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Abstract: Underwater monocular image depth estimation (UMIDE) is crucial accurately 

representing and understanding underwater spatial variations, which can significantly 

enhance applications such as ocean engineering construction and seabed resource 

exploration. However, UMIDE frequently suffers from isolated discontinuous irregular 

"spots", inaccurate or indistinguishable edges, and limited model generalization, resulting 

from color distortion, image blurring, and spatial information loss. This paper proposes an 

underwater Monocular-continuous stereo network based on a cascade structure (UMCS-CS). 

Initially, we design a Pinhole model-based Structure from Motion method for camera pose 

estimation. UMCS-CS employs a two-stage structure for feature extraction: the first stage 

extracts global information, and the second stage captures detailed information using the 

squeeze–excitation block with spatial and channel attention. For isolated, discontinuous, and 

irregular "spots", we use the variance of the current depth estimation to adjust and 

appropriately expand the depth estimation range. We design a composite loss function, which 

is a combination of the smooth L1 loss, edge loss function, structural similarity loss, and 

smoothness loss functions, each with different weights. Experiments on public underwater 

datasets show that the relative error of the estimated depth map is reduced by 60.83%, the 

root mean square error by 54.87%, and the logarithmic error by 39.61%.  

1. Introduction 

The complex marine environment poses significant challenges for underwater resource exploration 

and ocean engineering construction. Automatic and intelligent equipment play a pivotal role in future 

underwater missions. Monocular imaging equipment is suitable for nearly all underwater vehicles 
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and has become a critical component for underwater unmanned systems to perceive their environment, 

especially for small equipment performing special tasks. Depth prediction for underwater optical 

images is a critical technology in 3D reconstruction, with significant applications in marine 

engineering, resource exploration, and future seabed infrastructure development. Given the highly 

complex physical environments of underwater spaces, autonomous underwater vehicles (AUVs) are 

the sole viable platforms for task execution. Monocular optical imaging is a crucial sensory modality 

for small AUVs, underscoring the importance of depth prediction for monocular optical images. 

Underwater image monocular depth estimation (UMIDE) is a key technology for perceiving complex 

seabed environments and understanding spatial variations [1]. It provides essential three-dimensional 

information for seabed topography mapping, crucial for underwater resource exploration and precise 

object detection [2]. Additionally, UMIDE informs excavation depths and ranges for submarine 

pipelines and the placement of large equipment [3]. 

However, the depth information is largely obscured in monocular vision imaging, and the absence 

of images from different positions in monocular images exacerbates the challenge. Moreover, the 

complex underwater environment affects light absorption, scattering, and refraction, resulting in color 

distortion, reduced contrast, and image blurring [4]. Furthermore, underwater monocular image 

datasets with accurate environmental depth labels and camera pose information are scarce [5].  

This paper proposes an underwater Monocular-continuous stereo network based on a cascade 

structure for UMIDE. Our study addresses three primary challenges in underwater monocular image 

depth prediction: discontinuous irregular "spots," inaccurate or indistinguishable edges, and limited 

model generalization. Through in-depth research into topics such as underwater optical image 

enhancement and target detection, we identified theoretical and practical issues in depth prediction. 

Extensive experiments with various depth prediction methods for underwater monocular optical 

images allowed us to refine and clearly define these challenges through detailed comparative analysis. 

2. Literature review 

Monocular image depth estimation, which involves predicting the depth of a scene from a single 

or a sequence of RGB images captured from a fixed viewpoint, has emerged as a significant research 

topic in computer vision. In underwater scenarios, monocular image sequences estimate depth by 

employing triangulation technology to calculate parallax; however, matching is significantly affected 

by the angle of illumination. Traditional methods focus on developing mathematical models or fitting 

techniques to define the mapping relationship between RGB images and depth maps, while deep 

learning approaches aim to learn this mapping function using various neural networks architectures. 

2.1 Traditional methods for underwater monocular image depth estimation 

The optical transmission mode serves as a critical foundation and prior knowledge for depth 

estimation tasks. Song et al. introduced a fast and effective depth estimation model based on 

Underwater Light Attenuation Prior (ULAP), defining the difference between the maximum G-B 

intensity (MVGB) and the value intensity [6]. Berman et al. proposed a method for optical 

transmission estimation consisting of three steps: blocked light estimation (accounting for ambient 

light scattered into the line of vision), transmission estimation for different water types with varying 

optical properties, and automatic result selection based on the grey world hypothesis [7]. Chen et al. 

improved the speed of depth estimation by optimizing the selection of key frames; they extracted 

frames from video streams as SfM image sequences and selected global SfM to construct scenes [8]. 

Schonberger et al. developed the COLLISION-Mapping (COLMAP) system, which further integrates 

normal vector information of pixels to enhance the quality of depth estimation [9]. However, the 

performance of traditional methods is limited in areas with weak textures. To address this, Romanoni 
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and Matteucci proposed the TAPA-MVS method, which assumes segmented plane characteristics in 

weak texture regions and uses this assumption as prior knowledge to guide the COLMAP system in 

depth estimation for these areas [10]. Zhu et al. refined the process of mark matching by combining 

multi-shot fusion perceptual prediction with K-Means clustering algorithm [11]. However, traditional 

methods generally suffer from limited robustness and generalization capabilities. Depth estimation 

accuracy tends to degrade in low-texture scenes, under poor lighting conditions, or when applied to 

non-reference scenarios. 

2.2 Deep Learning Based Methods for Underwater Monocular Image Depth Estimation 

Recent advancements in deep learning have introduced innovative approaches to underwater depth 

estimation, leveraging neural networks to handle large-scale data and diverse underwater scenes and 

objects. Levy et al. designed an architecture capable of learning scene information and medium 

parameters to eliminate the medium between the camera and the scene, thereby reconstructing the 

appearance and depth of distant objects [12]. Ye et al. proposed an underwater depth estimation 

network that adaptively infers depth maps from underwater stereoscopic images, utilizing three 

different adaptation modules: style adaptation, semantic adaptation, and parallax range adaptation 

[13]. Li et al. designed a multi-stage and multi-task learning framework for predicting dense relative 

depth map of underwater monocular image [14]. Gupta et al. employed a dense block-based 

autoencoder as a generator network to learn the mapping function between unpaired RGB-D ground 

images and arbitrary underwater images, estimating the desired depth map [15]. Nagamatsu et al. 

proposed a self-calibration method using visual ranging to bundle numerous frames, thereby 

increasing density in 3D reconstruction of monocular images [16]. Zhang et al. introduced a 

geometric perception model called GeoMVSNet, which integrates geometric cues present in the 

rough stage of processing [17]. Qi et al. proposed a geometric neural network, GeoNet++, featuring 

edge perception refinement to jointly estimate depth and surface normal of the monocular images 

through depth-to-normal and normal-to-depth modules [18]. Marques developed a framework 

capable of real-time depth estimation of underwater images while also estimating the model's 

uncertainty in predicting the depth [19]. Li et al. utilized a stereo matching method based on the 

optimal search domain to enhance stereo matching accuracy in underwater scenes [20]. Ebner et al. 

incorporated sparse depth measurements from triangulated features to improve depth estimation and 

address scaling ambiguity [21]. Finally, Ye et al. proposed an unsupervised adaptation network to 

learn domain-invariant representations, enabling joint estimate of scene depth and color correction 

from underwater monocular images [22]. 

Deep learning methods excel in handling large-scale data and accommodating diverse types of 

scenes and objects. However, existing deep learning methods still encounter several challenges in 

depth estimation:  

1) Discontinuous 'spots' appear in the depth prediction results, occurring irregularly across 

different positions in the monocular image, with no clear pattern or regularity. 

2) Errors frequently occur in the depth prediction along the edge between objects and their 

background, especially when the edges are not smooth, or when the contrast between the edge and 

the background is minimal. These issues not only produce inaccuracies but also render the edges 

indistinguishable. 

3) The generalization capability of the model enhancement, as the depth prediction results across 

different datasets still require further improvement. 

We address the aforementioned issues on two levels. At the level of underwater optical image 

feature representation, we enhance the prior knowledge of optical images by integrating structural 

models and matching techniques to mitigate the irregular disturbances caused by the underwater 
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physical environment during depth prediction. To reduce inaccuracies in edge depth prediction, we 

combine local and global features, enabling the capture of a more comprehensive range of colour 

variations within the images. At the model structure level, we design a cascade architecture to extract 

multi-layer variation information from optical images. Additionally, we propose a composite loss 

function to enhance the model’s generalization ability. The following sections provide a detailed 

description on the specific structure of the UMCS-CS network. 

3. Methodology 

The proposed Underwater Monocular-Continuous Stereo Network (UMCS-CS) is a deep learning 

framework designed to enhance underwater depth estimation by leveraging a cascade structure and a 

composite loss function. This section details the network architecture, feature extraction process, and 

loss function design that together address the challenges of depth estimation in underwater 

environments. 

3.1 Network architecture 

The UMCS-CS network is structured as a convolutional neural network specifically designed for 

underwater depth estimation, following a series of methodical steps as illustrated in Figure 1. The 

network begins by extracting camera pose information from underwater optical images and constructs 

a cost volume with regularization for depth estimation from underwater monocular optical image 

sequences. The feature extraction process is divided into two stages.  

Employing a cascade structure, the network starts with feature maps at a smaller scale and 

performs homograph transformations on feature maps of adjacent frames to create a feature volume, 

which is then used to construct a cost volume. After normalizing the regularized cost volume, the 

network generates an estimated depth map. This depth map is used to progressively refine the depth 

intervals at the next scale in a coarse-to-fine manner [23], enabling hierarchical inference of depth 

maps for the reference images. 

 

Figure 1: The network design of UMCS-CS 

3.2 Pinhole model-based Structure from Motion method 

The image features are extracted and matched using the Pinhole model [24], and the camera 

parameters along with the corresponding rough depth range are determined through data format 

conversion. Masks are generated based on provided depth maps and original images. Regions where 

depth values are undefined in the ground truth depth maps are considered invalid, while regions with 

defined values are valid. Mask1 is created based on this characteristic. Since the dataset pertains to 
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shallow water areas prone to light spots, the images are converted from the RGB color space to the 

HIS color space. Regions where the saturation (S) is less than α1 and intensity (I) is greater than α2 

are identified as high-brightness pixels. Each high-brightness pixel is expanded to its surrounding 

five pixels to define regions with light spots, forming mask2. Specifically, mask2 was designed to 

filter out irregular bright spots caused by lighting conditions. By applying mask2 to filter these 

regions, we effectively eliminate the influence of irregular bright spots during subsequent processing, 

thereby reducing the presence of irregular spots in the images. The final mask is obtained by merging 

mask1 and mask2. (Figure 2) 

 

Figure 2: Illustration of the created masks: mask1 filters out invalid depth regions, and mask2 filters 

out glare regions 

3.3 Two stage encoder-decoder feature extraction 

Due to light absorption and refraction in water, underwater optical images often exhibit blurred 

textures and edges, leading to poor performance in the fine details of the estimated depth map. To 

address this issue, we propose a two-stage approach for feature extraction. The first stage focus on 

extracting global information, while the second stage integrates local information with the input 

image and incorporates SE(Squeeze-Excitation) blocks with spatial and channel attention to generate 

more refined feature maps. 

As illustrated in Figure 1 and Figure 2, the feature extraction component consists of two pyramid 

structures representing the first stage. The input underwater reference images and their corresponding 

source images undergo separate feature extraction process. The input underwater image
* *3

( , )
H W

p u v P    is first processed through a feature encoder to obtain feature response 
/ 2 * / 2 * H k W k lc

y Y  , then through a decoder to capture global information 
* *H W l

x X  . Here, H and 

W are the resolutions of the input images, k is a hyperparameter controlling the feature resolution, 

and lc denotes the number of channels in the output of the l-th layer. The number of layers in both 

the encoder and decoder pyramids are equal. Each encoder layer receives features from the preceding 

layer, and the output from the (L-l')-th layer of pyramid encoder is concatenated with the l'-th layer 

pyramid decoder to serve as input for the subsequent decoder layer. 

The feature extraction in the second stage is composed of a two-layer pyramid structure. Building 

on the first-stage structure, we introduced our designed SE (Squeeze-and-Excitation) block into the 

skip connections and upsampling processes. The global information extracted in the first stage is 

concatenated with the input image to form a combined input 
* *4H W

z Z  , which is then fed into the 

second encoder. The global features extracted in the first stage are combined with the original image 

as a unified input for the second stage. After multiple layers of pyramid encoding, the upsampling 

output is processed through an SE block, while submodules in the encoder with the same resolution 

are also processed through SE blocks. The results of these two processes are concatenated as the input 

for the next submodule in the decoder. The SE block utilizes a compression and excitation mechanism 

to enhance the feature mappings of both local and global learning. The output from the (L−l)-th layer 

pyramid encoder, processed by an SE block, is concatenated with the output from the 𝑙-th layer 

pyramid decoder, also processed by an SE block. This concatenated result serves as the input for the 
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next decoder layer. This mechanism enables the network to capture more detailed features and 

improves its multi-scale understanding of the image. 

The primary function of SE blocks is to introduce an attention mechanism across the spatial and 

channel directions of the feature maps. These blocks are composed of SSCE (Spatially-Squeeze for 

Channel-wise Excitation) and CSSE (Channel-wise Squeeze for Spatially Excitation) blocks, as 

illustrated in Figure 3. 

 

Figure 3: SE block structure 

The feature map 
s

c


 serves as the input for the SSCE block. Within the SSCE block, the input 

first undergoes processing through a residual block to produce the feature map Uc. Subsequently, 

global average pooling is applied to compresses the spatial direction of the feature map. The globally 

pooled features are then passed through fully connected layers and activation functions, where they 

are activated to generate attention weights αc across channels. The resulting feature map U'c is 

calculated as: 

𝑈’𝑐 = 𝛼𝑐 ⊙ 𝑈𝑐                                   (1) 

where ⊙  represents element-wise multiplication. The feature map 
s

c


 is then element-wise 

summed with U'c, followed by the application of a ReLU activation function to compress in spatial 

direction and excite in channel direction, resulting in the refined feature map X : 

𝑋̃ = 𝑟𝑒𝑙𝑢(𝑈’𝑐 + 
𝑐
𝑠)                               (2) 

In the CSSE block, the feature map Ui,j is first obtained after processing through a residual block. 

The channel direction is then compressed using a convolution operation, and then the convolved 

features are excited by an activation function to generate spatial attention weights βc. The resulting 

feature map U'i,j is computed as: 

𝑈’𝑖,𝑗 = 𝛽𝑐 ⊙ 𝑈𝑖,𝑗                                (3) 

Next, the feature map Y  is obtained by element-wise summing U'i,j with Ui,j, followed by 

applying a ReLU activation function to compress in the channel direction and excite in the spatial 

direction, resulting in:  

𝑌̃ = 𝑟𝑒𝑙𝑢(𝑈’𝑐 +  
𝑐
𝑠)                              (4) 

The final output of the SE block is: 
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𝑍̃ = 𝑟𝑒𝑙𝑢(𝑋̃ + 𝑌̃)                                  (5) 

The SE block thus enhances the generation of more refined feature maps by the second-stage 

decoder, enabling further effective extraction of underwater image features. 

3.4 Cascade structure construction and regularization 

To construct the cost volume, a cascade structure is employed. Initially, a differentiable 

homographic transformation is applied on a low-resolution feature map to map pixels from the source 

view to the reference view. The homography matrix is defined as: 

𝐻𝑖(𝑑) = 𝐾𝑖 · 𝑅𝑖 · (𝐼 −
(𝑡1−𝑡𝑖)𝑛1

𝑇

𝑑
) · 𝑅1

𝑇 · 𝐾1
𝑇                      (6) 

where I represents the identity matrix, 𝐾𝑖 and 𝐾1 are the intrinsic parameter matrices of the source 

and reference cameras, respectively. Similarly, 𝑅𝑖 and 𝑅1 denote the rotation matrices of the source 

and reference cameras, while 𝑡𝑖 and 𝑡1 are the translation vectors of the source and reference cameras, 

respectively. In addition, d denotes the depth plane, and n1 represents the principal axis of the 

reference camera. 

Subsequently, at the l-th layer, the variance of features from N transformed source views and their 

corresponding features from the reference view at depth d is used to construct the cost volume Cl. A 

3D convolutional network is then employed to regularize this cost volume and generate the 

probability volume Pl. 

3.5 Composite loss function for depth estimation 

The probability volume Pl contains t pixel probability information across each depth plane. The 

depth value 𝑑𝑙(𝑝) for each pixel point p is estimated using: 

𝑑𝑙(𝑝) = ∑ 𝑑𝑛𝑑
×

𝑁𝑑−1
𝑛𝑑=0 𝑃𝑙(𝑝)                            (7) 

where 𝑑𝑛𝑑
 is the depth value of the 𝑛𝑑-th depth plane, and 𝑃𝑙(𝑝) represents the probability of 

pixel point p on that depth plane. 

After obtaining the low-resolution depth map, bilinear interpolation is applied to upsample it. The 

depth estimation range of the previous layer is used as a reference to refine the current layer's depth 

estimation range and interval, resulting in more accurate depth estimation.  

We designed a feedback mechanism between receptive fields of different sizes. This mechanism 

leverages the combination of small and large receptive fields to detect irregular variations across 

scales, enabling the network to better identify and distinguish irregular spots. As a result, the network 

achieves a more accurate representation of true object depths, mitigating the influence of these 

artifacts. 

The depth plane d can be expressed as: 

𝑑 = 𝑑𝑚𝑖𝑛 +
𝑛𝑑(𝑑𝑚𝑖𝑛−𝑑𝑚𝑎𝑥)

𝑁𝑑
, 𝑛𝑑 ∈ {0,1, … , 𝑁𝑑}                    (8) 

where 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎x represent the minimum and maximum values of the depth, respectively, and 

𝑁𝑑 is the total number of depth planes sampled uniformly within the range from 𝑑𝑚𝑖𝑛 to 𝑑𝑚𝑎x, and 𝑛𝑑 

denotes the current number of depth planes. 

To reduce errors caused by depth estimation inaccuracies, the variance of the current depth 

estimation is used to dynamically adjust the range, allowing for appropriate expansion. The new depth 

range is expressed as: 

7



𝑑′𝑚𝑖𝑛 = 𝑚𝑎𝑥{𝑑𝑚𝑖𝑛 −
1

𝐻×𝑊
∑ ∑ (𝑑𝑢,𝑣

𝑙 − 𝑑𝑙̅)2𝑊−1
𝑣=0

𝐻−1
𝑢=0 , 𝑑𝑚𝑖𝑛1}                (9) 

𝑑′𝑚𝑎𝑥 = 𝑚𝑖𝑛 {𝑑𝑚𝑎𝑥 +
1

𝐻×𝑊
∑ ∑ (𝑑𝑢,𝑣

𝑙 − 𝑑𝑙̅)2𝑊−1
𝑣=0

𝐻−1
𝑢=0 , 𝑑𝑚𝑎𝑥1}              (10) 

where 𝑑′𝑚𝑖𝑛  and 𝑑′𝑚𝑎𝑥  are the updated minimum and maximum depth values, 𝑑𝑚𝑖𝑛1  and 

𝑑𝑚𝑎𝑥1 are the initial minimum and maximum depth values, respectively. 𝑑𝑖,𝑗
𝑙  is the depth value of 

pixel 𝑝(𝑢, 𝑣) at level l, and 𝑑𝑙̅ is the average value of depth at level l. The new depth plane 𝑑′ can 

be expressed as: 

𝑑′ = 𝑑′𝑚𝑖𝑛 +
𝑛𝑑(𝑑′𝑚𝑖𝑛−𝑑′𝑚𝑎𝑥)

𝑁𝑑
, 𝑛𝑑 ∈ {0,1, … , 𝑁𝑑}                  (11) 

Once the new depth range and depth interval are obtained, the above process is repeated to perform 

depth map estimation at the next level. 

At each level of estimated depth map, we use the Smooth L1 Loss (SLL), edge loss function, 

structural similarity loss function, and smoothness loss function to measure the discrepancy between 

the estimated depth map and the ground truth depth map. To focus on the valid regions and reduce 

the impact of speckle noise, we apply 𝑀𝑖, which denotes the mask of 𝐹𝑖(𝑝), considering only the 

areas filtered by the mask in the loss computation. We define: 

𝑑𝑙
𝐺𝑇(𝑝) = 𝑑𝑙

𝐺𝑇(𝑝)[𝑚𝑎𝑠𝑘], 𝑑𝑙(𝑝) = 𝑑𝑙(𝑝)[𝑚𝑎𝑠𝑘], 𝐹(𝑝) = 𝐹(𝑝)[𝑚𝑎𝑠𝑘]. 
where 𝑑𝑙

𝐺𝑇(𝑝), 𝑑𝑙(𝑝) represent the depth value of point p in the ground truth depth map and 

estimated depth map at level l, respectively; and 𝐹(𝑝) represents the pixel value of point p. 

The smooth L1 Loss Function measures the discrepancy between the estimated and ground truth 

depth values at each pixel. It balances robustness against outliers with precision and mitigates the risk 

of gradient explosion to a certain extent. The Loss𝑆LL is expressed as: 

𝐿𝑜𝑠𝑠𝑆𝐿𝐿 = {
0.5(𝑑𝑙

𝐺𝑇(𝑝) − 𝑑𝑙(𝑝))2, 𝑖𝑓|𝑑𝑙
𝐺𝑇(𝑝) − 𝑑𝑙(𝑝)| < 1

|𝑑𝑙
𝐺𝑇(𝑝) − 𝑑𝑙(𝑝)| − 0.5, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

              (12) 

The Edge Loss Function enhances the model’s ability to extract spatial features from edges, this 

loss improves the accuracy of estimating high-frequency edge information, particularly at the 

boundaries between objects and scenes in the image. This function utilizes the Sobel operator to 

compute the gradients of both the estimated and ground truth depth maps. The loss is then calculated 

based on the difference between these two gradients. The calculation is given by: 

𝐿𝑜𝑠𝑠𝐸𝑑𝑔𝑒 = ∑(‖𝑑𝑙′(𝑝) − 𝑑𝑙
𝐺𝑇′(𝑝)‖)2                    (13) 

where 𝑑𝑙′(𝑝) = ((𝐸𝑔1
𝐻 )

2
+ (𝐸𝑔1

𝑉 )
2

)1/2  and 𝑑𝑙
𝐺𝑇′(𝑝) = ((𝐸𝑔2

𝐻 )
2

+ (𝐸𝑔2
𝑉 )

2
)1/2 , represent the 

gradients of the estimated and ground truth depth maps, respectively, as computed using horizontal 

and vertical gradient operators. EH and EV represent horizontal and vertical gradient operators. 

From a global perspective, it is crucial to refine the visual perception system to accurately identify 

structural information from underwater scenes. This involves detecting differences between the 

reconstructed image and the reference scene from which the data is derived. The Structural Similarity 

Index (SSIM) is employed to assess the similarity of images by extracting brightness, contrast, and 

structural features. It measures the similarity of brightness 𝑙(𝑑𝑙(𝑝), 𝑑𝑙
𝐺𝑇(𝑝)) , contrast 

𝑐(𝑑𝑙(𝑝), 𝑑𝑙
𝐺𝑇(𝑝)) , and structure 𝑠(𝑑𝑙(𝑝), 𝑑𝑙

𝐺𝑇(𝑝))  across different scales, ranging from local to 

global. The objective is to ensure that the predicted images are closely aligned with real images at a 

global scale. The SSIM loss function is: 

𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 = 𝑙 (𝑑𝑙(𝑝), 𝑑𝑙
𝐺𝑇(𝑝)) · 𝑐 (𝑑𝑙(𝑝), 𝑑𝑙

𝐺𝑇(𝑝)) · 𝑠 (𝑑𝑙(𝑝), 𝑑𝑙
𝐺𝑇(𝑝))         (14) 
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We define the statistical measures employed for comparing distributions 𝑑𝑙(𝑝) and 𝑑𝑙
𝐺𝑇(𝑝). 

Due to the presence of noise in underwater images, the estimated depth map may exhibit 

discontinuous. The Smoothness Loss Function assists the model in generating smoother depth maps 

that better align with the edges of the original image, ensuring consistency and realism. The formula 

for calculating the smoothness loss is given by: 

𝐿𝑆𝑜𝑜 = ∑ (‖𝜕𝑥𝑑𝑙(𝑝)‖𝑒−‖𝜕𝑥𝐹(𝑝)‖ + ‖𝜕𝑦𝑑𝑙(𝑝)‖𝑒−‖𝜕𝑦𝐹(𝑝)‖)𝑝                (15) 

The total loss of the l-th level of UMCS-CS is defined as: 

𝐿𝑜𝑠𝑠𝑙 = 𝛼𝐿𝑜𝑠𝑠𝑆𝐿𝐿 + 𝛽𝐿𝑜𝑠𝑠𝐸𝑑𝑔𝑒 + 𝛾𝐿𝑜𝑠𝑠𝑆𝑆𝐼𝑀 + 𝜁𝐿𝑆𝑜𝑜              (16) 

where α, β, 𝛾 and 𝜁 are the corresponding weights. Since depth maps generated at different 

levels have varying resolutions, and low-resolution depth maps assist in refining high-resolution ones, 

the contributions of depth maps at different resolutions should not be equally weighted during 

backpropagation. Consequently, when computing the overall network loss, the losses for each level 

are not directly summed. Instead, the loss for each level is weighted separately being combined. The 

overall loss is calculated as:  

𝐿𝑜𝑠𝑠 = ∑ 𝜆𝑙 × 𝐿𝑜𝑠𝑠𝑙
3
𝑙=1                              (17) 

where 𝐿𝑜𝑠𝑠𝑙 represents the loss generated by the estimated depth map at the l-th level, and λl 

denotes the weight associated with loss at that level. 

4. Experiments 

In this section, we present experiments conducted on the datasets described in Section 4.1 to 

validate the effectiveness of the proposed method. A comprehensive evaluation is performed using 

both qualitative and quantitative approaches. The effectiveness of the method is demonstrated by 

quantitatively comparing the final predicted depth maps with the ground truth data. Additionally, 

comparisons with other learning-based depth estimation techniques highlight the superiority of the 

proposed framework. 

4.1 Datasets and training process 

The input data for the UMCS-CS network consists of six datasets: 

1) BlendedMVS Dataset [25]: This dataset contains 113 scenes, each with 20 to 1000 images 

capturing various camera trajectories, amounting to a total of 17,818 images. 

2) FLSea Dataset [26]: This dataset comprises 5056 pairs of depth maps and optical images 

collected in shallow waters (less than 10 meters) in the Mediterranean and Red Seas. 

3) Torpedo Boat Wreck Dataset [27]: Filmed off the southern coast of the Mediterranean in France 

at a depth of 476 meters, this dataset contains 442 images with a resolution of 1600×1200 pixels.  

4) Lucky Strike Hydrothermal Field Dataset [28]: This dataset features the Eiffel Tower active 

hydrothermal chimney. It contains 1,061 RGB images. 

5) Submarine Fault Scarp and Earthquake Traces Dataset [29]: Located at a depth of 1100 meters, 

this dataset captures a fault scarp with about 1 meter of co-seismic displacement. Keyframes extracted 

from video files yielded 590 RGB images. 

6) Seafloor Litter Field Dataset [30]: Collected near the French Mediterranean coast at a depth of 

600 meters, this dataset consists of 80 RGB images. 

As the last four datasets lack corresponding depth maps, they are not suitable for network training. 

Instead, they are used to test the model, verifying its generalization capabilities. 
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During the training phase, the model undergoes 200 epochs with an initial learning rate of 0.001, 

halved at epochs 50, 100, and 150 to avoid local minima. Each iteration uses a batch size of 1, with 

testing conducted every three epochs. The Adam optimizer is used for optimization, and the depth 

interval scaling factor is set at 1.06, divided into three stages with hypothesis layers set at 48, 32, and 

8 for each stage. Loss weights of 0.5, 1.0, and 2.0 are applied across these stages, respectively, with 

experimental weights set at α=0.5, β=0.2, γ=0.2, and ζ=0.1. The computational environment includes 

PyTorch 2.0.0, Python 3.8 on Ubuntu 20.4, with CUDA 11.8, running on an RTX 3090 GPU with 

24GB VRAM and an AMD EPYC 7742 64-Core Processor providing computational support. 

4.2 Experimental comparison results 

To validate the effectiveness of our proposed model, we conducted both quantitative and 

qualitative experiments on the aforementioned datasets. To enhance the model’s stability, it was first 

pretrained on the BlendedMVS dataset and then fine-tuned using the FLSea dataset. Table 1 presents 

a summary of the results of our depth estimation method in terms of relative error (Rel), root mean 

square error (RMSE), and logarithmic error (Log10), compared to PatchmatchNet [31], CasMVSNet 

[23], and other state-of-the-art depth estimation methods on the FLSea dataset. The results 

demonstrate that our estimated depth maps consistently outperform those generated by mainstream 

methods. Compared to the baseline CasMVSNet, our approach achieves a 60.83% reduction in 

relative error, a 54.87% decrease in RMSE, and a 39.61% reduction in Log10 error, highlighting a 

substantial improvement in accuracy. 

Table 1: Comparison of different methods on the FLSea dataset 

Methods Rel↓ RMSE↓ Log10↓ 

PatchmatchNet [31]  4.2856 3.7715 0.6990 

CasMVSNet [23]  3.7047 3.1136 0.5426 

GeoMVSNet [17]  3.4223 2.9135 0.5317 

SeaThru-NeRF [12]  2.2856 2.7715 0.4990 

Ebner et al. [22] 2.6975 2.8943 0.5182 

H. Gupta et al. [16]  1.9835 2.3813 0.3511 

Song et al. [6] 3.3014 2.6510 0.3395 

Berman et al. [7]  1.9895 2.9731 0.3560 

UMCS-CS(Ours) 1.4512 1.4053 0.3277 

Figure 4 provides a qualitative comparison of depth maps estimated by our method against those 

generated by other mainstream methods. The first column displays the input underwater image, 

columns 2 to 9 present the depth maps generated by other methods, column 10 shows the depth map 

produced by our method, and column 11 represents the ground truth depth. Columns 2 to 5 indicate 

that the depth maps estimated by these methods lack overall smoothness and are significantly affected 

by underwater noise, leading to drastic relative depth changes in non-edge areas. In columns 6 and 7, 

the estimated depth maps appear excessively smooth, failing to capture finer details due to the limited 

representation capability of these networks. Columns 8 and 9 reveal ambiguities in depth estimation, 

particularly with convex and concave surfaces, resulting in inaccurate depth values for the seabed. In 

contrast, our depth map maintains overall smoothness, demonstrates resilience to underwater noise, 

and better preserves edge details of underwater objects. 

10



 

Figure 4: Qualitative comparison of underwater scene depth estimations on the FLSea test set 

between UMCS-CS and monocular depth estimation models 

To further validate the generalization capability of our proposed method across various underwater 

scenarios, such as those relevant to marine engineering applications (e.g. underwater archaeology, 

marine resource exploration, underwater ecological monitoring), we tested the pretrained model, 

trained on the FLSea dataset without further fine-tuning on additional datasets. To evaluate the 

model's generalization capabilities, we conducted testing experiments on diverse datasets without 

training, including Torpedo Shipwreck Dataset (476m depth), Eiffel Tower Hydrothermal Vent 

Dataset (1700m depth), Seafloor Fault and Seismic Trace Dataset (1100m depth), Mediterranean 

Underwater Litter Dataset (600m depth). These datasets encompass varying depths and distinctly 

different scenes. Figure 5 shows qualitative comparisons between depth maps predicted by our 

method and those generated by other models across various scenes. 

 

Figure 5: Depth maps estimated by the proposed method on the last four datasets, are qualitatively 

compared with those generated by other monocular depth estimation models 

Qualitative comparisons with other models demonstrated that our method predicts relatively 

accurate depth maps, with minimal depth misalignment and well-defined object edges. This 

highlights the robustness of our approach in untrained datasets and its ability to generalize effectively 

across diverse underwater environments. In practical deployment, when reconstructing objects in 

different marine areas based on captured images, reliable results can be obtained using this model. 

4.3 Ablation Study 

To access the effectiveness of each component of the proposed UMCS-CS model, we conducted 

a series of quantitative experiments on the FLSea dataset. The quality of the estimated depth maps 

was evaluated using key metrics, including relative error (Rel), root mean square error (RMSE), and 

logarithmic error (Log10). Table 2 presents the results of these experiments, demonstrating the impact 

of each module on the overall performance of the model. 
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Table 2: Quantitative Comparison of Different Modules on the FLSea Dataset 

Model Mask 

Two-stage 

feature 

extraction 

Depth range 

update based 

on variance 

Composite 

Loss 

Function 

Rel↓ RMSE↓ Log10↓ 

Backbone     3.7047 3.1136 0.5426 

Ours-A √    3.3674 2.9428 0.5074 

Ours-B √ √   2.4149 1.9132 0.4541 

Ours-C √ √ √  2.3674 1.8428 0.4487 

Ours √ √ √ √ 1.4512 1.4053 0.3277 

Our baseline model was progressively enhanced by introducing new components: mask filtering, 

a two-stage feature extraction process, variance-based depth range updating, and a composite loss 

function. As shown in Table 2, each addition contributed to improved prediction accuracy. For 

example, the incorporation of the two-stage feature extraction module significantly reduced the 

relative error and RMSE, while the variance-based depth range updating further refined the accuracy 

of depth predictions. The composite loss function effectively enhanced the model’s generalization 

performance across various test scenarios, further confirming the contribution of each module to the 

overall performance improvement. 

The ablation study shows that each component plays a critical role in improving the model’s depth 

estimation performance. The final model (Ours) incorporates all modules, achieving the lowest 

relative error, RMSE, and Log10 values, demonstrating its superior accuracy and robustness in 

underwater monocular depth estimation tasks. 

5. Conclusions   

In this paper, we propose an underwater monocular continuous stereoscopic network (UMCS-CS) 

based on a cascade structure to enhance depth estimation in underwater environments. The network 

improves feature representation by combining original optical images with local and global features, 

which is conducive to distinguishing object edges. By introducing a mask to remove the spot area and 

adjusting the variance of the current depth estimation, the depth estimation range is appropriately 

expanded, taking into account the isolated, discontinuous and irregular "spots". A cascade structure 

is designed to extract multi-layer change information from optical images, and a composite loss 

function is introduced to improve the generalization ability of the model. 

Experimental results demonstrate that the UMCS-CS method significantly improves depth map 

estimation accuracy for various underwater terrains, structures, and environments. The model 

achieves a notable reduction in relative error, root mean square error, and logarithmic error compared 

to existing state-of-the-art methods. Additionally, it exhibits strong generalization performance across 

multiple datasets, including underwater archaeological sites, marine resource exploration areas, and 

ecological monitoring scenarios. 

In summary, the UMCS-CS network effectively performs depth estimation in marine engineering 

applications, such as detecting underwater for pipelines laying or determining distances to underwater 

archaeological structures. Despite these advances, there remains room for further improvement. 

Future work will explore enhancements to the cost structure and regularization components of the 

proposed method, aiming to reduce the model's reliance on high memory usage. 
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