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Abstract: Identifying protein methylation sites experimentally is a challenging and costly 

task, leading to increased reliance on machine learning-based computational predictors to 

enhance efficiency. This study aims to improve these predictors through a comprehensive 

analysis of 553 properties from the AAindex database. We employed support vector 

machine (SVM) models and utilized 10-fold cross-validation for model evaluation to 

identify optimal feature combinations for predicting lysine and arginine methylation. The 

results indicate that the feature set "RACS820104+FUKS010109" yielded the highest 

performance for lysine methylation, with a Recall (Re) of 71.11%, Precision (Pre) of 

75.68%, Accuracy (Acc) of 74.12%, and a Matthews Correlation Coefficient (MCC) of 

0.48. For arginine methylation, the feature set "BAEK050101+CHAM810101" achieved a 

Recall (Re) of 74.60%, Precision (Pre) of 81.08%, Accuracy (Acc) of 78.60%, and an MCC 

of 0.57. Furthermore, this study explores hydrophobicity as a potentially valuable property 

for distinguishing methylation from malonylation. This thorough analysis enhances our 

understanding of the available physicochemical properties, which could lead to the 

development of more accurate and reliable prediction models. 

1. Introduction 

Protein post-translational modifications (PTMs) are essential chemical changes that significantly 

enhance the structural and functional diversity of proteins. Among these modifications, protein 

methylation—primarily targeting arginine or lysine residues—is a reversible PTM crucial for 

various biological functions including signal transduction and gene expression regulation [1]. 

Identifying protein methylation sites is vital for understanding the molecular mechanisms and 

implications of these modifications in related pathological pathways. Traditional experimental 

methods for site identification are often labor-intensive and time-consuming. This limitation has 

sparked a growing interest in computational approaches that leverage machine learning, which have 

shown remarkable performance in recent years. 
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Feature extraction is a pivotal aspect of machine learning predictions, significantly influencing 

their accuracy. Some studies have underscored the importance of physicochemical properties from 

the amino acid index (AAindex) database [2] as informative features for predictive models. Li et al. 

[3] introduced the Methy_SVMIACO predictor, which encoded sequence fragments using 183 

AAindex indices. The PSSMe model [4] evaluated 544 properties from the AAindex database 

(version 9.2) and selected the top 3 properties that yielded the highest prediction accuracy for 

subsequent studies. However, despite evaluating various properties from the AAindex database, the 

specific AAindex IDs—unique identification numbers assigned to each physicochemical 

property—used in these analyses are often not provided in detail.  

In this study, we thoroughly explored the potential utility of diverse physicochemical properties 

in predicting methylation sites. Our findings reveal the most effective properties for predicting 

lysine and arginine methylation, offering valuable resources for future research to directly integrate 

these specific physicochemical properties using their corresponding AAindex IDs.  

2. Methods 

2.1 Datasets 

We derived the positive and negative datasets for methylation from the benchmark dataset 

provided by the dbPTM[5] database (Version 9.2). In our preliminary analysis, the positive dataset 

comprised 7,281 lysine methylation sites and 7,263 arginine methylation sites, while the negative 

dataset included 18,094 non-methylated lysine sites and 17,970 non-methylated arginine sites. To 

ensure unbiased prediction outcomes, we randomly sampled approximately 40% of non-methylated 

sequences from the negative dataset and combined them with all methylated sequences to create a 

balanced dataset. For optimal feature subset selection, we utilized 80% of the balanced dataset as 

the training set, reserving the remaining 20% as the independent test set. Additionally, to explore 

distinguishing properties for different PTMs, we gathered datasets for other PTMs from the dbPTM 

database, including 7,634 lysine malonylation sites, which closely matched the ratio of 1:1 with 

methylation sites. Consequently, we downloaded the positive dataset for lysine malonylation to 

facilitate subsequent analysis. Detailed statistics of the datasets are presented in Table 1. 

Table 1: Statistics on the number of lysine and arginine sites in the study 

PTM Type 
Residue 

type 

Number of 

Positive sites 

Number of Negative 

sites 

(all/randomly extract) 

Training 

(80%) 

Test 

(20%) 

Methylation Lysine 7,281 18,094/7,281 5,825 1,456 

Methylation Arginine 7,263 17,970/7,263 5,810 1,453 

Malonylation Lysine 7,634 — — — 

2.2 AAindex database  

The AAindex database [2] provides a comprehensive collection of numerical indices that reflect 

various physicochemical properties of amino acids and their pairs. The database is organized into 

three distinct sections: AAindex1, which contains 20 numerical indices for amino acids; AAindex2, 

which consists of an amino acid mutation matrix; and AAindex3, which offers statistical protein 

contact potentials. For the purpose of this study, we focused on utilizing AAindex1, which is based 

on data derived from published literature. The latest version of the AAindex database comprises a 

total of 566 distinct properties, and we excluded any properties that contained missing values 

("NA"). As a result, we retained 553 properties for subsequent analysis, ensuring a robust 
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foundation for our research. 

2.3 Feature extraction 

In this study, we utilized the physicochemical properties extracted from the AAindex database to 

transform sequence fragments, each consisting of 21 residues, into 21-dimensional numerical 

vectors. For illustration, we selected the property "ANDN920101" and applied it to the lysine 

methylation-positive peptide sequence "ELDTLSEESYKDSTLIMQLLR". The corresponding 

values for the 20 amino acids associated with the "ANDN920101" property in the AAindex 

database are as follows: (A: 4.35, C: 4.65, D: 4.76, E: 4.29, F: 4.66, G: 3.97, H: 4.63, I: 3.95, K: 

4.36, L: 4.17, M: 4.52, N: 4.75, P: 4.44, Q: 4.37, R: 4.38, S: 4.50, T: 4.35, V: 3.95, W: 4.70, Y: 4.60). 

The peptide "ELDTLSEESYKDSTLIMQLLR" was then converted into the following 

21-dimensional vector representation: [4.29, 4.17, 4.76, 4.35, 4.17, 4.50, 4.29, 4.29, 4.50, 4.60, 4.36, 

4.76, 4.50, 4.35, 4.17, 3.95, 4.52, 4.37, 4.17, 4.17, 4.38]. We applied this feature extraction process 

to all peptide sequences in the dataset, resulting in a feature matrix with 7,281 rows (corresponding 

to sequence fragments in the dataset) and 21 columns (representing the 21-dimensional numerical 

vectors). 

Following the application of this feature extraction process across all properties in the AAindex 

database, we generated a total of 553 matrices specifically for the lysine methylation-positive 

dataset. Considering the inclusion of five different types of datasets, we ultimately produced a 

cumulative total of 2,765 matrices (calculated as 553×5). These 21-dimensional numerical vectors 

were subsequently input into the selected machine learning algorithms for model training and 

further analysis, facilitating our exploration of the relationship between physicochemical properties 

and methylation. 

2.4 Evaluation 

In this study, we employed a 10-fold cross-validation strategy for our analysis. The dataset was 

divided into 10 equal subsets, with 9 subsets used for training and 1 subset used for testing in each 

iteration. This process was repeated 10 times, and the average performance across all iterations was 

calculated. The evaluation metrics used in this study included Accuracy (Acc), Recall (Re), 

Precision (Pre), and F1 Score. In addition to these metrics, we also presented the Receiver 

Operating Characteristic (ROC) curve and the area under the ROC curve (AUC). Furthermore, the 

Matthews Correlation Coefficient (MCC) was incorporated as an additional evaluation metric. 

Details of these metrics are provided in Table 2.  

Table 2: Evaluation metrics. 

Evaluation metric Abbreviation Formula 

Accuracy Acc 
FNTNFPTP

TNTP





 

Recall Re 
TP

TP FN  

Precision Pre 
TP

TP FP  

F1 score — 
ere

ere
2

RP

RP






 
Matthews Correlation 

Coefficient 
MCC 

))()()((

)()(

FNTNFPTNFNTPFPTP

FNFPTNTP





 
Notes: TP, TN, FP, and FN denote the number of true positives, true negatives, false positives, and 
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false negatives, respectively.  

2.5 Two-step feature selection 

In many cases, single feature-based models may not effectively identify methylation sites. 

Feature selection in this field can be viewed as a combinatorial optimization problem aimed at 

determining the feature set that maximizes the predictive model's performance. To address this 

challenge, a two-step feature selection strategy is implemented in this study. This approach is 

designed to extract the most optimal and significant features from the 553 properties. 

Step 1: Feature Ranking and Incremental Feature Selection (IFS). In the first step, the 

preliminary analysis generates four feature catalogs. Each catalog ranks features based on their 

performance across four evaluation metrics: Recall, Accuracy, Precision, and F1 score, as assessed 

in prediction tasks. Subsequently, the Incremental Feature Selection (IFS) method [6] is employed. 

From the top 10 features identified within these catalogs—selected to ensure the inclusion of 

significant attributes while also reducing computational costs—10 unique feature sets are 

systematically constructed. For each feature set, a prediction model is constructed, and 10-fold 

cross-validation is employed to assess its performance. The feature set that yields the best 

performance based on the IFS approach is then determined. 

Step 2: Combining Prominent Features and Model Redevelopment. In the second step, 

prominent features from different evaluation metrics identified in the first step are combined. This 

process begins by selecting the best feature sets based on individual evaluation metrics, such as 

Recall, Accuracy, Precision, and F1 score. These prominent features are then systematically 

combined to form new feature sets. Subsequently, models are redeveloped using these combined 

feature sets. Each model is subjected to 10-fold cross-validation to assess its performance. The 

optimal feature set is ultimately selected based on the highest predictive performance achieved 

through this integrated approach. 

2.6 Model Building 

Support Vector Machine (SVM), a supervised machine learning method for binary classification 

introduced by Vapnik et al. [7], is widely used in methylation site prediction studies. It can map 

input samples to a high-dimensional space through a kernel function. Then, the hyperplane with the 

maximum classification margin and minimum error is found in that space to classify the samples 

into two classes. We adopted the Radial Basis Function (RBF) as the kernel function, which is a 

commonly used and effective option. In this work, the svm.SVC implementation from the 

scikit-learn [8] machine learning library in Python was utilized. The kernel parameter γ and the 

penalty parameter C were optimized within predefined ranges. Additional details are provided 

below: 

1) Several models were developed based on the 553 properties, with the kernel function set to 

RBF and default values used for other parameters to ensure an objective and unbiased comparison. 

2) In the initial feature selection step, models were reconstructed according to the ranked 

catalogs. The parameter settings were kept consistent with those in 1. 

3) During the second feature selection phase, the dataset was partitioned into training and test 

sets in an 8:2 ratio. Model parameters were firstly optimized within specified ranges, the test set 

was then employed to evaluate the generalization performance of the top 10 models, ensuring that 

selected parameters did not lead to overfitting on the training data. By comparing the AUC values of 

different models with the optimal parameters on the test set, the optimal feature sets were 

determined. 
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3. Results and Discussion 

3.1 Lysine Methylation 

For lysine methylation prediction, the top 10 AAindex properties utilized by models evaluated 

using the Re metric are detailed in Table 3. It is noteworthy that achieving an 80% Re score with 

just the "RACS820104" property is exceptional. When Incremental Feature Selection (IFS) method 

was applied, the improvement was not substantial. Ultimately, in the initial feature selection phase, 

only the "RACS820104" property was selected. This property represents the average relative 

fractional occurrence in EL(i).  

In Table 3, the "FUKS010109" property demonstrated the best performance among the models 

evaluated using Acc as the metric. This property is associated with the amino acid composition of 

intracellular proteins in thermophiles. The Pre metric yielded results similar to those of Acc, to 

enhance the diversity of the feature set, the features assessed under the Pre metric were 

"FUKS010109" and "FUKS010112".  

For the F1 score evaluation metric, the model utilizing "FUKS010101" exhibited the highest 

performance and ranked second in Acc. Following the incremental improvement observed in IFS, it 

was decided to retain the top 2 properties: "FUKS010101" and "NAKH900101". This decision was 

influenced by the notable similarity between "FUKS010101" and "FUKS010109", as well as the 

need to ensure a diverse feature set compared to the Acc metric. "NAKH900101" signifies the 

amino acid composition of total proteins, providing insights into the sequence composition of 

proteins. 

Table 3: Results of lysine methylation prediction using top 10 AAindex properties and 10-fold 

cross-validation. 

AAindex Re.mean AAindex Acc.mean AAindex Pre.mean AAindex F1.mean 

RACS820104 0.800 FUKS010109 0.733 FUKS010109 0.761 FUKS010101 0.711 

AURR980102 0.792 FUKS010101 0.721 FUKS010112 0.740 NAKH900101 0.710 

RACS820112 0.766 NAKH900101 0.720 FUKS010110 0.740 CEDJ970104 0.708 

KARS160118 0.758 CEDJ970104 0.720 FUKS010101 0.737 FUKS010109 0.708 

GEOR030104 0.734 FUKS010110 0.720 CEDJ970104 0.734 NAKH920106 0.703 

GEOR030103 0.729 FUKS010112 0.717 NAKH900101 0.734 JOND920101 0.700 

GRAR740101 0.726 NAKH920106 0.713 NAKH920106 0.727 FUKS010110 0.699 

GARJ730101 0.725 JOND920101 0.712 JOND920101 0.725 FUKS010112 0.699 

WILM950103 0.725 KUMS000101 0.710 KUMS000101 0.724 NAKH920101 0.693 

KRIW710101 0.706 KUMS000102 0.707 KUMS000102 0.718 CEDJ970102 0.693 

Initially, the optimal feature subset was identified by comparing 4 property sets: "RACS820104", 

"FUKS010109", "FUKS010109 + FUKS010112", and "FUKS010101 + NAKH900101". While the 

sets "FUKS010109 + FUKS010112" and "FUKS010101 + NAKH900101" showed high Pre, their 

Re rates were suboptimal, possibly due to the presence of noisy or redundant information in the sets. 

In contrast, "RACS820104" achieved a Re of 69.32%, Pre of 61.44%, and Acc of 62.90%, and 

"FUKS010109" had a Re of 57.38%, Pre of 80.46%, and Acc of 71.71%. Combining 

"RACS820104" and "FUKS010109" might enhance the identification of lysine methylation sites, 

but constructing a model using these two properties resulted in a decreased Re to 30.20%. 

Normalizing the values and rebuilding the model led to improved performance, with a Re of 71.11%, 

Pre of 75.68%, Acc of 74.12%, and MCC of 0.48 on the test set, surpassing the performance of 

other property sets. 

Table 4 outlines the final selected optimal parameters and performance evaluation on the test set. 

130



In selecting these parameters, we considered the generalization capability of the test set, which 

helped to mitigate the risk of overfitting. Additionally, the ROC curve was plotted to further assess 

the models' performance, with Fig. 1 displaying the ROC plot and the corresponding AUC value. 

The findings indicate that the feature subset "RACS820104 + FUKS010109*" is optimal for lysine 

methylation prediction. 

Table 4: Optimal parameters and performance of models trained with different feature sets on the 

lysine methylation test set. 

Feture Set Optimal 

Parameters 

Performance 

AAindex ID Kernel C γ Re(%) Pre(%) Acc(%) MCC 
RACS820104 RBF 1 0.85 69.32 61.44 62.90 0.26 

FUKS010109 RBF 5 0.05 57.38 80.46 71.72 0.45 

FUKS010109+FUKS010112 RBF 1 0.05 30.20 86.27 62.70 0.33 

FUKS010101+NAKH900101 RBF 5 0.05 5.90 94.51 52.78 0.16 

RACS820104+FUKS010109 RBF 1 0.05 53.81 83.40 71.55 0.46 

RACS820104+FUKS010109* RBF 5 0.05 71.11 75.68 74.12 0.48 

Notes: The highest values are indicated in bold. '*' denotes the normalization operation. 

 

Figure 1: The ROC Curves for Evaluating the Performance of Lysine Prediction Models on the Test 

Set. '*' Indicates the Normalization Operation. 

3.2 Arginine Methylation 

For arginine methylation, using 10-fold cross-validation with Re as the evaluation metric, the top 

10 high-performance AAindex properties are listed in Table 5. Notably, the model constructed based 

on the "BAEK050101" property showed the highest performance. Previous research [9] suggests 

that the strength of hydrophobicity increases with more linkers connecting two domains. Therefore, 

this property is related to hydrophobicity. 

Under the Acc evaluation metric, the model using the "HUTJ700103" property, related to entropy 

of formation, achieved the highest performance. The leading models based on the F1 score metric 

largely corresponded with those evaluated using the Acc metric. Post Incremental Feature Selection 

(IFS), a marginal decline in performance prompted the selection of only the "FUKS010101" 
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property for further analyses. 

In terms of Pre, structural information was identified as a pivotal feature in the high-performing 

models for arginine methylation prediction. Specifically, the single property "CHAM810101" 

exhibited a Pre surpassing 85%, highlighting the significance of structural insights in predictive 

models.  

Table 5: Results of arginine methylation prediction using top 10 AAindex properties and 10-fold 

cross-validation 

AAindex Re.mean AAindex Acc.mean AAindex Pre.mean AAindex F1.mean 

BAEK050101 0.729 HUTJ700103 0.773 CHAM810101 0.862 FUKS010101 0.758 

VINM940103 0.721 FUKS010101 0.771 KIMC930101 0.860 HUTJ700103 0.754 

FUKS010101 0.718 KIMC930101 0.769 LEVM760104 0.856 QIAN880105 0.746 

FUKS010102 0.710 QIAN880105 0.769 TANS770109 0.854 FUKS010102 0.743 

GARJ730101 0.710 CHAM810101 0.766 KARS160108 0.854 KIMC930101 0.735 

CASG920101 0.710 ISOY800106 0.765 LEVM760103 0.850 NAKH920101 0.732 

NADH010104 0.708 QIAN880106 0.759 ISOY800106 0.847 ISOY800106 0.732 

KRIW790101 0.708 FAUJ880102 0.759 MAXF760105 0.846 QIAN880106 0.731 

GRAR740101 0.707 MUNV940104 0.757 NAKH900113 0.846 FUKS010104 0.730 

NAKH920101 0.704 LEVM760104 0.757 MAXF760104 0.843 CASG920101 0.730 

After comparing the properties "BAEK050101", "HUTJ700103", "CHAM810101" and 

"FUKS010101", the optimal feature for arginine methylation prediction was identified. 

Subsequently, in the model construction phase, step 3 was executed to build various models based 

on these properties. 

The model that utilized only the "BAEK050101" property showed promise for improvement. 

While the "HUTJ700103" model achieved a Re of 92.64% but a lower Pre of 58.14%, 

normalization significantly improved its performance. In contrast, the Re for the "FUKS010101" 

model was 39.37%. The combination and normalization of the properties of "HUTJ700103" and 

"FUKS010101" resulted in a model that outperformed the others. Notably, the model based on the 

"CHAM810101" property demonstrated superior performance compared to single-property models 

and was comparable to the normalized combination of "HUTJ700103 + FUKS010101". Additional 

models were constructed based on combinations such as "BAEK050101 + CHAM810101" and 

"BAEK050101 + CHAM810101 + HUTJ700103 + FUKS010101". The optimal parameters and 

performance of these models on the test set are presented in Table 6. 

Table 6: Optimal parameters and performance of models trained with different feature sets on the 

arginine methylation test set. 

Feture Set Optimal Parameters Performance 

AAindex ID Kernel C γ Re(%) Pre(%) Acc(%) MCC 
BAEK050101 RBF 5 0.15 64.35 65.25 65.04 0.30 

HUTJ700103 RBF 0.1 0.05 92.64 58.14 62.97 0.32 

HUTJ700103* RBF 1 0.75 67.24 73.57 71.54 0.43 

CHAM810101 RBF 1 0.95 64.50 85.96 76.98 0.56 

FUKS010101 RBF 10 0.05 39.37 87.86 66.96 0.41 

HUTJ700103+FUKS010101* RBF 1000 0.15 74.40 83.35 79.77 0.60 

BAEK050101+CHAM810101* RBF 5 0.45 74.60 81.08 78.60 0.57 

BAEK050101+CHAM810101+ 

HUTJ700103+FUKS010101* 
RBF 1000 0.15 72.13 81.43 77.84 0.56 

Notes: The highest values are indicated in bold. '*' denotes the normalization operation.  

Fig. 2 illustrates the ROC plot and corresponding AUC values, indicating comparable 
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performances among models based on the four property sets: "CHAM810101", "HUTJ700103 + 

FUKS010101*", "BAEK050101 + CHAM810101*", and "BAEK050101 + CHAM810101 + 

HUTJ700103 + FUKS010101*". Considering both feature dimensionality and model parameters, 

"BAEK050101 + CHAM810101*" emerges as the optimal feature subset for arginine methylation 

prediction. 

 

Figure 2: The ROC Curves for Evaluating the Performance of Arginine Prediction Models on the 

Test Set. '*' Indicates the Normalization Operation. 

3.3 Key physicochemical properties for Distinguishing Methylation from Malonylation 

The sequence fragment centered on the methylated lysine residue is used as the positive set, 

while the malonylated lysine residue serves as the negative set. Using 10-fold cross-validation with 

Re, Acc, Pre and F1 score as evaluation metrics, the performance rankings of multiple models based 

on 553 properties are presented in Table 7. The observed lower overall performance may be 

attributed to potential cross-talk between different PTMs. 

Table 7: Results of lysine methylation and malonylation prediction using the top 10 AAindex 

properties and 10-fold cross-validation 

AAindex Re.mean AAindex Acc.mean AAindex Pre.mean AAindex F1.mean 

RACS820104 0.586 ZIMJ680104 0.607 ZIMJ680104 0.623 RACS820104 0.558 

AURR980102 0.553 KLEP840101 0.599 KLEP840101 0.610 EISD860102 0.555 

EISD860102 0.540 FAUJ880111 0.593 FAUJ880111 0.601 ZIMJ680104 0.547 

GEOR030104 0.537 WILM950101 0.583 WILM950101 0.594 WILM950103 0.544 

YUTK870103 0.533 GUOD860101 0.581 GUOD860101 0.591 FAUJ880111 0.543 

RACS820107 0.532 COWR900101 0.581 COWR900101 0.588 JANJ780101 0.542 

FUKS010107 0.532 WILM950103 0.581 MEEJ810102 0.586 KLEP840101 0.540 

YUTK870104 0.531 EISD860102 0.579 FINA910103 0.577 FUKS010107 0.540 

RICJ880109 0.530 MEEJ810102 0.576 CIDH920102 0.574 JANJ790102 0.538 

KARS160106 0.526 CIDH920102 0.576 YUTK870101 0.574 JANJ780103 0.538 

It is noteworthy that the top 2 properties ("RACS820104" and "AURR980102") evaluated in the 
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Re metric align with previous studies, indicating their sensitivity to methylation. Similarly, the top 6 

properties evaluated for Acc and Pre share the same features, including descriptions such as 

"isoelectric point", "net charge", "positive charge". In the F1 score evaluation, the property 

"WILM950103" emerges as a high-performing feature, recognized for its role in representing 

residue hydrophobicity. This characteristic has been previously highlighted in distinguishing 

between methylation and non-methylation sites, underscoring the importance of hydrophobicity in 

predictive modeling. 

4. Conclusion 

In this study, we utilized 553 properties from the AAindex database as features to construct 

predictive models for methylation site prediction. Through rigorous performance comparisons, we 

identified the physicochemical properties most capable of distinguishing methylation, along with 

their exact AAindex IDs. The property set "RACS820104+FUKS010109" demonstrated exceptional 

predictive performance for lysine methylation, while "HUTJ700103+FUKS010101" exhibited 

relatively strong performance for arginine methylation in our study. In our investigations of lysine 

methylation and malonylation, we found that structure-based features and physical properties, such 

as charge equality and hydrophobicity, played significant roles in distinguishing between the two 

types of modifications. We also constructed models based on various window sizes ranging from 7 

to 19, and present the performance rankings of multiple models based on 553 attributes of different 

window sizes in the Appendix. 

Despite these findings, our method has limitations, primarily due to the relatively modest 

performance of predictive models constructed solely with physicochemical properties from the 

AAindex database. Future research will focus on integrating these optimal features with additional 

characteristics to enhance the model's predictive capability. In conclusion, by selecting optimal 

feature subsets from 553 properties through various combinations, our study contributes valuable 

insights to the field of methylation site prediction, paving the way for more accurate and robust 

predictive models in future research. 
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