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Abstract: The multiple system estimation (MSE) method is a way of estimating the 

population size based on samples from two or more sources. Wildlife biologists first used it 

to estimate the number of wild animals, such as fish, insects and birds in a certain area, but 

it is now being used in the study of human disease and health, and its theory also along with 

the development of biostatistics and continually improved. In general, researchers will use 

the MSE to estimate some hidden populations that are not easily detected and consider log-

linear models to explain the effects of list or covariates and their interactions on total 

population size and apply bootstrapping to calculate their confidence intervals. 

1. Introduction 

The earliest methods of estimating population numbers from marked animals can be traced back 

to Peterson's work in the 19th century [1]. Since then, the capture-recapture (CR), a method of 

estimating population size based on samples from two or more sources, has been widely used by 

animal ecologists. For example, Lincoln studied North American waterfowl in 1930, followed by 

Jackson, who studied tsetse flies in the Tanganyika region in 1933. Then later, the CR method was 

popularized and used by some statisticians to make population estimates. Abeni, Brancato and Perucci, 

for instance, used the primary method in 1994 with the human immunodeficiency virus type 1(HIV-

1) surveillance system data in Lazio, Italy, to estimate the total number of people with HIV-1 [2].  

The multiple systems estimation (MSE) method is an extension of the CR approach, which 

includes a range of statistical techniques specifically designed to estimate hidden populations from a 

multi-source incomplete contingency table. Nowadays, MSE has been widely applied in various 

fields, for example, to estimate wildlife populations [3], underreported transport survey points and 

the scale of modern slavery [4]. I will generally assume a Poisson distribution with the log-linear 

model for MSE. 

After fitting the model with all the lists and covariates, we may find that not all the variables are 

significant; in other words, some variables may have no effect on the model. For this reason, it is 

necessary to perform model selection to remove some of the non-significant variables to ensure that 

our model is valid. Three ways of the log-linear model selection are best subset, forward stepwise 

and backward stepwise selection. However, a literature search and computer calculation found that 

the best subset regression method is very time consuming, especially for models with many lists and 

covariates. Therefore, this paper will only use the forward approaches. 
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2. Background 

The capture-recapture (CR) method can be divided into two-sample CR method and multiple-

sample CR (also called MSE) methods, depending on the number of data sources. The two-sample 

CR method is the simplest and was first applied in the ecological field, with Pertenson first linking it 

to fish tagging in 1894, though Dalh first actually used it in the fishing industry in 1917, and Lincoln 

in 1930 to estimate the size of duck populations [5]. In 1949, Sekar and Deming used the method to 

estimate birth rates, mortality rates and the extent of registration, marking the application of the CR 

method to human health [6]. However, the real use in epidemiological studies began in 1969 when 

Wittes and Sidel used it to estimate the rate of birth defects, and Lewis used to studying nosocomial 

infections in the same year [7]. At that time, this method was not well understood and applied. It was 

not until the 1980s that CMR method was widely used in various fields. 

It is an attempt to estimate population size using samples from multiple sources. The MSE method 

was first proposed in 1938 when Schnabel estimated fish populations and made some assumptions 

about the process of sampling and tagging [8]. The MSE method was also applied to populations that 

were allowed to be born, die and migrate during the study period. As biostatistics has evolved, it has 

been realized that some basic assumptions may not hold. For example, there is the problem of 

heterogeneity - those individuals that are not tagged have a different probability of being captured in 

a given sample, tagged individuals behave differently from untagged individuals, and samples may 

not be independent of each other. However, since this is not the case in the list, we need to relax some 

of the assumptions [9]. 

Previous researchers have put forward various families of models to deal with the case of multiple 

lists, each of which makes different assumptions about the population. For instance, Gibbs sampling 

[10] and reversible jump Markov chain Monte Carlo methods [11] by Bayesian approach, log-linear 

models [12], discrete mixture models [13], and Rasch models [14]. Fortunately, the general log-linear 

model can be used to fit a multi-source contingency table [15]. Fienberg, in 1972, analyzed the 

relationships between captures or lists by using the log-linear model as it generated for the analysis 

of multidimensional contingency tables [16]. This solution is universal and applicable to population 

estimates of animal and human populations. 

3. Methods 

There are many population estimation methods, such as multiplier method, capture-recapture 

method, mapping methods, Delphi method and workbook method. Among them, the workbook 

method relies on existing official reports; the mapping methods and the Delphi method are based on 

population counting, while the multiplier method and the capture-recapture method are based on 

independent samples [17]. However, the accuracy of the multiplier method depends on the quality of 

the raw data [18], and different data sources will provide different estimates. Multiple systems 

estimation (MSE) is a generalization of the capture-recapture approach to obtain the volume of hidden 

populations. Due to the concealment of the hidden people, it is feasible and reasonable to apply the 

MSE method to estimate the size of the population. 

3.1. Capture-recapture method and multiple systems estimation 

3.1.1. Two sample capture-recapture methods 

Begin with a brief description of the capture-recapture method using the example of estimating the 

number of fish in a pond. Suppose some fish can be caught from a pond, mark them in some way, 

and then release them back into the same pond. Tracking the number of fish that have been marked 
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and assume that it is 𝑛. After a period of time, make a second catch of the fish. Suppose 𝑀 fish be 

caught in the second time, and find that 𝑚 of them are tagged as being part of the first capture returned. 

According to Petersen–Lincoln method [19], we can obtain that the frequency of marked rate in the 

overall population is approximately equal to the proportion of the marked rate in the second sample, 

the formula form is 

𝑛

𝑁
≈

𝑚

𝑀
 

This will give us the estimate of the total number of fish in the pond (𝑁), 

𝑁̂ =
𝑛 × 𝑀

𝑚
 

The method has been extended to include more than two sources [20]. For example, there are two 

lists (𝑆1 and 𝑆2), which can be linked to obtain the number of individuals in 𝑆1 but not in 𝑆2 (𝑛10), 

that of individuals in 𝑆2 but not in 𝑆1(𝑛01), and that of individuals both in 𝑆1 and 𝑆2(𝑛11). These 

counts of the contingency table with the variables labelled 𝑆1 being distinguished into 'observed' and 

'unobserved' categories, and likewise for list 𝑆2 (see Table 1). The estimate of total population size, 

denoted as 𝑁, is obtained by adding the observed number to the estimated number of individuals 

omitted from both lists (𝑛00).  

Table 1: Simple two-list contingency table 

  List 2 (𝑆2) 

  Observed Unobserved Total 

List 1 

(𝑆1) 

Observed 𝑛11 𝑛10 𝑛1∙ 

Unobserved 𝑛01 𝑛00  

 Total 𝑛∙1  N 

Where 𝑛1∙ and 𝑛∙1 denotes the total number of individuals observed by list 1(𝑆1) and 

list 2 (𝑆2).  

Then we can obtain the estimate of N by 

𝑁̂ =
𝑛1∙ × 𝑛∙1

𝑛11
 

In addition, the original data should fulfil the following four assumptions [21]: 

1) Closed system. The study population should be closed, that is, there should be no significant 

changes in the total number of studies during the study period, such as a large number of migrations 

or mortality. 

2) Independent. Each list should be independent of the other, meaning that the lists created do not 

affect each other, i.e., the inclusion of one list does not affect the possibility of inclusion in another.  

3) Homogeneity. All the individuals should have the same probability of being included or 

captured. 

4) Identifiable. All individuals need to be matched on all lists. In other words, we need to set at 

least one identifier. For example, if the last name, first name and gender are the same, we can mark 

him or her as the same person. 

However, the independent assumption is an ideal situation. Log-linear model and multiple sources 

can help us with this problem. 

3.1.2. Multiple systems estimation 

MSE, also known as the multiple sample capture-recapture method, is a class of sampling 
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techniques for statistical inference that uses the overlap between several incomplete lists of data to 

estimate the total population.  

Start with a brief introduction to the contingency table. Suppose there are 𝑆𝑘 available sources 

for 𝑘 = 1,… , 𝐾, and 𝑥𝑗 binary covariates for 𝑗 = 1,… , 𝑝. There will be 2𝐾 combination of different 

sources. Then we can construct an incomplete contingency table with 2𝐾 × 2𝑝 cells. Each entry, 

representing the number of individuals, is called cell count. There will be 𝑛𝑈 = 2𝑝 missing values 

(unobserved cell counts, 𝒏 , a 1 × 𝑝 vector) of the contingency table we need to estimate. Moreover, 

the sum of all cell counts is the total population size (𝑇). 

For example, let 𝒙 denotes the combination of the lists and covariates, suppose there are two 

sources and two characteristics (see Table 2), then 𝒙 = {0,1,0,1} represents the individual that only 

occurs in the second (𝑆2) list with the second binary covariate equals to 1. 𝑵 = {𝑁1,  𝑁2, 𝑁3,  𝑁4} is 

a 1 × 4 vector we want to predict, and 𝑦𝑖𝑗𝑘𝑙 denote the number of each individual observed by the 

combination of sources and covariates for  i, j, k, l ∈ R ∪ {0000} . 

Table 2: Multi-source contingency table with covariates 

List 1 (𝑆1) List 2 (𝑆2) 
Cov.1 = 0 Cov.1 = 1 

Total 
Cov.2 = 0 Cov.2 = 1 Cov.2 = 0 Cov.2 = 1 

unobserved unobserved 𝑁1 𝑁2 𝑁3 𝑁4 ∑𝑁𝑖

4

𝑖=1

 

observed unobserved 𝑦1000 𝑦1001 𝑦1010 𝑦1011 𝑦2∙ 

unobserved observed 𝑦0100 𝑦0101 𝑦0110 𝑦0111 𝑦3∙ 

observed observed 𝑦1100 𝑦1101 𝑦1110 𝑦1111 𝑦4∙ 

Total 𝑦∙1 𝑦∙2 𝑦∙3 𝑦∙4 T 

where ∑ 𝑁𝑖
4
𝑖=1  denotes the number of individuals that do not appear in both lists, 𝑦2∙  and  

𝑦3∙ denotes the total number of individuals observed by list 1 (𝑆1) and list 2 (𝑆2), respectively, 

and 𝑦4∙ denotes the overlap between 𝑆1 and 𝑆2.  

To predict the missing cell counts 𝑵 = {𝑁1,  𝑁2, 𝑁3,  𝑁4} , Fienberg introduced the log-linear 

model in 1972, specifying that the expected number of cells in log form. 

3.2. Model fitting 

We assume a Poisson distribution and model the log of the cell count 𝜇𝑖 , that is, for cell 𝑖 =
1, 2, … , 𝑛, let 𝑦𝑖 denotes the cell count and assume they are independent, 

𝑦𝑖 ∣  𝜷 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(μ𝑖),                                                          (1) 

the probability distribution function of 𝑌𝑖 is  

𝑓𝑌𝑖
(𝑦𝑖) =

𝑒−𝜇𝑖𝜇
𝑖

𝑦𝑖

𝑦𝑖!
= 𝑒𝑥𝑝{𝑦𝑖 log(μ𝑖) − μ𝑖 − log(𝑦𝑖!)}                                 (2) 

and the link function 

𝑔(𝑦𝑖) = 𝑙𝑜𝑔(𝜇𝑖) = 𝑿𝑖
𝑇𝜷                                                      (3) 

where  
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𝑿𝑖
𝑇 =

[
 
 
 
 
 
 

1
𝑋𝑖1

⋮
XiK

𝑋𝑖(𝐾+1)

⋮
𝑋𝑖(𝐾+𝑝)]

 
 
 
 
 
 

  and  𝜷 =

[
 
 
 
 
 
 

β0

β1

⋮
βK

βK+1

⋮
β𝐾+𝑝]

 
 
 
 
 
 

 

Then the log linear model (also called Poisson model) that contains main effects but no two-way 

or higher order interactions can be formulated for the 𝑖-th unit of a sample of n units: 

log 𝐸(𝑌𝑖) = 𝑙𝑜𝑔(𝜇𝑖) = 𝛽0 + 𝛽1𝑋𝑖1 + ⋯+ 𝛽𝑘𝑋𝑖𝑘 + ⋯+ 𝛽𝐾𝑋𝑖𝐾 + ⋯+ 𝛽𝐾+1𝑋𝑖(𝐾+1) + ⋯+ 

𝛽𝐾+𝑗𝑋𝑖(𝐾+𝑗) + ⋯+ 𝛽𝐾+𝑝𝑋𝑖(𝐾+𝑝)  for 𝑖 = 1,… , 𝑛                                  (4) 

where 

𝑌𝑖 is the response variable, which follows Poisson (𝜇𝑖), 𝑖 =  1, … , 𝑛; 

𝛽𝑙 are unknown parameters, 𝑙 =  1, … , 𝐾, 𝐾 + 1,… , 𝐾 + 𝑝 and 𝛽0 is the intercept; 

𝑋𝑖𝑙 are the predictors, 𝑖 =  1, … , 𝑛, 𝑙 =  1, … , 𝐾, 𝐾 + 1,… , 𝐾 + 𝑝. 

𝑘 = 1,… , 𝐾 is the number of lists, and 𝑗 = 1,… , 𝑝 is the number of covariates. 

(4) can be rewritten as a matrix form: 

log 𝜇𝒊 = 𝑿𝒊
𝑻𝜷                                                                 (5) 

where 

𝝁 = [

𝜇1

𝜇2

⋮
𝜇𝑛

] , 𝑿𝑻 = [

1 𝑋11 𝑋12 … 𝑋1𝑙

1 𝑋21 𝑋22 … 𝑋2𝑙

⋮ ⋮ ⋮ ⋱ ⋮
1 𝑋𝑛1 𝑋𝑛2 … 𝑋𝑛𝑙

] , 𝜷 = [

β0

β1

⋮
β𝑙

], 

Here 𝒀 is the 𝑛 × 1 response matrix, with 𝑖 entry 𝑌𝑖, 𝒚 is a vector of expected cell counts, 𝑿 is the 
(𝐾 + 𝑝 + 1) × 𝑛  input matrix, 𝜷  is the (𝐾 + 𝑝 + 1) × 1  matrix of parameters and 𝝁  is the  𝑛 ×
1 matrix of cell counts. 

Then we can obtain the likelihood function for the parameters 𝜷 

𝐿(𝜷) = ∏𝑓𝑌𝑖(𝑦𝑖)

𝒊

 

= ∏𝑒𝑥𝑝{𝑦𝑖 𝑙𝑜𝑔(𝜇𝑖)

𝒊

− 𝜇𝑖 − 𝑙𝑜𝑔(𝑦𝑖!)} 

= 𝑒𝑥𝑝{∑𝑦𝑖

𝑖

𝑙𝑜𝑔(𝜇𝑖) − ∑𝜇𝑖

𝑖

− ∑𝑙𝑜𝑔(𝑦𝑖

𝑖

!)} 

Hence, the log-likelihood for the log-linear model is 

𝑙(𝜷) = ∑𝑦𝑖

𝑖

log(𝜇𝑖) − ∑𝜇𝑖

𝑖

− ∑log(𝑦𝑖

𝑖

!) 

   = ∑ 𝑦𝑖𝑖 𝑿𝑖
𝑇𝜷 − ∑ exp{𝑿𝑖

𝑇𝜷}𝑖 − ∑ {log(𝑦𝑖}!)𝑖 .                                       (6) 

We can ignore the last term ∑ log(𝑦𝑖𝑖 !) as it does not involve any parameter.  

To maximize the log-likelihood, we need to take the partial derivative with respect to 𝜷 and set to 
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zero 

𝜕𝑙

𝜕𝜷
= ∑ (𝒚𝑖 − exp{𝑿𝑖

𝑇𝜷})𝑿𝑖𝑖 = 0                                                (7) 

Let 𝜷̂  denote the maximum likelihood estimator of the regression parameters coefficients. 

Iteratively reweighted least squares can be used to find the 𝜷̂. Once the coefficient estimates 𝜷̂ are 

obtained, we can get the fitted regression model 

𝝁̂ = 𝒆𝒙𝒑{𝑿𝑇𝜷̂}.                                                                (8) 

Therefore, we can obtain the predicted unobserved population 𝑵̂ = {𝑁𝟏, … , 𝑁𝟐𝒑} 

𝑁̂ = 𝑒𝑥𝑝{𝐴𝑇𝛽̂}                                                                   (9) 

where 𝑨 is a (𝑙 + 1) × 2𝑝 vector representing all the combination of the lists and covariates for 

the unobserved value, and 𝑵̂ is a 𝑙 × 1 vector, for  𝑙 =  1, … , 𝐾, 𝐾 + 1,… , 𝐾 + 𝑝. 

Therefore, the total population size 𝑇 is the sum of the observed population and the estimated 

population, 

𝑇 = ∑𝑦𝑖

𝑛

𝑖=1

+ ∑𝑁𝑗

𝟐𝒑

𝑗=1

 

where ∑ 𝑦𝑖
𝑛
𝑖=1  denotes the sum of the number of the individuals which observed in each list. 

Finally, we are interested in whether our explanatory variables have an effect on the response 

variables. So we need to test the hypothesis of 𝐻0: 𝛽 = 0 versus 𝐻1: 𝛽 ≠ 0, the statistics is 

𝑧 =
𝛽̂

𝑠.𝑒.(𝛽̂)
 ,                                                                  (10) 

where 𝑠. 𝑒. (𝛽̂) is the standard error of 𝛽̂.  

If the null hypothesis is true, then the statistics 𝑧 approximates a standard normal distribution, that 

is 

𝑧 =
𝛽̂

𝑠.𝑒.(𝛽̂)
∼ 𝑁(0,1)                                                        (11) 

Where 𝑁(0,1) is standard normal distribution with mean equals to zero and variance equals to one.  

3.3. Model selection 

3.3.1. Statistics 

When we model a set of data, we have many variables at our disposal and choosing different 

combinations of variables can lead to different models and results. We need to choose the best model 

by estimating the performance of counting different models. Therefore, we need to consider some 

methods of selecting subsets of variables. There are various statistics that can be used to judge the 

quality of a model, for example, Mallow’s 𝐶𝑝 , Akaike information criterion (AIC), Bayesian 

information criterion (BIC), residual sum of squares (RSS) and adjusted R squared.  

AIC is a measure of the goodness of fit of a statistical model and was created and developed by 

Japanese statistician Hirotugu Akaike [22]. The AIC is based on the concept of entropy. In general, 

AIC can be expressed as 

𝐴𝐼𝐶 =  −2 𝑙(𝜷̂)  +  2𝑝, 

133



where 𝑙(𝜷) is the log-likelihood function of the parameters 𝜷̂ based on the maximum likelihood 

estimators (MLE), p is the number of unknown parameters. And the second term is called the penalty. 

When using AIC for model selection, the smaller the AIC value, the better the model. Therefore, 

we will select the model with the smallest AIC value in the set of models under consideration.  

3.3.2. Best subset selection 

To select a subset of the variables of the full model, a straightforward way is called best subset 

selection. Best subset regression finds for each 𝑘 ∈ { 1, 2, … , 𝑝 } the subset of size 𝑘 that gives the 

smallest AIC. Here is the algorithm, 

Algorithm 1. Best Subset selection 

1) Let 𝑀0 denote the null model, which contains an intercept but no predictors.  

2) Fit all (𝑝
𝑘
) models that include exactly 𝑘 predictors. Pick the model with the smallest 

residual sum of squares (RSS) or largest 𝑅2 among these (𝑝
𝑘
) models, and denote it as 𝑀𝑘.  

3) Choose the model using 𝐴𝐼𝐶 from among 𝑀0, … ,𝑀𝑝.  

Although the best subset selection is straightforward, it may be subject to some computational 

constraints. The number of possible models we have to consider ((𝑝
0
) + (𝑝

1
) + ⋯+ (𝑝

𝑝
) = 2𝑝) will be 

huge as p increases, which can be very time-consuming.  

3.3.3. Forward and backward stepwise selection 

Considering the computational efficiency, the best subset selection is not very suitable for very 

large 𝑝, then we need to seek another way. Another way to select a subset of predictors is called 

stepwise selection. This method contains forward stepwise and backward stepwise procedures.  

To perform the forward method, we will begin with a null model. Additional predictor that most 

improves the fit is then added to the model one by one until all the 𝑝 predictors are included in the 

model. The details of this method are as below.  

Algorithm 2. Forward Stepwise Selection 

1) Generate a null model, denoted by 𝑀0. 

2) For 𝑘 ∈ {0,… , 𝑝 − 1}, consider all 𝑝 − 𝑘 models, augmenting the predictors in 𝑀𝑘 with 

one extra predictor. Choose the best model, having the smallest RSS or highest 𝑅2, among 

these 𝑝 − 𝑘 models and denote it as 𝑀𝑘+1.  

3) Select a single best model using AIC. 

3.4. Confidence interval 

After fitting the model, it is necessary to calculate the confidence intervals (CI). The main function 

of CI is to demonstrate the accuracy of the sample study estimate as a population value [23]. Jerzy 

Neyman introduced confidence intervals in 1937, since then, statisticians and scientists gradually 

began to use this idea [23]. Despite this, confidence intervals were rarely used. It was not until the 

late 1980s that medical journals began requiring confidence intervals to be reported [24]. It is 

customary to write down the confidence level as 1 –  α, which means that there is a 1 –  α probability 

that the true value will fall within the range we have calculated, and 𝛼 is a very small positive number 

called significant level.  

Several ways of calculating CI have been proposed. A robust way to calculate confidence intervals 

is to use the parametric bootstrap method. Bootstrap methods are used in a variety of contexts, the 

most common mode is to provide a measure of the accuracy of the parameter estimates. Bootstrap 
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estimation is a method of estimating parameters using repeated sampling, which began to develop 

after the popularization of computers, as it is extremely cumbersome to do by hand without the 

assistance of computers for repeated sampling. The main benefit of bootstrapping is that it can be 

performed relatively straightforward.  

The algorithm for calculating the confidence interval by parametric bootstrapping is as follows. 

Algorithm 3. Bootstrapping for Confidence Interval 

1) Generate multinomially distributed random cell counts based on the original data size 

and the per centage of the observed population size, denoted as 𝐺𝑖. 

2) For each of the 𝐺𝑖 sample, fit a log-linear model and use stepwise selection to choose 

the best model (here best means the model with the lowest AIC or values).  

3) Use the selected model to predict the unobserved (𝑁) and obtain the estimated total 

population size (𝑇).  

4) Repeat steps 1-3 𝐵 times (the larger 𝐵 the better, usually be in the hundreds or the 

thousands, as the number of bootstrap repetitions defines the variance of the estimates), 

obtaining 𝐵 estimated total population size. 

5) The (1 − α) confidence interval is the middle (1 − α) of the 𝐵 predicted values. 

In short, bootstrapping for CI is resampling the original data several times and selecting the best 

model to obtain the point estimates of the unobserved variables. Then pick the 
α

2
  and 1 −

α

2
 per 

centiles of the distribution formed by bootstrap estimates as the lower and upper bound of the CI, 

respectively. 

4. Discussion  

As some specific populations are hidden and difficult to reach by conventional means, their 

population size often needs to be estimated using mathematical modelling. Multiple systems 

estimation with the log-linear model is one of the common methods. In this paper, we use the AIC 

criteria to perform forward stepwise selection to choose the best model based on the MSE method to 

estimate the total population size, and use the bootstrap method to calculate its confidence interval.  

Although there is some bias in using the MSE method to estimate the total population size, this 

study uses existing data to make estimates that are short time, low cost and easy to operate.  

However, despite the advantages of simplicity and ease of use, the MSE method has more 

demanding conditions for application. The following four assumptions should be met when it is used: 

the study population remains constant over the study period, each list is independent of the other, 

each individual within the population has the same probability of being sampled and each list is within 

the same study population. And the difference in observed objects will significantly influence the 

estimation results. Besides, the confidence interval calculated by bootstrapping may be ridiculous as 

it takes into account the uncertainty of the model.  

This study is able to estimate the total population by using the MSE method, however, I need to 

emphasize that the results should be considered exploratory until further research is undertaken. 

Furthermore, I need to collect more data to get a larger sample size to improve the reliability of the 

model. In addition, for the confidence interval, due to the lack of stability of the classic bootstrap 

method, we can further consider adopting the Bayesian bootstrap method and the parameter empirical 

Bayesian (PEB) bootstrap method to narrow the confidence interval and make it more reasonable. 
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