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Abstract: Deep Brain Stimulation (DBS) has become an effective treatment for neurological 

disorders such as Parkinson's Disease (PD). During DBS surgery, brain signals at different 

depths are recorded through electrodes to accurately determine the electrode’s implantation 

position and depth. Among these signals, Local Field Potentials (LFPs) reflect the 

synchronized activity of neuronal populations in specific brain regions, which is closely 

associated with the pathological mechanisms of Parkinson’s disease. This study proposes an 

improved model based on Residual Neural Network (ResNet). In this model, a Residual 

Shrinkage Module is embedded into the residual block, and a soft threshold function is 

introduced to effectively suppress noise interference in the signals. Additionally, the model 

incorporates multi-scale convolution paths by constructing three independent DR-ResNet 

branches, each using different-sized convolution kernels to comprehensively capture multi-

scale features in the LFP signals. Furthermore, an attention mechanism is applied to fuse and 

enhance the extracted features, thereby improving the accuracy of signal classification. 

Cross-validation results on the publicly available dataset from the University of Oxford 

demonstrate that the improved model achieves a classification accuracy of 94.67%, with an 

F1 score of 94.58%, showcasing strong robustness and superior classification performance. 

1. Introduction 

Parkinson's Disease (PD) is the second most common neurodegenerative disorder after 

Alzheimer's disease [1], primarily affecting individuals over the age of 60. Symptoms include 

cognitive impairment, autonomic dysfunction, sleep disturbances, and depression [2, 3]. The 

pathological features of PD include degeneration of the substantia nigra and a reduction in neurons 

of the nigrostriatal pathway, leading to resting tremor, rigidity, and bradykinesia [4]. 

The treatment options for Parkinson's Disease (PD) include medication and Deep Brain 

Stimulation (DBS). Long-term medication use may lead to complications, while DBS regulates neural 

activity by stimulating the internal globus pallidus (GPi) and subthalamic nucleus (STN), improving 

motor symptoms and quality of life [5-7]. The key to DBS surgery lies in microelectrode recording, 

electrode implantation, and precise stimulation of the target area, which effectively alleviates 
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symptoms [7]. STN-based DBS has become the mainstream treatment for PD [8], but accurate electrode 

placement is crucial [9, 10], as improper placement can lead to side effects or inadequate control [11]. 

Research shows that incorrect electrode placement is the primary reason for 48.5% of revisions in 

neurostimulation treatments [12], and 40% of patients experience poor post-operative outcomes[13,14]. 

Therefore, developing efficient electrode optimization methods to reduce surgery time and reliance 

on the physician’s experience is key to improving treatment success rates and long-term outcomes. 

Microelectrode recording (MER) is a key technology for target localization and optimal trajectory 

selection during DBS surgery, providing real-time signal information by recording neuronal activity. 

Linxia et al. [15] proposed using 2D time-series images and GASF images combined with deep fusion 

networks for automatic signal classification. Li C et al. [16] developed an amplitude-frequency 

perception deep fusion network for STN-DBS electrode optimization. Lei Cao et al. [17] used genetic 

algorithms to extract MER time-series features and optimize clustering. Maxime Peralta et al. [18] 

employed the SepaConvNet model for precise STN localization. K.A. Ciecierski et al. [19] designed a 

brain activity-based decision support system, incorporating an attention mechanism network for 

electrode classification. However, MER faces limitations such as signal complexity and noise 

interference [20-23]. 

In recent years, Local Field Potentials (LFPs) have been closely associated with PD motor 

symptoms [24, 25], reflecting the activity of large neuronal populations. Studies have shown the safety 

of LFPs in PD treatment and their contribution to adaptive DBS (aDBS) [26]. Ozturk et al. [27] found 

that LFPs offer higher accuracy in localizing the STN compared to MER. Mohamed Hosny et al. [28] 

proposed the CNN-GA-KNN model to improve classification accuracy, and later used an integrated 

learning model combining LFPs with wavelet packets, achieving a classification accuracy of 89.49% 

[29]. They also implemented a recursive convolutional neural network, achieving a localization 

accuracy of 96.79% [30]. 

This paper proposes a model based on multi-scale residual convolutional neural networks for 

recognizing and classifying LFP signals. The model is capable of capturing features at different scales 

and adapting to the dynamic changes of LFP signals in both frequency and amplitude. Additionally, 

the model inherits the advantages of residual connections in residual networks, mitigating the 

vanishing gradient problem in deep networks. To further optimize the network structure, the model 

introduces a channel-shared adaptive threshold shrinkage technique, which uniformly processes data 

across different channels. This design effectively reduces the number of network parameters, 

enhances computational efficiency, and ensures the model's generalization ability in multi-channel 

signal processing. 

2. Methods 

In traditional CNNs, convolutional kernels with a single scale may struggle to fully capture multi-

scale feature information. To address this issue more effectively, this paper proposes a novel model 

based on Residual Neural Network (ResNet), embedding a Residual Shrinkage Module within the 

residual block. By introducing a soft threshold function, the model effectively suppresses noise 

interference in the signals. Combined with multi-scale convolution paths, the model consists of three 

independent DR-ResNet branches, each using convolution kernels of different sizes to capture multi-

scale features in the LFP signals. Additionally, the attention mechanism is applied to fuse and enhance 

the extracted features. The model structure is shown in Figure 1.  
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Figure 1: Model Structure Diagram 
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2.1 Residual Shrinkage Module 

2.1.1 Soft Threshold 

The soft threshold is a function that shrinks the input data towards zero, as shown in Equation (3). 

It is commonly used in signal denoising algorithms. 
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Here, x represents the input features, y represents the output features, and is the threshold. The 

threshold must be a positive number and should not be too large. If the threshold is greater than the 

absolute value of all input features, the output feature y will be zero. In this case, the soft thresholding 

would lose its significance. The derivative of the soft thresholding function is given by the following 

formula: 

Let x be the input features, y be the output features, and be the threshold. The threshold must be 

a positive number and should not be too large. If exceeds the absolute values of all input features x , 

the output feature y will approach zero, rendering the soft thresholding operation meaningless. 

Additionally, the derivative of the soft thresholding function is given by Equation (4). 
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It can be seen that the derivative of the soft thresholding function is either zero or one. Both the 

soft thresholding function and its derivative are shown in Figure 2. This property is similar to that of 

the ReLU activation function, and therefore, the soft thresholding function helps prevent the 

vanishing and exploding gradient problems. 

 

Figure 2: Soft Threshold and Its Derivative 

2.1.2 DRSN-CS 

Residual Shrinkage Module: The core idea of DRSN is to combine the residual learning 

mechanism to retain the original features of the input signal, while utilizing a shrinkage unit to denoise 

the features. Traditional ResNet learns high-level features of the signal through residual blocks and 

adds the input directly to the output layer via "skip connections." This structure directly transmits the 

input to the deeper layers, effectively alleviating the vanishing gradient problem in the network and 

accelerating the convergence speed. 
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The DRSN-CS module (see Figure 3) adds a small sub-network for adaptive threshold setting 

based on the traditional residual module. After passing through the sigmoid function, the threshold is 

constrained to a value between 0 and 1. Therefore, the threshold is always positive and appropriate, 

preventing the output from becoming zero and ensuring the effectiveness of the model. 
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Figure 3: DRSN Module 

2.2 Improved Residual Module: DR-ResNet 

The DR-ResNet model combines the residual learning mechanism of ResNet with the denoising 

function of DRSN, as shown in Figure 4. This module retains the advantages of ResNet in efficient 

feature extraction, while enhancing the network's robustness and accuracy through noise suppression, 

making it more suitable for handling complex physiological signal classification tasks. With this 

design, the improved residual module can effectively remove noise while preserving key signal 

features, and it supports efficient training and fast convergence of deep networks. 
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Figure 4: Structure Diagram of the DR-ResNet Module 
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The computation formula for the constructed DR-ResNet module is as follows: 

The input X  undergoes multiple convolutions, batch normalization (BN), and ReLU activation 

functions to generate the residual features 4X
 . The computation formulas are shown in Equations 

(5) to (8): 

1 onv(ReLU(BN( )))X C X
                            (3) 

2 1onv(ReLU(BN( )))X C X
                           (4) 

3 2onv(ReLU(BN( )))X C X
                           (5) 

4 3onv(ReLU(BN( )))X C X
                           (6) 

The absolute value of the residual features 4X
 is globally pooled (GAP) to generate a scalar, 

which represents the global strength of the features. The computation formula is shown in Equation 

(9): 

4( ( ))s GAP Absolute X
                              (7) 

The scalar S  is globally averaged pooled to obtain avgS
, and then passed through a fully 

connected layer, followed by batch normalization (BN), a ReLU activation function, another fully 

connected layer, and a sigmoid activation function to generate the scaling weight a  for the channel. 

The computation formulas are shown in Equations (10) to (11): 

1 1( )fcs FC s
                                  (8) 

2 1( ( ( ( ))))fca ReLU sNFC B
                          (9) 

The global average pooled avgS
 is multiplied by a  to obtain the final soft threshold  : 

avga s  
                                  (10) 

The soft thresholding operation is applied to 4X
 using the soft threshold   to suppress 

irrelevant feature information. The formula for the soft thresholding operation is shown in Equation 

(13): 

5 4 4( ) max( ,0)X sign X X   
                         (11) 

The soft thresholded result 5X
is added to 2X

to obtain the output 6X
. 

6 5 2X X X 
                                  (12) 

The input features are fused with the residual features to obtain the final output Y . 

6Y X X 
                                   (13) 

2.3 Loss Function 

To calculate the loss for LFP signal classification, cross-entropy (CE) is used as the loss function, 
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which is defined as follows: 

[ ]( , arg ) [ arg ] ( [ arg ] log( ))input j

j

loss input t et weight t et input t et e    
       (14) 

Where input is a one-dimensional array processed by Softmax (the array consists of the predicted 

probability values for each label), and argt et is the actual label. ( )input j represents the element at 

index j  in the input array. ( arg )weight t et  is the actual weight, and the definition of 

[ arg ]weight t et is given by Equation (20). 

1
[ arg ] ln( )

( arg )
weight t et

p t et


                         (15) 

Where ( arg )p t et is the proportion of the label argt et among all labels. 

For the loss function, the Adam optimization algorithm with adaptive moment estimation is used, 

with a learning rate set to 5×10-4, and all other parameters are kept at their default values. During 

each network training, the algorithm performs 20 optimization steps on all the training data, and then 

uses the validation set to obtain the system performance metrics. 

3. Experiments and Comparative Results 

3.1 Experimental Setup 

The experiment is run in a Python environment on Ubuntu 18.04, built with PyTorch 1.0, and 

trained on an Nvidia GeForce RTX 3090 GPU with 24GB of memory. 

3.2 Evaluation Metrics 

In the experiment, recall (Recall ), accuracy (Acc), and specificity (SP, ) are used to evaluate the 

model performance. The formulas are shown in Equations (21), (22), and (23): 

Recall
(%)

TP

TP FN


                            (16) 

Accuracy
(%)

TP TN

TP FN TN FP




                       (17) 

Specificity
(%)

TN

TN FP


                          (18) 

Where TP, TN, FP, and FN represent the true positive samples, true negative samples, false positive 

samples, and false negative samples, respectively, when the classifier makes decisions about the class. 

The Kappa coefficient, which can describe the overall performance of the system, is also calculated. 

The formulas are shown in Equations (24), (25), and (26) 
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e
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3.3 Dataset 

The experiment uses the publicly available dataset from Oxford University, which contains local 

field potentials from seven columns of patients. The electrode placement covers neural structures 

such as the STN, uncertain band, and thalamus from bottom to top. Bilateral recordings were 

conducted for 5 patients, generating a total of 12 hemispheres. Each electrode contains eight contact 

points, as shown in Figure 5, where contact points C1 and C2 collect signals from the subthalamic 

nucleus (STN), and C4, C5, C6, and C7 collect signals from the thalamus. The raw signals were 

filtered and segmented for processing. 

 

Figure 5: Electrode Stimulation Sites 

To explore the impact of LFP signal length on the classification performance of the MSDR-ResNet 

model, the LFP signals were segmented into 0.5 seconds, 1 second, 3 seconds, and 5 seconds. The 

core objective of this experiment is to assess the model's classification performance on signals with 

different segment lengths, revealing the influence of segment length on feature capture. The 

experimental results are shown in Figure 6. The accuracy for 0.5-second, 1-second, 3-second, and 5-

second LFP signals were 94.67%, 93.64%, 91.86%, and 91.32%, respectively. The recall rates were 

94.52%, 92.52%, 90.43%, and 90.47%, respectively. 

The experimental results indicate that the 0.5-second signal segment achieved the best 

classification performance, showing the highest accuracy, recall, and F1 score. The superior 

performance of the 0.5-second segment is primarily due to the fact that shorter time segments not 

only increase the training sample size but also capture more granular temporal variations, especially 

in the LFP signals of Parkinson's disease patients. These short time segments effectively reflect high-

frequency, low-amplitude tremor activity, thereby capturing the rapid neural discharge patterns in 

Parkinson's disease. As a result, the model can more accurately identify tremor features when 

processing these segments, significantly improving classification accuracy. 
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Figure 6: The Impact of Different Time Segments on Model Performance 

3.4 Ablation Study 

To assess the specific contribution of each module in the model, this study explores the impact of 

removing or replacing key modules (such as the multi-scale convolution path, deep residual shrinkage 

module, and SE attention mechanism) on overall performance. By comparing the model's accuracy 

under different experimental conditions, the role and importance of each module in the LFP signal 

classification task can be intuitively understood. The core steps of the ablation study to evaluate the 

performance of the improved residual neural network are as follows: 

Removing the Multi-Scale Convolution Path: The multi-scale convolution path is replaced with 

two-path or four-path structures, and the performance changes in capturing features at different time 

scales are observed. This experiment validates the effectiveness of the multi-scale convolution path 

in capturing the multi-scale features of LFP signals: 

Removing the Deep Residual Shrinkage Module: The DR-ResNet module is replaced with the 

standard residual module to evaluate the model's robustness under noise interference. This step aims 

to verify the role of the deep residual shrinkage module in noise suppression and improving 

classification accuracy. 

Removing the SE Attention Mechanism: The SE module is removed, and the changes in the 

model's feature weighting are observed. By comparing the experimental results, the contribution of 

the SE module in enhancing important features and suppressing irrelevant ones is verified. 

These ablation experiments provide detailed evidence for quantifying the specific contributions of 

each module in LFP signal processing. The results of the ablation study are shown in Table 1. 

Table 1: Ablation Experiment of MSDR-ResNet 

Two-Branch Three-Branch Four-Branch DRSN SE ACC(%) 

√     86.35 

 √    89.63 

  √   89.86 

√   √  89.98 

√   √ √ 90.14 

 √  √  93.66 

 √  √ √ 94.67 

  √ √  93.03 

  √ √ √ 93.82 
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3.5 Comparison with Existing Models 

To validate the feasibility of the MSDR-ResNet model, a comparative experiment was conducted 

between MSDR-ResNet and other existing models. The models compared include CNN, ResNet18, 

MRSN, CNN-LSTM, and CNN-GA-KNN, with accuracy, recall, F1 score, and Kappa coefficient as 

evaluation metrics. According to the data in the table, the MSDR-ResNet model achieved an accuracy 

of 94.67%, which is 6.71%, 5.04%, 6.04%, 4.09%, and 2.29% higher than the CNN, ResNet18, 

MRSN, CNN-LSTM, and CNN-GA-KNN models, respectively. Additionally, the recall, F1 score, 

and Kappa coefficient reached 94.52%, 94.58%, and 89.17%, all of which are higher than those of 

CNN, ResNet18, MRSN, CNN-LSTM, and CNN-GA-KNN models. 

Table 2: Comparison of Accuracy across Different Models 

 ACC Recall(%) F1(%) Kappa(%) 

CNN 87.96 87.91 87.83 75.69 

ResNet18 89.63 89.10 86.61 79.22 

MRSN 88.63 88.64 88.61 79.22 

CNN-LSTM 90.58 89.54 89.32 80.59 

CNN-GA-KNN 92.38 91.57 91.63 86.54 

MSDR-ResNet 94.67 94.52 94.58 89.17 

The experimental results, as shown in Table 2, indicate that the CNN model performs poorly in 

handling LFP signals, a complex time-series data, with an accuracy of only 87.96%. This limitation 

mainly arises from the fact that traditional CNN architectures typically use fixed-size convolutional 

kernels, which struggle to effectively capture the multi-frequency features in LFP signals, thus 

affecting the classification performance for Parkinson's disease signals. In contrast, the MSDR-

ResNet model combines multi-scale convolution, the Deep Residual Shrinkage Network (DRSN) 

module, and the SE attention mechanism. This enables the model to not only capture multi-frequency 

features but also suppress noise and enhance key features, leading to more accurate classification. 

The MSDR-ResNet outperforms other models across multiple metrics, including accuracy, recall, F1 

score, and Kappa coefficient. 

In particular, the Kappa coefficient of MSDR-ResNet reached 89.17%, significantly higher than 

CNN's 75.69% and ResNet18's 79.22%. This indicates that the MSDR-ResNet model maintains high 

classification accuracy even in the presence of data imbalance or significant noise. In contrast, models 

like CNN-LSTM and CNN-GA-KNN, although performing well with time-series data, still fail to 

surpass the performance of MSDR-ResNet. These results suggest that the proposed model not only 

excels in feature extraction but also possesses superior noise suppression and generalization abilities, 

making it more effective in accurately identifying LFP signal features in Parkinson’s disease patients. 

4. Conclusion 

This paper proposes a Local Field Potential (LFP) signal classification method based on a multi-

scale residual convolutional neural network (MSDR-ResNet). The method is capable of directly 

extracting features from raw LFP signals and performing classification. Cross-validation 

demonstrates its excellent adaptability to large-scale datasets, especially showcasing outstanding 

generalization ability when processing data from unknown subjects. Compared to other deep learning 

methods, this model achieves excellent classification performance without the need for complex data 

preprocessing and feature extraction steps. Furthermore, under sufficient computational resources, 

the multi-scale residual network can be deepened and trained with more data, theoretically leading to 

a more robust model with superior system performance. 
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