, and the 
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average absolute error can reach 0.0430ns; followed by the accuracy of cubic spline interpolation, 

and its average mean square error can reach 0.0069ns, and the average absolute error can reach 

0.0466ns; Lagrange interpolation method, due to the influence of the Runge phenomenon, its 

interpolation accuracy is reduced, the average mean square error reaches 0.0203ns, and the average 

absolute error reaches 0.0793ns. The average mean square error and average absolute error of the 

linear interpolation method are improved by 14.49% and 7.73%, respectively. Compared to the 

cubic spline interpolation, the average mean square error and average absolute error are improved 

by 70.94% and 45.78%. Compared to the Lagrange interpolation are improved by 45.78%. The 

interpolation accuracy of the linear interpolation method is basically comparable to that of the cubic 

spline interpolation method, and their average mean square errors can be controlled within 0.0069ns, 

and the average absolute errors can be controlled within 0.0466ns. 

4. Conclusion 

In order to fully analyze the accuracy and practical effect of the three SCB interpolation methods 

in this paper, the precision SCB products with sampling intervals of 5min and 30s released by the 

GNSS analysis center of Wuhan university are used as the base data, and the interpolation accuracy 

of the precision SCB products with 5min sampling interval is analyzed by using linear interpolation, 

cubic spline interpolation and Lagrange interpolation methods. In this study, the precision SCB of 

5min sampling interval is interpolated to the precision SCB of 30s sampling interval, and the 

precision SCB of known 30s sampling interval is compared and analyzed. From the interpolation 

results, the three interpolation methods can be used to encrypt and interpolate the SCB products, in 

which the linear interpolation method offers the highest accuracy, followed by cubic spline 

interpolation, and then Lagrange interpolation. In addition, the three interpolation methods have the 

highest interpolation accuracies for GPS IIF-type and GPS IIIA-type satellites launched in the last 

few years, followed by GPS IIR-M-type satellites launched in the middle of the period, and again 

by GPS IIR-type satellites launched in the early period. 
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