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Abstract: In this paper, we propose a trajectory tracking control scheme for unmanned 
ships based on neural network observers, which has model uncertainty, unknown 
environmental disturbance and saturation problems. A neural network-based observer was 
developed to reconstruct unmeasured velocity and estimate the uncertainty of the model. 
Using the neural network, a neural adaptive output feedback controller was developed. In 
addition, a stable controller was designed by the backstepping method. Finally, the 
Lyapunov analysis shows that all signals in the closed-loop system are bounded. The 
feasibility of the proposed control scheme is verified by simulation. 

1. Introduction  

Autonomous surface vessels are utilized to reduce manual labor costs and enhance operational 
precision. Compared to manned marine vehicles, Autonomous surface vessels are more 
environmentally friendly toward marine ecosystems. Over the past decades, a significant number of 
Autonomous surface vessels have been employed in exploration, search, military, and surveillance 
operations. The widespread application of Autonomous surface vessels has been facilitated by rapid 
advancements in control theory and intelligent learning disciplines [1]-[2]. To successfully 
accomplish the tasks assigned to Autonomous surface vessels, researchers have conducted extensive 
studies in relevant technical fields, such as trajectory tracking, obstacle avoidance, and path 
planning, with trajectory tracking being one of the focal areas of research. Many challenges in this 
area still need to be addressed. At present, one of the main difficulties in the track tracking of 
unmanned surface vehicles lies in the fact that in the design process, in addition to obtaining the 
position of the unmanned vehicle, it is also necessary to have corresponding speed information. 
Although the position and heading information of Autonomous surface vessels can be readily 
obtained using Global Navigation Satellite Systems and gyroscopes, measuring speed might not be 
possible. Consequently, it is essential to explore the control issues of Autonomous surface vessels in 
the absence of speed measurements. Reference [3] introduced a passive nonlinear observer for 
Autonomous surface vessels, capable of reconstructing the vessel's speed and low-frequency 
motion. Reference [4] developed a hub motion estimation algorithm that utilizes sensor fusion from 
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Global Navigation Satellite Systems and Inertial Measurement Units. In reference [5], observer 
backstepping techniques were employed to design maneuvers for multiple unmanned vessels. 
However, these methods are based on the known parameters of the system model.  

However, due to the complex and changeable working environment, it may be affected by 
factors such as wind, waves, and currents. Therefore, it is essential to consider the uncertainties of 
unmanned vessels in controller design. Neural networks (NN) have outstanding approximation and 
learning capabilities and have become a powerful and popular tool for estimating model 
uncertainties in nonlinear systems, as referenced in [6]. In reference [7], an adaptive neural network 
controller is proposed, employing a high-gain observer to estimate the uncertainties of unmanned 
vessels. In reference [8], a neural adaptive output feedback tracking controller was developed using 
a linear observer to update the neural network parameters. In reference [9], neural network 
prediction was utilized to estimate environmental disturbances affecting unmanned vessels.  

In practical engineering applications, saturation is a common nonlinear characteristic of drives. 
At the same time, saturation nonlinearity is unavoidable in most drives, mainly including saturation 
limits of input amplitude and rate. In order to solve this kind of problem, in reference [10]-[12], a 
general driver compensation algorithm is proposed to control the input saturation problem. In 
reference [13], an observer-based anti-saturation compensator is proposed. In reference [14], Liu et 
al. studied the design of an adaptive controller for a single-input-single-output nonlinear system 
with parameter uncertainty and forced the system to be constrained, and constructed two parametric 
adaptive controllers using Nussbaum gain technology to overcome the unknown control direction 
problem. In reference [15], Chen et al. proposed a dynamic surface control method for a class of 
uncertain strict feedback nonlinear systems with input saturation and unknown external 
disturbances, and simulated the effectiveness of the dynamic surface control scheme under input 
saturation control. 

In this paper, the unmanned ship tracking problem with model uncertainty, time-varying 
environmental interference and input saturation is studied. It proposes a neural adaptive output 
feedback control scheme. The unmanned vessels are interconnected via a directional 
communication network. The neural network observer not only identifies unknown model dynamics 
but also reconstructs unmeasured velocity information. On this basis, the method of combining 
tracking error transformation and boundary function is used to deal with the input saturation of the 
system. A kinematic control method based on velocity estimation and inertial constraint function 
was designed. Additionally, based on the estimated velocity and backstepping method, a kinematic 
control law is proposed. Finally, the neural network is used to establish the dynamic control law of 
the unmanned ship. Stability analysis using Lyapunov functions indicates that all error signals in the 
closed-loop system are bounded. The simulation results demonstrate the feasibility of the proposed 
method.  

The organization of this paper is as follows. Section 1 introduces the research status of trajectory 
tracking of unmanned ships. Section 2 establishes the unmanned vessel model and related formulas, 
while Section 3 provides some necessary preliminary preparations and problem statements. Section 
4 proposes a design scheme for the output feedback controller and presents a stability analysis. 
Section 5 provides a simulation to illustrate the theoretical results. Section 6 summarizes the paper. 

2. Mathematical Model 

2.1. Notatiaon  

The following symbols will be used throughout this paper, | |  representing absolute values 
unless specified otherwise. minλ  denotes the smallest eigenvalue of a matrix, and maxλ  the largest 
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eigenvalue of a matrix, respectively. || || represents the Euclidean norm. || || indicates the 
Frobenius norm, nmR ×  representing m n×  Euclidean space. { }jdiag a  signifies a block diagonal 
matrix, where ja  is the thj  diagonal element. ( )T

  and 1( )−  respectively denote the transpose and 
the inverse of a matrix. ⊗  represents the Kronecker product of matrices. ( )tr   indicates the trace of 
the corresponding matrices. 

2.2. Neural Network Model  

In this paper, a neural network approximation method based on radial basis functions is 
proposed, which can be used to estimate the model uncertainty and external interference by model 
the excitation functions of the nonlinear basis functions of the input layer, the hidden layer and the 
output layer. Given a positive number ε  and a continuous function ( )f ς , n kR R→  it can be 
approximated by a neural network radial basis function: 

( ) ( ) ( ), , 1, 2,...T
jf W h j mς ς ε ς ς ς= + ∀ ∈Ω =                                         (1) 

Where ( ) kRε ς ∈  represents the estimation error, satisfying || ( ) ||ε ς ε≤ . ς  is the input vector, m  
is the number of neurons in the hidden layer, and m kW R ×∈  are the interconnection weights from 
the hidden layer to the output, bounded by *|| ||FW W≤  where *W  is a positive constant. 

( ) m
jh Rς ∈  represents the vector of bounded neuron basis functions, || ||jh h≤ , where each h  is a 

positive constant. Typically, ( )jh ς  is selected as a Gaussian function, expressed as: 

2

2

|| ||
( ) exp j

j

c
h

b
ς

ς
 −

=  
                                                                (2) 

Where n
jc R∈  and 0jb >  is the center and width of the thj  kernel unit, respectively. 

Generally, the optimal weight vector W  is unknown and needs to be estimated during the 
controller design. Let Ŵ  be the estimate of W  and define the weight estimation error as 

ˆW W W= − . Select the optimal weight vector W  such that ( )ε ς  is minimized, defined as: 

ˆ
ˆarg min {sup | ( ) ( ) |}

n m

T
jW R

W f W h
ςς

ς ς
×∈ ∈Ω

= − .   

2.3. Unmanned Vessel Model  

 This ship motion is described by six degrees of freedom, namely surge, sway, yaw, heave, roll, 
and pitch. To simplify the complexity of ship motion control, only the motion in the horizontal 
plane, comprising the three degrees of freedom-surge, yaw, and sway-is typically considered. To 
quantitatively describe the motion of these three degrees of freedom, two coordinate systems are 
commonly used: one is the body-fixed frame, which takes the ship itself as the reference point; the 
other is the earth-fixed frame, which uses the earth as the reference point. As illustrated in Figure 1. 
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Figure 1: Body-fixed frame BOBYB and earth-fixed frame XEOEYE 

The mathematical model describing the motion of the unmanned vessel on the horizontal plane is 
expressed as follows[16]: 

( )
( ) ( ) w

R v
Mv C v v D v v d
η ψ

τ τ
=
= − − + + +



                                           (3) 

Where [ , , ]Tx yη ψ=  represents the vector of vessel position ),( yx  and heading angle ψ , and 
[ , , ]Tv u v r= denotes the vector of surge, sway, and yaw velocities in the body-fixed frame. 

1 2 3[ , , ]T
w w w wτ τ τ τ=  represents the vector of environmental disturbances, and ( )R ψ  is the rotation 

matrix,  which satisfies ( ) 1R ψ = , 3 3( ) ( )TR R Iψ ψ ×= , with its time derivative given by 
( ) ( )R rR Sψ ψ= , where ( )R ψ  is the angular velocity matrix expressed as: 

cos( ) sin( ) 0
( ) sin( ) cos( ) 0

0 0 1

0 1 0
1 0 0
0 0 0

R

S

ψ ψ
ψ ψ ψ

− 
 =  
  

− 
 =  
                                                (4) 

For brevity in the following description, we omit ψ , ( )R R ψ= , ( )R R ψ=  , ( )T TR R ψ= . 
[ , , ]T

u v rτ τ τ τ=  is the control vector of the vessel, comprising surge force uτ , sway force vτ , and 
yaw moment rτ .  

max max

min max

min min

,   if 
,     if 

,   if 

c

c c

c

τ τ τ
τ τ τ τ τ

τ τ τ

>= ≤ ≤
<                                                  (5) 

Where, 3
max Rτ ∈ , 3

min Rτ ∈ denote the maximum and minimum control forces and torques 
generated by the thrusters. 1 2 3[ , , ]T

c c c cτ τ τ τ=  The controller computes accordingly. 
The control objective of this paper is to design an output feedback controller for surface 

unmanned vessels that provides tracking of reference signals dη  despite model uncertainties and 
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output constraints, using only position measurements η . Specifically, the goals are as follows: 
1) To maintain the unmanned vessel in the required formation and track the reference signal dη .  

lim dt
oη η

→∞
− ≤

                                                             (6) 
Where o  is a positive constant that can be made sufficiently small by selecting appropriate 

control parameters. 
Prior to the design, we make the following assumptions: 
Assumption 2 [17]: The time-varying environmental disturbances wτ  are bounded, w wτ τ≤  

where wτ  is a positive constant. 
Assumption 3: The reference signals dη  and dη  are bounded. 

3. Extended State Observer Design  

In actual navigation, parameters M , D , and C  are difficult to determine,  and the environmental 
disturbance and model uncertainty are unknown and unmeasurable, and the unknown environmental 
disturbance and model uncertainty information are estimated by introducing a state observer. The 
system models (3) is rewritten as 

Rvη =                                                                  (7) 
( )Mv f vτ= −                                                            (8) 

Where TM M= is the positive definite nominal inertia matrix, and 
1 1

3 3( ) ( ) ( ( ) ( ) )wf v I MM MM D v C v vτ τ− −
×= − + + − encapsulates the model uncertainties and 

unknown environmental disturbances. Definition 1 2 3( ) [ , , ]Tf v f f f= : As velocity v is unavailable, 
( )f v  it cannot be directly reconstructed using RBFNN. Here, the inputs τ  and outputs η  are used 

to reconstruct the unknown functions, where: 

( ) ( ) ( )T
jf v W h ς ε ς= +                                                     (9) 

Where 3,mW R ×∈ 1,...,j = and m  represents the thj  hidden layer neuron, with 
[ , ( ), ( 2 ), ]T T T T T

d dt t t tς η η η τ= − − , 0dt > , 1( ) m
jh Rς ×∈ , ( )ε ς ε≤ , and ε  being positive constants. 

Let ˆ ˆˆ ˆ[ , , ]Tx yη ψ=  and ˆ ˆ ˆ ˆ[ , , ]Tv u v r=  denote the estimated values of position η  and velocity v , 
respectively. Define the position estimation error as ˆη η η= − , and design the neural network state 
observer as: 

1ˆ ˆ oRv Kη η= −

                                                         (10) 

2ˆ ( ) ( )T T
j oMv W h K Rς ε ς η= − − −



                                          (11) 

Where 1 2,o oK K  is the observer gain matrix to be designed.  
The update law for Ŵ  is designed as: 

ˆ ˆ( ) T
jW h R Wγ ς η ρ= −

                                                 (12) 

Where , Rρ γ ∈  is a designated positive constant. 
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Define the velocity estimation error as ˆv v v= − . Thus, the observer error dynamics can be 
written as: 

1ˆ ˆ oRv K sη η= −

                                                        (13) 

2ˆ ( ) ( )T T
j oMv W h K Rς ε ς η= − − −



                                           (14) 

Define the observer error state as a new vector [ , ]T T TX vη=    and rewrite the state observer error 
dynamics (13) and (14) as: 

( ( ) ( ))T
jX AX B W h ς ε ς= + − + 

                                           (15) 

oC Xη =                                                                  (16) 
Where  

[ ]

1 3 3
1 1

2 3 3

1 3 3 3 3

0
,

0

0

o
T

o

o

K R
A B

K M R M

C I

×
− −

×

× ×

−   
= =   −   
=                                (17) 

A depends on nonlinear terms R making the stability analysis of the designed observer 
challenging. Thus, a transformation TXχ =  and 3 3{ , }TT diag R I ×= , such that: 

0( ) ( ( ) ( ))T
T jA rS B W hχ χ ς ε ς= + + − +

                                    (18) 

Where 3 3{ ,0 }T
TS diag S ×=  . 

1 3 3
0 1

2 3 30
o

o

K I
A

K M
×

−
×

− 
=  −                                                     (19) 

Lemma 2: If parameters satisfy 2( / 2 ) ( / 2) 0jhρ γ − >  and there exists a symmetric positive 
definite matrix 6 6,Q P R ×∈ , then the observer estimation error signal is bounded, satisfying the 
inequality: 

0 0 ( ) 0T T T T
T TA P PA PBB P Q FF r S P PS+ + + + + + ≤                          (20) 

0 0 ( ) 0T T T T
T TA P PA PBB P Q FF r S P PS+ + + + − + ≤                          (21) 

Where r R∈  is the upper bound of r . 0
TF C PB= −  

Considering the Lyapunov equation: 

0

1 1 ( )
2 2

T TV P tr W Wχ χ
γ

= +  

                                                 (22) 
Substituting equations (12), (18) into the above results in: 
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0

0

0

0

1 ( )

1(( ) ( ( ) ( ))) ( )

1 ˆ(( ) ( ( ) ( ))) ( )

ˆ( ) ( ) ( ) ( )

T T

T T T
T j

T T T
T j

T T T T T
T j

V P tr W W

P A rS B W h tr W W

P A rS B W h tr W W

P A rS FW h PB tr W W

χ χ
γ

χ χ ς ε ς
γ

χ χ ς ε ς
γ

ρχ χ χ ς χ ε ς
γ

= +

= + + − + +

≤ + + − + +

≤ + − + −



  





  



 



 

                     (23) 

Where 2 2 21 1 1 1( ) || || || || ( ) ( )
2 2 2 2

T T T T
F Ftr W W W W PB PBB Pχ ε ς χ χ ε ς− ≤ − + ≤ +

   ， , 

1 1( ) ( ) ( )
2 2

T T T T T T
j j jFW h FF W h hχ ς χ χ ς ς− ≤ +   combining equations (20), (21), (23), it can be derived: 

2
2 2 2 2

0 min

2 0 1

1( ) || || || || || || ( )
2 2 2 2

j
F F

h
V Q W W

c V c

ρ ρλ χ ε ς
γ γ

 
≤ − − − + +  

 
≤ − +

 

              (24) 

Where 2 2
1 / 2 || || 1/ 2 || ( ) ||Fc Wρ γ ε ς= + , 2

2 min maxmin{2 ( ) / ( ), }jc Q P hλ λ ρ γ= − . Therefore, the 
state χ  is bounded, 1,|| || 1,T T TT T T X T χ−= ≤ =  and consequently, the estimation error signal is also 
bounded. 

4. Controller Design 

The controller design process includes two steps. 
Step 1: Define the first error vector based on the communication topology.  

1 dz η η= −                                                                  (25) 

1z Deriving with respect to time yields: 

1 dz Rv 
 η= −                                                                 (26) 

In (26), v  is chosen as the virtual input, and the kinematic control law β can be written as: 
1

1 1( )dR K z β η−= − −                                                        (27) 

Where 3
1K R∈  is the diagonal gain matrix to be designed.  

Step 2: In this step, define the second error vector as: 

2z v β θα= − −                                                               (28) 

Where 3R   is a positive definite matrix, α  is an auxiliary dynamic variable, and β  is the 
signal from the β  signal input to the first-order filter.  β  is given by the following formula 

l β β β+ =                                                                 (29) 
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Where 3l R  is a positive definite matrix. 
Combining equation (3), the time derivative of 2z  is derived as 

1
2 ( )cz M 


 ξ τ ϖ β θα−= + − − −                                                (30) 

The error function between unsaturated and saturated problems is defined as [ ,0, ]u rϖ ϖ ϖ= . 
Where 3

1 2 3[ , , ]T R      is used to represent total disturbances, it is a state vector expressed as 
1( ( ) ( ) )M C v v D v v dξ −= − − +                                                (31) 

The dynamic update rate of auxiliary variable α  is designed as follows 
1 1( )T Mα θ α ϖ− −= − +                                                        (32) 

Where T  is the gain matrix of  α .    
To ensure stability 2z , the dynamic control law is designed as 

2 2 1
ˆ( )T

c M K z R z Tτ β α ξ= − − + − −                                           (33) 

Where 2K  is the gain matrix of cτ . 
The following theorem is presented to indicate the stability of the entire closed-loop system. 
Theorem 1: The proposed neural adaptive output feedback control scheme guarantees that: 1) all 

signals in the closed-loop system are bounded. 2) The unmanned vessel is capable of tracking a 
reference signal with bounded tracking error. 3) The output position of the unmanned vessel 
satisfies output constraints. 

Proof: Select a Lyapunov function candidate as follows: 

1 1 1 2 2 0

1 1 1 1
2 2 2 2

T T T TV z z z z V β β α α= + + + +
                                       (34) 

Where β β β= − . 
According to equations (25), (29), (30), (24), the derivative of time is obtained 

1
1 1 2

1 1 1
2 0 1

( ) ( )

( )

T T
d

T T

V z Rv z M

l T M c V c





 

 

η ξ τ β θα

β β α θ α ϖ

−

− − −

= − + + − −

− + − + − +                                    (35) 
Equations (27), (32) into equations (35) obtain 

1
1 1 1 1 2 2 2

1 2 0 1( )

T T T T

T T

V z K z z K z l T

z R M c V c

  



β β α α

β θα α ϖ

−= − − − −

+ + + − +                                        (36) 

Where 1TT T , 1 1TM M  . 
Using Young's inequality, the inequality is given by: 

1 1 1

max 1 1

( )

[ ( ) 1] / 2 1/ 2 1/ 2

T T T

T T T

z R z R z

z z

 

 

β θα β θα

λ θ β β α α

+ = +

≤ + + +                               (37) 

max ( ) / 2( )T T TM Mα ϖ λ α α ϖ ϖ≤ +                                          (38) 
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Let 1 min 1 max( ) [ ( ) 1] / 2k Kλ λ θ= − + , 2 min 2( )k Kλ= ,
1

3 min ( ) 1/ 2k tλ −= − ,
4 min max( ) ( ) / 2 1/ 2k T Mλ λ= − − , 3 max 1( ) / 2 Tc M cλ ϖ ϖ= + . The Equation (38) can be rewritten as 

1 1 1 1 2 2 2 3 4 2 0 1
T T T TV k z z k z z k k c V c  β β α α≤ − − − − − +                                (39) 

Further simplification is available 

1 1 1 32V V c µ≤ − +                                                             (40) 

Where, 1 1 2 3 4 2min{ , , , , / 2}k k k k c  . 
Ultimately, it can be derived that: 

123 3
1 1

1 1

[ (0) ]
2 2

tc cV V e µ

µ µ
−≤ − +

                                                   (41) 

From the formulation of 1V , we can know t →∞ , 1 1 1/ 2V c  , the convergence range of the 
Lyapunov function can be set by adjusting the parameters in variable 1 . It can be concluded that 

1z , 2z , α , β  and ξ  are bounded. Therefore, all signals in the closed loop are bounded. 

5. Simulation Results 

This section presents simulation results conducted in Matlab, which validate the effectiveness 
and feasibility of the controller. The initial position of the unmanned vessel was set at 

[0.1m,1m,π / 4rad]Tη = , with the required deviation configured as [0m,1.2m,0rad]Tv = . Initial 
estimates for position and velocity were set at ˆ(0) (0)η η= and ˆ(0) [0m/s,0m/s,0rad/s]Tv = , 
Constraints on control forces and torques were set to 1,max 1,min 2Nτ τ= − = , 2,max 2,min 2Nτ τ= − = , and 

3,max 3,min 1.5Nτ τ= − = . The constraints bk  were established at [0.5m,0.6m,0.15rad]bk = . 
The observer for the unmanned vessel was designed according to equations (3), with observer 

parameters set to { }1 30 diag 1,1,1oK = × ， { }2 30 diag 1,1,1oK = × . The controller was designed as per 
equation (33), with parameters { }1 2.2 diag 1,1,1K = × ， { }2 diag 60,60,23K = configured. The update rate 
Ŵ was set according to equation (12), with parameters defined 1000γ = ， 0.2ρ = . 

The simulation results are illustrated in Figures 2 to 4. Figure 2 displays the reference trajectory 
alongside the tracking trajectory, where the blue solid line represents the reference trajectory and 
the red dashed line represents the tracking trajectory. It is observable that, after initial fluctuations, 
the unmanned vessel accurately tracks the set trajectory. Figure 3 presents the tracking error curve, 
despite initial deviations, the final tracking error converges to a small neighborhood around zero. 
Figure 4 depicts the velocity estimation curve. From Figure 4, we can see that the trajectory of the 
unmanned ship is shaking, and because when the input of the arctangent function is close to the 
singularity, the control signal is abnormal, and the trajectory of the unmanned ship will jitter. This 
is also the problem that we need to solve in the next research. 
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Figure 2: Reference track and trace track. 

 
Figure 3: Velocity estimation curves. 

 
Figure 4: Position and heading tracking curves. 
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6. Conclusions  

In this paper, we addressed the challenges of output feedback formation tracking control for 
unmanned vessels in the presence of model uncertainties, unknown environmental disturbances, and 
input constraints. A neural network state observer was proposed, enabling the simultaneous 
estimation of unmeasured velocities and unknown model dynamics. Additionally, based on the 
estimated velocity and backstepping method, a kinematic control law is proposed. Finally, the 
neural network is used to establish the dynamic control law of the unmanned ship. Stability analysis 
using Lyapunov functions indicates that all error signals in the closed-loop system are bounded.  
Simulation and comparative results validated the tracking performance of the proposed distributed 
controller. 
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