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Abstract: Against the backdrop of increasingly severe credit bond default risks in China, 

how to accurately identify and efficiently warn of corporate bond default risks has become 

a major focus of academic and practical fields. This study aims to overcome the 

shortcomings of traditional default risk warning models in terms of predictive ability, 

hyperparameter adjustment, and model interpretability. We have constructed a novel 

corporate bond default risk warning model, LightGBM-NSGA-II-SHAP, by organically 

integrating LightGBM, NSGA-II, and SHAP algorithms. Through empirical testing, the 

warning accuracy of this model exceeds 85%, and its performance is significantly better 

than traditional methods. In addition, the application of SHAP algorithm enables the 

visualization of the impact of warning features, and the results show that features such as 

coupon rate, net profit margin of fixed assets, total issuance amount, and accounts 

receivable turnover rate are crucial for identifying bond defaults. 

1. Introduction  

In recent years, bond default events have broken out frequently in China, which has become a 

significant financial risk problem, and has attracted extensive attention from academia and 

industry[1]. In this field, the main research directions include the selection of warning indicators and 

the optimization of warning models. Regarding warning indicators, previous studies have pointed 

out that micro indicators such as corporate financial status, non-financial characteristics, and bond 

attributes, as well as macroeconomic factors such as GDP, interest rates, and price indices, are key 

predictive factors[2]. The warning effect of combining financial and non-financial indicators has 

been proven to be more significant. Therefore, this study incorporates multiple financial indicators 

such as debt paying ability, profitability, operational efficiency, development potential, capital 

structure, and cash flow, as well as bond attributes, non-financial characteristics of enterprises, and 

macroeconomic indicators, into the construction of an early warning feature system[3]. Considering 

the high requirement for timeliness in credit risk warning, this study chose quarters as the time 

window to explore the impact of different time periods on the effectiveness of the warning model. 

Traditional default risk warning methods, such as Altman Z-Score and option theory models, 

although widely used, have certain limitations. In recent years, with the continuous advancement of 

machine learning technology, the LightGBM model has been selected as the core model for 

research due to its excellent predictive performance. In addition, in order to optimize the 
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hyperparameters of the model, this study introduced the NSGA-II algorithm, thereby improving the 

warning effect. In terms of interpretability of the model, this study adopted the SHAP algorithm to 

visualize the contribution of each feature to the prediction results, filling the gap in interpretability 

of existing methods[4]. Therefore, the contribution of this study mainly lies in three aspects: firstly, 

constructing a comprehensive warning feature system that comprehensively considers financial, 

bond, non-financial, and macroeconomic indicators; Secondly, by integrating multiple machine 

learning algorithms, the warning accuracy and explanatory power of the model have been improved; 

Thirdly, by analyzing the performance of the model under different time windows, a new 

perspective has been provided for the study of bond default warning[5]. 

2. Principle of Early Warning Model Algorithm 

LightGBM aims to improve computational efficiency while maintaining classification accuracy 

through single-sided sampling (GOSS) and unique feature bundling (EFB) techniques. When 

applying LightGBM for bond default risk warning, the goal of the model is to fit the warning 

feature set by optimizing the loss function x and label vector y. The loss function is shown in 

formula (1).  
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Among them, L represents the error between the model warning results and the actual default 

status. The LightGBM model uses k regression trees to construct the final risk warning model, as 

shown in formula (2). 
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In each iteration of the algorithm, the risk warning objective function is optimized ithrough 

second-order Taylor expansion, as shown in formula (3). 
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Among them, gi and hi are the first-order and second-order degrees of the loss function, 

respectively, and  is the regularization term aimed at preventing overfitting. When 

selecting the optimal splitting feature for each tree, calculate the splitting benefit to maximize the 

information gain (formula (4). 
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LightGBM adopts a Leaf wise growth strategy and histogram algorithm to optimize model 

performance. Compared with traditional strategies, the Leaf wise strategy selects the leaf with the 

highest gain for splitting in each iteration, effectively improving the warning effect of the model 

while suppressing overfitting. The histogram algorithm improves training efficiency by discretizing 

continuous features into integers to construct histograms. 

In order to improve the performance of the LightGBM model in bond default risk warning, this 

paper applies the Fast Non Dominated Sorting Genetic Algorithm II (NSGA-II) to optimize its 
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hyperparameters. NSGA-II is an algorithm that solves multi-objective optimization problems by 

simulating natural selection and evolution processes to find the optimal solution set. We defined 

hyperparameters to be optimized, such as learning rate, number of leaves, maximum depth, and 

sampling ratio, and randomly generated an initial population, with each individual representing a 

combination of hyperparameters. Subsequently, each individual was trained using LightGBM and 

their fitness was evaluated based on the model's warning accuracy and efficiency. Next, the 

population is non dominated sorted, individuals are classified according to their strengths and 

weaknesses, and the crowding distance of each individual is calculated to reflect their density 

distribution in each level. Based on these rankings and crowding levels, select individuals suitable 

for reproduction. Generate a new generation of individuals through crossover and mutation 

operations, and merge them with the original population to form a new population. The new 

population will undergo sorting and crowding calculation again to determine the next generation of 

individuals. Output the optimal hyperparameter combination when the predetermined termination 

conditions are met. This process not only optimizes model performance, but also maintains 

diversity in understanding. 

In order to improve the interpretability of the warning model and identify key warning features, 

this study adopted the SHapley Additive exPlans (SHAP) algorithm. The SHAP algorithm was 

proposed by Lundberg in 2017 based on the Shapley value in game theory, aiming to quantify the 

marginal contribution of each warning feature to the model's prediction results. The risk warning 

result of the model consists of the SHAP value of each feature and the mean of all sample target 

variables, as shown in formula (5): 
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Among them, represents the SHAP value of the i-th feature,  is the mean of the target 

variable, M is the total number of features, and  indicates whether the feature exists (0 or 1). The 

calculation formula for SHAP value is: 
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Among them, p is the total number of features, S is a subset containing other features, f(S) is the 

model output of subset S, and  is the model output after adding feature i. By 

calculating these SHAP values, we can gain a detailed understanding of the specific impact of each 

warning feature on model decision-making. 

3. Experimental Design 

This study used the LightGBM-NSGA-II model to identify bond default risk and conducted 

interpretability analysis on the identification results using the SHAP algorithm. The research 

process is divided into four main steps: (1) data collection and preprocessing. Extract raw data from 

the database, perform feature filtering, and then divide the dataset into training and testing sets; (2) 

Training and optimization of the model. Train the LightGBM model based on the training set and 

optimize the hyperparameters of the model using NSGA-II; (3) Testing and performance evaluation 

of the model. Verify the recognition performance of the optimized model using a test set and 

evaluate it from both accuracy and efficiency perspectives; (4) Explanation of the model. Identify 
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key features that have a significant impact on bond default prediction results through SHAP 

algorithm, and analyze the specific effects of these features on the model's prediction results[6]. 

This study was conducted from the Wind database( https://www.wind.com.cn/ )We extracted 

bond default data of Chinese listed companies from 2014 to 2023. Due to the possibility of multiple 

defaults by companies in the same quarter, this study selected 220 samples of bond default events 

that occurred for the first time in each quarter. In order to ensure the rationality of the sample, this 

study adopted a method similar to that of Pang Chunchao et al., matching each default sample with 

two non default samples at a matching ratio of 1:2. The specific operation is to use the CSMAR 

database( https://data.csmar.com/ )Select companies that have similar characteristics to the default 

sample in terms of their main business and current total asset size as the control group. The final 

dataset contains 660 samples, with defaulting companies marked as 1 (label=1) and non defaulting 

companies marked as 0 (label=0). In data processing, the quarter in which the default occurred was 

set as Q, and warning features were selected from the quarter before the default (Q1), the first two 

quarters (Q2), the first three quarters (Q3), and the first four quarters (Q4). The warning features 

include a total of 36 items, covering financial indicators, bond attributes, macroeconomic indicators, 

and corporate characteristics. Among them, financial indicators involve six aspects including debt 

paying ability, development ability, cash flow ability, profitability, operating ability, and ratio 

structure, totaling 24 indicators, while non-financial indicators have 12 items. According to the 

research methods of Xu Shuyue and Cao Yanhua, missing value processing was applied to the data, 

resulting in the construction of four datasets. 

Figure 1 shows the Pareto front of dataset 1 optimized by NSGA-II, where y1 represents the 

error omission rate (FOR) and y2 represents the recall rate (TPR). In the figure, green dots mark the 

optimal solutions selected in the study. The hyperparameter combinations of these optimal solutions 

are used to construct a default risk warning model. Table 1 presents the specific results of 

hyperparameter optimization on four datasets. 

 

Figure 1. The Pareto front of DatasetQ1 hyperparameter optimization results for DatasetQ1 

Table 1. Hyperparameter optimization results of four datasets 

 Learing-rate Num-leaves Max-depth subsample 

DatasetQ1 0.013 29 9 0.54 

DatasetQ2 0.179 31 9 0.70 

DatasetQ3 0.050 51 4 0.58 

DatasetQ4 0.176 47 3 0.53 
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4. Design of Model Effect Evaluation Indicators 

This study designed six classic machine learning models for comparison to evaluate the 

effectiveness of the proposed method. Specifically, LightGBM-GA was used for bond default 

identification, and its performance was compared with the hyperparameter optimization algorithm 

NSGA-II to determine its advantages over GA. The hyperparameter ranges of methods 1 and 2 are 

the same, while method 3 uses the unoptimized LightGBM model with hyperparameters. Methods 4, 

5, 6, and 7 respectively use classic models such as XGBoost, Adaboost, ANN, and SVM. The 

performance of all models on the test set will be evaluated by accuracy (ACC), error omission rate 

(FOR), recall rate (TPR), and false positive rate (FPR) to compare their effectiveness in identifying 

bond defaults. The confusion matrix is used to calculate these evaluation metrics, where ACC and 

FOR measure the predictive accuracy of the model, while TPR and FPR reflect the predictive 

efficiency of the model. Specifically, True Positive (TP) refers to the number of actual non default 

samples correctly identified as non default, True Negative (TN) refers to the number of actual 

default samples correctly identified as default, False Positive (FP) represents the number of actual 

non default samples incorrectly identified as default, and False Negative (FN) represents the 

number of actual default samples incorrectly identified as non default. The detailed description of 

the above four evaluation indicators is shown in Table 2. 

Table 2. The evaluation indicators for bond default identification results 

Evaluating indicator Indicator Description Calculation formula 

Accuracy rate 

(ACC) 

Actual default samples and non 

default samples are 

Identify the correct proportion. FNFPTNTP

TNTP
ACC




  

Error omission rate 

(FOR) 

The proportion of samples 

incorrectly identified as non 

defaulting in actual default 

samples. 
TNFN

FN
FOR


  

recall 

(TPR) 

The proportion of samples 

identified as non default that 

are actually non default 

samples. 
TPFN

TP
TPR


  

False positive rate 

(FPR) 

The proportion of non default 

samples misjudged as default to 

the actual non default samples. TNFP

FP
FPR


  

5. Experimental results and analysis 

In this study, we plotted SHAP dependency graphs for important features such as bond interest 

rate, fixed asset net profit margin (y4), total issuance amount (total), and accounts receivable 

turnover rate (j1) (see Figure 2). These charts are used to demonstrate how these features affect the 

warning results. The vertical axis in each graph represents the SHAP value, while the horizontal 

axis displays the actual value of the feature. Each data point represents a sample, and smooth curves 

are used to depict the relationship between feature values and SHAP values. This visualization 

method helps us intuitively understand the specific contributions of each key feature to the 

prediction results. 

In Figure 2, we analyzed the impact of key features on SHAP values to better understand their 

contribution to bond default prediction. When the coupon rate is in the range of (0.005, 0.034), the 
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SHAP value shows a decreasing trend, indicating a reduction in default risk within this range; When 

the coupon rate is in the range of (0.034, 0.085), the SHAP value increases, indicating an increase in 

the probability of default; In the range of (0.085, 0.088), the SHAP value decreases again. The net 

profit margin of fixed assets (y4) is within the range of (-2.338, -1.009), and an increase in SHAP 

value indicates an increase in the likelihood of default; In the range of (-1.009, 1.377), the SHAP 

value decreases with the increase of eigenvalues, indicating a decrease in risk; In the interval of 

(1.377, 3.076), the SHAP value rises again. The total issuance amount (total) is in the range of (1 * 

10 ^ 7, 1.5 * 10 ^ 8), and the SHAP value decreases, indicating a decrease in default probability; In 

the range of (1.5 * 10 ^ 8, 1 * 10 ^ 9), as the SHAP value increases, the default risk also increases; 

In the intervals of (1 * 10 ^ 9, 1.5 * 10 ^ 9) and (1.5 * 10 ^ 9, 6 * 10 ^ 9), the change in SHAP value 

shows an initial decrease followed by an upward trend. The accounts receivable turnover ratio (j1) 

is in the range of (0.089, 2.503), and the SHAP value increases with the increase of characteristic 

values, indicating an increase in default risk; In the range of (2.503, 31.672), the SHAP value 

decreases and the likelihood of default decreases; In the interval of (31.672, 59.327), the SHAP 

value rises again. Figure 3 provides a visualization of the feature influence of a single sample 

through SHAP analysis, where red represents positive influence and blue represents negative 

influence. The numerical values in the arrow boxes show the SHAP values of each feature and their 

specific contributions to the prediction results. 

 

Figure 2. The SHAP dependence plots of the top four features for default identification 
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Figure 3. The SHAP force plots in testing set 

The subgraph (a) in Figure 3 shows the SHAP plot of the samples predicted by the model as 

potential bond defaults. When analyzing sample A, it was found that 22 characteristics such as fixed 

asset net profit margin (y4) and cash and cash equivalents turnover rate (j3) have a positive impact 

on default risk, indicating that the increase of these characteristics may lead to an increase in default 

risk. The revenue growth rate (f2) has been identified as a negative factor for risk prediction, 

indicating that its contribution to default prediction is relatively small and not considered a key 

feature. In subgraph (b) of Figure 3, the SHAP plot of samples predicted to not default on bonds is 

shown. For sample b, 22 features such as coupon rate and accounts receivable turnover rate (j1) 

have a negative impact on the model's prediction results, indicating that an increase in these features 

helps to reduce default risk. Through these single sample SHAP diagrams, users can have a clearer 

understanding of the specific predictive contributions of each feature to a single sample, thus 

enabling more accurate personalized risk assessment. This detailed visual analysis helps reveal the 

underlying mechanisms of model predictions, supporting more targeted decision-making and risk 

management. 

By applying the SHAP interpretation method, this study can reveal the impact of warning 

features on model prediction results and gain a deeper understanding of the complex interactive 

relationship between feature values and prediction results. This method not only displays the 

marginal contribution of each feature to the model output, but also visualizes the warning results of 

individual samples, thereby enhancing the interpretability of the model. This detailed explanation 

helps investors, regulatory agencies, and issuing companies better grasp risks, providing a scientific 

basis for the management and decision-making of bond default risks. By increasing the 

transparency of the model, this analysis method makes risk assessment more accurate and reliable, 

providing strong support for the risk warning process in practical applications. 

6. Conclusion 

This study developed a comprehensive model based on LightGBM and NSGA-II to effectively 

identify the corporate default risk in the Chinese bond market. By integrating financial data, bond 

characteristics, non-financial information of enterprises, and macroeconomic indicators, we use 

LightGBM as the core classifier and apply NSGA-II algorithm to optimize its hyperparameters to 

improve the warning accuracy and efficiency of the model. In addition, this study conducted 

interpretability analysis on the model using SHAP method, demonstrating in detail the specific 

contributions of each feature to the model's prediction results, thereby enhancing the transparency 

and comprehensibility of the model. The research results indicate that in multiple experiments, the 

model proposed in this study outperforms other comparative methods in terms of recognition 

accuracy and efficiency. Especially in the quarter before the default occurred (DatasetQ1), the 
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model showed the best warning effect, indicating that the model can provide more accurate 

warnings when the default is approaching. The interpretation results of SHAP method reveal the 

complex influence of features on the model output. For example, the net profit margin of fixed 

assets (y4), the shareholding ratio of the largest shareholder (g1), and the M2 growth rate (h4) are 

negatively correlated with the risk of bond default, while the coupon rate and current liability ratio 

(b4) are positively correlated. These key features should be the key focus indicators for monitoring 

default risk. 

Based on the actual situation of China's bond market, the findings of this study have important 

practical significance: 

Bond investors should use advanced machine learning technology to conduct in-depth financial 

and non-financial data analysis of bond issuing companies, pay attention to their operational 

capabilities and asset performance, and comprehensively consider the impact of macroeconomic 

environment on bond default risk. 

Financial regulatory agencies should focus on monitoring the profitability, development potential, 

and bond issuance related indicators of bond issuing companies, identify high default risk 

companies using quantitative analysis tools, and strengthen information disclosure systems to 

ensure transparency of financial data and bond characteristics information, in order to prevent 

potential systemic risks. 

Enterprise management should make full use of these advanced warning signals, clarify key 

influencing factors and their mechanisms of impact on default risk, adjust business and investment 

strategies in a timely manner, thereby effectively reducing the risk of bond default and minimizing 

potential economic losses. These measures not only help improve the financial health of enterprises, 

but also contribute to maintaining the stability of the entire financial market. 
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