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Abstract: Engineering fluid mechanics is a challenging foundational course due to its high 

cognitive demands. This study introduces the "Layered Progressive Teaching Model" 

(LPTM), integrating Bloom’s Taxonomy with Cognitive Load Theory. The model 

establishes a comprehensive framework through three key mechanisms: cognitive objective 

layering, progressive teaching activities, and collaborative feedback and evaluation. A 

quasi-experimental design at an undergraduate institution compared an experimental group 

(N=51) with a control group (N=69). Results showed that the experimental group 

significantly outperformed the control group in homework, final exam scores, and overall 

performance, with effect sizes of 1.64, 1.72, and 2.09, respectively. These findings 

demonstrate the model’s effectiveness in improving student learning outcomes and provide 

insights for teaching reforms in complex engineering courses. 

1. Introduction 

Engineering education faces increasing challenges in fostering systems thinking and enhancing 

students' ability to solve complex problems. As engineering challenges become increasingly 

intricate, the demand for high-quality talent continues to rise. Engineering fluid mechanics, a 

foundational course in disciplines such as mechanical, chemical, and civil engineering, plays a 

crucial role in cultivating systems thinking and engineering problem-solving skills [1,2]. This 

course, characterized by theoretical abstraction, complex models, and multidimensional concepts, 

presents significant cognitive challenges while demanding advanced systems thinking and practical 

innovation capabilities [3]. 

Traditional lecture-based teaching methods have shown limitations in addressing these 

challenges. These approaches often lead to passive learning, hindering students' ability to 

systematically analyze and think critically about real-world engineering problems [4]. Current 

course designs frequently neglect students' cognitive development processes and fail to effectively 

balance knowledge transfer with skill cultivation [5]. Consequently, innovative teaching models 

grounded in cognitive development theory have become essential for engineering education reform, 
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particularly in high-cognitive-load courses like fluid mechanics. 

Bloom's Taxonomy and Cognitive Load Theory provide robust theoretical foundations for 

addressing these challenges. Bloom's Taxonomy outlines six cognitive levels—remembering, 

understanding, applying, analyzing, evaluating, and creating—offering a framework for progressive 

cognitive development [6, 7]. Studies have shown that active learning strategies based on this 

taxonomy significantly enhance critical thinking and problem-solving abilities in engineering 

education [8, 9]. Complementarily, Cognitive Load Theory focuses on optimizing learning resource 

allocation, providing crucial insights for task design in complex engineering courses [10]. Despite 

their widespread application, current research often focuses on single-theory approaches [11, 12]. 

To address these gaps, this study proposes a "Layered Progressive Teaching Model (LPTM)" for 

engineering fluid mechanics. This model organically integrates Bloom's Taxonomy and Cognitive 

Load Theory, establishing a comprehensive framework that encompasses cognitive objective 

layering, progressive teaching activities, and collaborative evaluation feedback. Through rigorous 

empirical methods [13], the study employs a quasi-experimental design to evaluate the model's 

effectiveness in enhancing students' learning outcomes and cognitive development. The results 

provide both theoretical guidance and practical paradigms for reforming high-cognitive-load 

engineering courses. 

2. The Layered Progressive Teaching Model 

Engineering Fluid Mechanics requires teaching reforms that effectively support students' 

cognitive development while optimizing learning resources. This study introduces the "Layered 

Progressive Teaching Model," which integrates Bloom's Taxonomy and Cognitive Load Theory to 

create a comprehensive instructional framework. 

2.1. Theoretical Foundation and Model Construction 

The model's theoretical foundation draws on established educational theories. Bloom's 

Taxonomy provides a framework for cognitive development, classifying cognitive processes into 

six levels: remembering, understanding, applying, analyzing, evaluating, and creating [6,7]. 

Cognitive Load Theory further enriches this foundation by providing principles for optimizing 

instructional design [10], particularly in complex learning environments like engineering education. 

These theoretical perspectives have shown significant impact in engineering education. Research 

has demonstrated their effectiveness in improving students' conceptual understanding and problem-

solving abilities [12, 14]. The multimedia learning principles derived from these theories [15] 

provide additional support for designing effective instructional strategies. 

2.2. Integrated Framework Development 

This study proposes a comprehensive framework, "Cognitive Objective Layering, Progressive 

Teaching Activities, Collaborative Evaluation Feedback," which deeply integrates Bloom’s 

Taxonomy with Cognitive Load Theory.  

(1) Cognitive Objective Layering: This mechanism establishes clear pathways for cognitive 

development, with objectives carefully structured to support progressive learning. Tasks are 

designed to balance cognitive demands at each stage, ensuring effective knowledge construction 

while avoiding cognitive overload. 

(2) Progressive Teaching Activities: These activities translate theoretical objectives into practical 

learning experiences. Tasks are sequenced to support cognitive development while maintaining 

appropriate cognitive load levels, enabling students to build complex understanding through 
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structured progression. 

(3) Collaborative Feedback and Evaluation: Continuous feedback mechanisms are integrated 

throughout the teaching process, enabling dynamic adjustments to both task design and 

implementation. This iterative process ensures that teaching strategies remain aligned with 

cognitive objectives while responding to students' learning needs. 

2.3. Case Study: Implementation of LPTM in Teaching Bernoulli's Equation 

The teaching of Bernoulli's equation provides an illustrative case study for implementing the 

LPTM framework. As a fundamental principle in fluid mechanics, Bernoulli's equation expresses 

the relationship between pressure, velocity, and elevation in fluid flow systems, making it both 

conceptually important and practically challenging for engineering students. 

In implementing cognitive objective layering, the teaching process began with establishing a 

solid understanding of the equation's physical foundation. Students were first guided to comprehend 

how Bernoulli's equation represents energy conservation in fluid flow, expressing the relationship 

between pressure head, velocity head, and elevation head. Through visual simulations and 

demonstrations, students grasped the energy transformation process along streamlines. Critical 

assumptions, including steady flow, inviscid flow, and flow along a streamline, were emphasized to 

ensure proper application boundaries were understood. 

The progressive teaching activities then advanced to practical applications through a carefully 

structured sequence. In pre-class preparation, students engaged with interactive modules 

demonstrating energy conservation principles and completed online assessments to ensure readiness 

for in-class activities. During class sessions, instruction progressed from analyzing simple pipe flow 

systems to more complex configurations. Students worked through industrial cases involving pipe 

networks, pump systems, and flow measurement devices, with difficulty levels increasing gradually 

to maintain optimal cognitive load. 

As students developed proficiency, they advanced to higher-order applications through team-

based projects. These projects required students to design and optimize fluid systems, such as pump 

networks or ventilation systems, using computational fluid dynamics (CFD) software for validation. 

This phase integrated multiple concepts beyond Bernoulli's equation, including considerations of 

head loss, pump selection, and system optimization, challenging students to develop comprehensive 

engineering solutions. 

The feedback system operated continuously throughout this process. Digital response systems 

provided immediate feedback on concept understanding, allowing for rapid identification and 

correction of misconceptions. Weekly assignments progressively built from basic calculations to 

complex system analysis, while design projects evaluated both technical accuracy and innovative 

thinking. Student performance data and reflections guided ongoing adjustments to teaching 

strategies and task difficulty levels. 

This implementation of LPTM in teaching Bernoulli's equation demonstrated how structured 

cognitive progression, coupled with appropriate feedback mechanisms, can enhance students' ability 

to move from basic comprehension to sophisticated engineering applications. The effectiveness of 

this approach is further supported by the experimental results presented in subsequent sections, 

particularly in students' improved performance on complex problem-solving tasks. 

3. Research Methods 

3.1. Experimental Design 

The study was conducted at an applied undergraduate university, involving two Engineering 
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Fluid Mechanics classes: an experimental group (N = 51) and a control group (N = 69). To ensure 

internal validity, both groups were taught by the same instructor and followed identical course 

content and schedules over one semester (32 class hours). The experimental group implemented the 

LPTM framework, while the control group followed traditional lecture-based instruction. Students 

in both groups shared similar academic backgrounds, being from the same major and year of study. 

3.2. Data Collection and Analysis Framework 

The study employed a comprehensive assessment framework that captured multiple dimensions 

of student performance. The performance indicators and their respective contributions to the 

composite score are as follows: (1) Classroom Performance: Based on student participation in 

discussions, asking questions, and providing answers, accounting for 10% of the composite score. 

(2) Homework Assignments: Evaluated for accuracy, depth, and timeliness of submissions, 

contributing 20% to the composite score. (3) Rain Classroom Quiz Results: Real-time quiz 

responses tracked on the platform to assess immediate learning outcomes, contributing 20% to the 

composite score. (4) Final Exam Scores: A closed-book exam that measures students’ 

understanding and ability to apply knowledge in complex contexts, contributing 50% to the 

composite score. 

Statistical analysis followed a systematic approach to ensure a robust evaluation of the teaching 

model's effectiveness. The analysis protocol included: (1) normality testing using the Shapiro-Wilk 

test to determine appropriate statistical methods; (2) Mann-Whitney U tests for non-normally 

distributed data and independent-samples t-tests for normally distributed data; (3) effect size 

calculations using Cohen's d to assess the practical significance of observed differences; and (4) 

descriptive statistical analysis to summarize performance patterns across all indicators. 

4. Results  

This study evaluated the effectiveness of the Layered Progressive Teaching Model (LPTM) by 

comparing experimental and control groups across multiple performance indicators. The analysis 

demonstrates the model's impact on students' academic outcomes in this high-cognitive-load course. 

4.1. Descriptive Statistics 

Table 1 shows that the experimental group outperformed the control group across all 

performance indicators. The experimental group achieved a higher mean composite score of 79.771 

(±7.494), compared to the control group's 64.300 (±7.333). Notable improvements were observed in 

final exam scores (35.529 vs. 24.050) and homework assignments (18.819 vs. 16.409). 

Figure 1 presents the boxplots and scatter distributions for the experimental and control groups 

across these performance indicators. These visualizations highlight the central tendencies and 

distribution patterns within the groups. 

From Figure 1, the following observations can be made. 

(1) Classroom Participation: Similar distributions between groups, with overlapping interquartile 

ranges. (2) Homework Assignments: Experimental group showed higher scores with tighter 

distribution. (3) Rain Classroom Quiz: Experimental group demonstrated higher median scores with 

less variability. (4) Final Exam: Clear advantage for experimental group in both median and upper 

quartile scores. (5) Composite Scores: Notably higher scores for experimental group with narrower 

distribution. 

 

 

155



Table 1: Means and Variances of Indicators for the Experimental and Control Groups. 

 Experimental Group Control Group 

 Mean STD Mean STD 

Classroom Participation 9.157 0.367 9.130 0.380 

Homework Assignments 18.819 1.091 16.409 1.697 

Rain Classroom Quiz 16.270 1.262 14.710 1.324 

Final Exam 35.529 6.550 24.050 6.771 

Composite Scores 79.771 7.494 64.300 7.333 

 
a) Classroom Participation.               b) Homework Assignments                 c) Rain Classroom Quiz 

 
d) Final Exam                           e) Composite Scores 

Figure 1: The boxplots and scatter distributions of five performance indicators. 

4.2. Statistical Inference  

A Shapiro-Wilk normality test was conducted to determine the appropriate statistical methods 

for further analysis. Table 2 summarizes the normality results for both the experimental and control 

groups. 

Table 2: Shapiro-Wilk Normality Test Results. 

 Experimental Group Control Group 

 p-value Normality Conclusion p-value Normality 

Conclusion 

Classroom Participation 0.0000 Non-normal 0.0000 Non-normal 

Homework Assignments 0.0002 Non-normal 0.2979 Normal 

Rain Classroom Quiz 0.0193 Non-normal 0.6724 Normal 

Final Exam 0.0246 Non-normal 0.0572 Normal 

Composite Scores 0.1540 Normal 0.1094 Normal 

Based on the Shapiro-Wilk normality test results (as shown in Table 2), appropriate statistical 

methods were selected for analysis. Significance tests revealed the following results, as summarized 
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in Table 3. 

Table 3: Significance test results. 

 Statistical Test p-value 
Significance 

Conclusion 

Classroom Participation Mann-Whitney U test 0.7246 Not significant 

Homework Assignments Mann-Whitney U test 0.0000 Significant 

Rain Classroom Quiz Mann-Whitney U test 0.0000 Significant 

Final Exam Mann-Whitney U test 0.0000 Significant 

Composite Scores Independent-samples t-test 0.0000 Significant 

4.3. Effect Size Analysis 

Cohen's d effect sizes were calculated to assess practical significance. As shown in Figure 2, all 

indicators except classroom participation showed large effect sizes (>0.8), with composite scores 

demonstrating the highest effect (2.0901). 

Effect sizes were interpreted as follows: small (d = 0.2), medium (d = 0.5), and large (d ≥ 0.8). 

 

Figure 2: Cohen's d Effect Sizes for Each Indicator. 

The statistical analysis confirms LPTM's substantial positive impact on student performance, 

particularly in areas requiring deeper cognitive processing. However, the minimal effect on 

classroom participation (d=0.07) suggests the need for additional strategies to enhance in-class 

engagement. 

5. Discussion 

The application and effectiveness of the Layered Progressive Teaching Model in engineering 

fluid mechanics demonstrates significant improvements in student performance through the 

integration of Bloom's Taxonomy and Cognitive Load Theory. This discussion focuses on the key 

findings and their implications. 

5.1. Key Findings and Theoretical Implications 

The experimental results revealed several significant patterns in the implementation of the 

teaching model. First, the substantial effect sizes observed in homework (d=1.6383), final exams 

(d=1.7188), and composite scores (d=2.0901) demonstrate comprehensive performance 

enhancement across multiple assessment dimensions. These improvements strongly suggest that the 

layered cognitive objectives successfully facilitated progressive skill development across different 

learning levels, aligning with Bloom's Taxonomy principles of cognitive development progression. 

The optimization of task design emerged as another crucial finding, evidenced by strong 
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performance in Rain Classroom quizzes (d=1.2019) indicating effective cognitive load management. 

The higher quality of homework completion further suggests successful balance between task 

complexity and student capability, supporting Cognitive Load Theory's emphasis on optimizing 

instructional design through appropriate task sequencing. This pattern of improvement across 

different assessment types validates the model's approach to managing cognitive load while 

maintaining academic rigor. 

However, the limited impact on classroom engagement, as shown by the minimal effect on 

classroom participation (d=0.07), indicates potential areas for improvement in the model. This 

finding suggests the need for enhanced student-centered strategies within the current framework and 

highlights the importance of balancing structured progression with active engagement. The contrast 

between strong academic performance and limited classroom participation provides valuable 

insights for future model refinement. 

5.2. Practical Value of the Theoretical Framework 

The "Cognitive Objective Layering — Progressive Teaching Activities — Collaborative 

Evaluation Feedback" framework demonstrated significant practical value in several aspects. The 

clear learning pathways established by the model were evidenced by improved performance across 

various assessment types, suggesting successful implementation of the cognitive development 

framework. The effectiveness of task progression was shown by consistent performance 

improvements throughout the semester, particularly in assignments requiring higher-order thinking 

skills. The dynamic feedback mechanisms incorporated into the model proved particularly 

successful, as supported by enhanced homework and quiz performance, indicating effective 

knowledge consolidation and application. 

5.3. Limitations and Future Directions 

Despite the model's significant effectiveness, several important limitations warrant careful 

consideration. The implementation scope was limited to a single course at one institution, raising 

questions about broader generalizability across different engineering disciplines and educational 

contexts. The limited improvement in classroom participation suggests a need for more effective 

strategies to enhance student engagement during face-to-face interactions. Additionally, the current 

assessment framework primarily focused on cognitive outcomes, potentially overlooking important 

affective and social dimensions of learning. 

Looking forward, future research should address these limitations through several key 

approaches. Implementation should be expanded across multiple institutions and disciplines to 

validate the model's effectiveness in diverse educational contexts. Enhanced strategies for 

classroom engagement need to be developed and integrated into the existing framework to promote 

more active student participation. Longitudinal studies should be conducted to assess the long-term 

impact of the model on students' professional development and academic achievement. Finally, 

assessment metrics should be broadened to include affective and social dimensions of learning, 

providing a more comprehensive understanding of the model's impact on student development. 

6. Conclusion   

The "Layered Progressive Teaching Model" demonstrates significant effectiveness in improving 

student performance in engineering fluid mechanics. The experimental results show substantial 

improvements in academic outcomes, with significant effect sizes in homework assignments, final 

examinations, and overall performance. The model's success validates the value of integrating 
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Bloom's Taxonomy with Cognitive Load Theory in designing complex course instruction. 

The study provides both theoretical guidance and practical paradigms for engineering education 

reform. The "Cognitive Objective Layering — Progressive Teaching Activities — Collaborative 

Evaluation Feedback" framework offers a structured approach for implementing progressive 

teaching strategies in high-cognitive-load courses. Future research should focus on expanding the 

model's application across different institutions and disciplines while enhancing classroom 

engagement strategies. 
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