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Abstract: This study employed survival analysis methods to evaluate the effects of different 

tumor immunotherapy combinations on patient survival time and risk of death. By analyzing 

clinical data from 200 patients with advanced tumors, the Kaplan-Meier survival curve, Cox 

proportional hazards model, and LASSO regression method were used to identify 

biomarkers significantly associated with survival. Results indicated that immunotherapy 

combined with targeted therapy most effectively prolonged survival and reduced mortality 

risk, significantly outperforming other combinations. Cluster analysis was also used to 

explore treatment response heterogeneity among tumor samples, revealing differential 

immunotherapy efficacy among different subtypes, with some responding more favorably to 

combined treatments. LASSO regression feature screening successfully reduced overfitting 

risk while retaining key features significantly impacting survival. In summary, this study 

demonstrated significant advantages of immunotherapy combination use in tumor treatment, 

providing a theoretical basis for optimizing treatment strategies. 

1. Introduction 

1.1 Research background and importance 

The rapid development of tumor immunotherapy, mostly in recent years, is due to the clinical 

application of immune checkpoint inhibitors [1]. This always seems to have acted as the main driving 

force for fundamental changes in the treatment mode of various malignant tumors. Immune therapies 

work by activating the body's own immune system against cancerous cells. Immunotherapy differs 

from traditional chemotherapy and targeted therapy because it is well tolerated, induces good long-

term efficacy, and ensures sustainable immune memory [2]. However, single immunotherapy fails to 

produce a long-lasting response in many patients, which suggests that enhancing the effect of 

immunotherapy using combination therapy is an important direction of research. [3]. 

In recent years, immunotherapy has gradually become a research hotspot. Immune checkpoint 

inhibitors in combination with other therapies, such as targeted therapy, chemotherapy, and 

radiotherapy, have been illustrated by numerous studies to enhance anti-tumor immune responses for 

improved treatment efficacy by several mechanisms [4,5]. For example, immunotherapy in 

combination with targeted therapy can kill tumor cells directly but also potentiates the capability of 
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the immune system in recognizing and eliminating tumors through modification of the tumor 

microenvironment. This multimodal combination therapy provides new hope for improving the 

overall survival rate for patients [6]. As a result, this becomes a very clinically important aspect to 

identify the effects of different combinations of immunotherapy on both the survival time and risk of 

death for patients. 

1.2 Research objectives 

The present study shall focus on determining survival time and the risk of death with respect to 

the effect of immunotherapy combinations. In this regard, data shall be collected from 200 patients 

receiving tumor immunotherapy. Furthermore, Kaplan-Meier survival curves, cumulative risk curves, 

and Cox proportional hazard models would normally be the typical analytical methodologies for 

testing the efficacy differences of different choice options. By comparing the survival benefit brought 

about by single immunotherapy and combined therapy, it could be verified that the efficacy of 

combined immunotherapy and targeted therapy in prolonging the survival of patients and reducing 

the risk of death is superior, providing data support to optimize tumor treatment options. 

2. Overview of tumor immunotherapy and combined therapy options 

2.1 Basic principles and development of tumor immunotherapy 

The general principle of tumor immunotherapy is to activate or regulate the patient's immune 

system in order for it to recognize and destroy tumor cells. Generally, the tumor microenvironment is 

immunosuppressive, facilitating tumor immune escape and inhibiting effective immune action[7]. 

Immune checkpoint inhibitors include, but are not limited to, anti-PD1, anti-PD-L1, and anti-CTLA-

4; these have been developed to a considerable extent as a class of immunotherapy drugs in recent 

years [8]. They realize extended patient survival by blocking inhibitory signal pathways, which 

reduce T cell function and restore anti-tumor T cell activity. In addition, some methods for tumor 

immunotherapy, including chimeric antigen receptor T cell therapy and tumor vaccines, bring new 

hope for malignant tumor patients [9,10]. 

The development of immunotherapy traces back to early cancer vaccine trials, but its real 

breakthrough came after the clinical application of immune checkpoint inhibitors. These drugs 

function on the principle of taking away the tolerance of the immune systems toward cancerous cells, 

thus enabling the system to rerecognize and attack tumor cells. With the deepening study of the tumor 

microenvironment and immune escape mechanism, studies on the research and development of 

immunotherapy drugs have focused gradually on personalization and diversification. Meanwhile, 

combination immunotherapy strategies are being widely explored to overcome the limitations of 

single immunotherapy [11]. 

2.2 Types and applications of tumor immunotherapy combination regimens 

Tumor immunotherapy combination regimens involve several kinds of treatments to enhance anti-

tumor immune effects and bypass tumors' immune-escape mechanisms. Currently, the most common 

combinations are those involving the use of immune checkpoint inhibitors together with 

chemotherapy, radiotherapy, or targeted therapy. Such combinations act synergistically through 

different modes of action [12,13]. For instance, radiotherapy releases more tumor antigens, while 

chemotherapy reduces immunosuppressive cells in the tumor microenvironment and enhances the 

effect of immunotherapy [14].  

More importantly, immunotherapy can be combined with other immunomodulatory approaches, 
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such as the dual immune checkpoint inhibition strategy combining anti-CTLA-4 and anti-PD-1 

antibodies. Such a combination releases the inhibitory state of T cells more thoroughly to further 

enhance their killing ability against tumor cells. Studies have established that such combination 

therapy significantly provides survival benefits in the case of tumor types [15], especially in cancers 

like melanoma and nonsmall cell lung cancer, and thus has emerged as a standard treatment modality 

[15]. Other than conventional combination therapies, the combination of chimeric antigen receptor T 

cell therapy with immune checkpoint inhibitors has also shown promise in research findings [16]. 

2.3 Current status of evaluation methods for the effect of combined treatment regimens 

The current assessment of combined tumor immunotherapy efficacy relies on parameters like 

survival rate, disease control rate, and progression-free survival [17]. A number of tools commonly 

used for assessing this modality of treatment include Kaplan-Meier survival curves and Cox 

proportional hazard models, which effectively establish the influence of different therapeutic 

regimens on patient survival time. Recently, iRECIST has also been proposed for some special 

response patterns in immunotherapy, such as pseudoprogression [18]. 

In view of the complexity of immunotherapy, more and more researchers have begun to pay 

attention to biomarkers that predict treatment response, such as tumor mutation burden (TMB) and 

PD-L1 expression levels [19]. These markers can not only help screen patients suitable for 

immunotherapy, but also serve as an important basis for evaluating efficacy. With the in-depth 

understanding of the complex interactions between the tumor microenvironment and the immune 

system, future evaluation methods will be more personalized and can more accurately reflect the 

clinical effects of immunotherapy and combination therapy [20]. 

3. Theoretical basis of survival analysis 

3.1 Basic concepts of survival analysis 

Survival analysis is a statistical method that is mainly used to analyze time-to-event data, 

especially patient survival analysis in the medical and biomedical fields. Its uniqueness lies in the 

processing of "censored data", that is, at the end of the study, some subjects may not have experienced 

the target event (such as death or disease recurrence), and this data can only provide partial time 

information [21]. The main purpose of survival analysis is to predict the probability of an event in a 

population through modeling, such as estimating the effect of a certain treatment on patient survival 

time. A core feature of survival analysis is that it can simultaneously process right-censored and 

truncated data, that is, the data records of some individuals may not be fully collected due to reasons 

such as the end of the study or loss of follow-up, but can still provide valuable partial information 

[22]. 

Common application scenarios of survival analysis include analyzing the survival time of cancer 

patients and the survival rate after organ transplantation. By drawing and comparing survival curves, 

researchers can visually observe the differences in survival between different treatment groups and 

determine whether such differences are statistically significant through further statistical tests (such 

as the log-rank test) [23]. With the development of modern statistics, survival analysis models have 

been continuously optimized and can better cope with complex clinical data, especially when dealing 

with multivariate and high-dimensional data [24]. 

3.2 Introduction to Common Survival Analysis Methods 

In the survival analysis, there are many methods, and among them, the most used ones are the 
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Kaplan-Meier method, log-rank test, and Cox proportional hazard model. The Kaplan-Meier method 

is a non-parametric estimation method used to estimate the event probability in a population, and also 

it is used to draw survival curves that show the differences in survival between different treatment 

groups [25]. It is mainly indicated for right censored data and can handle different times for subjects 

to exit the study. Log-rank test: This is a statistical test used in the comparison of differences that 

exist in survival curves between two or more groups. Computed frequency of events in the groups at 

different time points shows whether they are statistically significant [26]. 

The Cox proportional hazard model is another survival analysis tool that is used most frequently 

to analyze different variables for their effect on the survival time. In this model, the event occurrence 

is considered to be a constant risk to each variable; in other words, the use of hazard ratio does not 

change with time. Moreover, the Cox mode allows the estimation of the influence of each variable, 

while it simultaneously manages to adjust several confounding factors in order to obtain more 

accurate results of the analysis. Moreover, recently, due to the increase in volume and complexity of 

data, some new methods have also begun to be used by researchers such as machine learning 

algorithms like Random Survival Forest while processing the high-dimensional biomedical data [27]. 

3.3 Application of survival analysis in medical research 

The range of applications in medical research is quite broad in cancer treatment outcomes, 

transplant recipients' survival rates to chronic diseases. Using techniques like Kaplan-Meier survival 

curves and the Cox proportional hazard models, in order to detect the differences in survival of 

various options treatments employed, so as to assist the clinicians in making as precise a treatment 

decision as possible. For example, in cancer research, survival analysis is done in order to analyze 

how different types of treatments affect the survival time of patients; logrank test will be used in order 

to determine its statistical significance. This kind of analysis not only will help doctors to select the 

best treatment option but will also provide a scientific basis for clinical trials. 

In addition, survival analysis is also widely used in the study of “omics” data such as genomics 

and transcriptomics, helping researchers understand the impact of molecular features on patient 

prognosis. For example, by analyzing high-dimensional gene expression data, researchers can 

discover potential biomarkers and predict the survival of different patients. With the development of 

big data and machine learning technology, survival analysis methods are also constantly improving, 

and can better cope with complex multivariate and large sample data, improving the accuracy and 

efficiency of clinical research. 

4. Construction of survival analysis model for tumor immunotherapy combination regimen 

4.1 Data collection and preprocessing 

In the initial stage of constructing the survival analysis model, the collected data of tumor 

immunotherapy combination regimens must be processed first. Usually, the research data comes from 

clinical trials, hospital medical records or public tumor research databases. Data collection should 

include the following aspects: 

① Basic information of patients: including age, gender, weight, pathological stage, etc. 

②  Treatment regimen: including the type of immunotherapy received, combined treatment 

regimen and dosage, etc. 

③ Follow-up time: record the end point of each patient's survival time from the start of treatment 

to the end point (event occurrence or end time). 

④ Outcome event: usually patient death or disease progression (i.e., event that terminates survival 
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time). 

The key to cluster analysis is to construct a similarity matrix and classify samples using 

hierarchical clustering or K-means clustering. The similarity matrix is defined as: 
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Among them, ( , )S i j  represents the similarity between sample iii and sample j , ix  and jx
 are 

the gene expression vectors of the samples, and   is the scale parameter used to adjust the similarity 

calculation. In this way, different tumor subtypes can be effectively identified, and the survival time 

differences of each subtype under different treatment options can be further analyzed. 

4.2 Construction process of survival analysis model 

In order to evaluate the effects of different combined treatment regimens on the survival time of 

cancer patients, a variety of survival analysis models were constructed. First, the survival time 

distribution of each treatment group was estimated by the Kaplan-Meier survival curve, and the 

survival difference between different treatment groups was tested by the log-rank test. 

The estimation formula of the survival function is as follows: 
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Among them, ( )S t  is the survival probability at time t , id  is the number of individuals who 

have an event (such as death) at time it , and in  is the number of individuals still in the study before 

time it . This formula is used to draw the Kaplan-Meier survival curve to visualize the survival rate 

of each treatment regimen. 

Secondly, the effect of different treatment regimens on the risk of death of patients is analyzed 

based on the Cox proportional hazard model. In order to screen the features significantly related to 

the survival time and reduce the overfitting of the model, this paper adopts the LASSO regression 

method. LASSO regression achieves the purpose of feature selection by adding penalty terms to 

shrink the coefficients of some features to zero. The optimization objectives of LASSO regression 

are as follows: 
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Among them, iy  is the survival time of the i th sample, ijx
 is the jth feature of the ith sample, 

0  is the intercept, j
 is the regression coefficient of the j th feature, and   is the penalty 

parameter. By adjusting the λ value, we can control the complexity of the model and select key 

features that are closely related to survival time. These features are retained in the final Cox model to 

further evaluate the impact of different treatment options on patient survival time. 

The basic form of the Cox proportional hazard model is: 

0 1 1 2 2( | ) ( ) exp( )p ph t X h t X X X      
                          (4) 

Where ( | )h t X is the event rate at time t  given the covariates 1 2( ), , , pX X X X 
; 0( )h t is the baseline 

hazard function, which represents the basic risk when all covariates are zero; 1 2, , , p  
 are the 

regression coefficients of the covariates, reflecting the impact of each feature on survival time. 

99



4.3 Evaluation criteria for combined treatment survival analysis model 

After the model was constructed, multiple evaluation criteria were used to evaluate the model to 

ensure its predictive ability and applicability. First, the log-rank test was used to compare the survival 

differences between different treatment groups. The formula for the log-rank test is as follows: 
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Among them, iO  is the actual number of events in group i , iE  is the expected number of events, 

and Q  is the test statistic. By performing a log-rank test on different treatment regimens, the 

significant differences between different treatment regimens can be evaluated. 

Secondly, in order to avoid overfitting of the model and improve its predictive ability, the Akaike 

Information Criterion (AIC) is used to select the model. The calculation formula of AIC is: 

2ln(likelihood) 2AIC k                                  (6) 

Where ln(likelihood)  is the log-likelihood of the model, and k  is the number of free parameters in 

the model. The lower the AIC value is, the better the model fit. 

5. Empirical study on the evaluation of combined treatment effects based on survival analysis 

5.1 Data samples and research subjects 

In this study, we collected clinical data from 200 patients with advanced tumors from a cancer 

hospital. These patients received different immunotherapy combinations, including single 

immunotherapy (such as PD-1/PD-L1 inhibitors) and combined radiotherapy, chemotherapy, targeted 

therapy and other combination regimens. The basic information of the sample is shown in Table 1, 

including variables such as the patient's age, gender, and pathological stage. The follow-up time of 

these patients was from the start of treatment to death or the most recent follow-up node, and the 

survival status was recorded. To ensure the integrity of the data, cases with insufficient follow-up 

were excluded. 

Table 1: Overview of basic information of patients 

Variables Mean (SD) Range N (%) 

Age (years) 58.6 (11.4) 32-85 - 

Gender - - Male (60%), Female (40%) 

Cancer Stage - - 
Stage III (45%), Stage IV 

(55%) 

Treatment 

Modality 
- - 

Immunotherapy Alone (35%), 

Combination Therapy (65%) 

Table 2: Distribution of treatment options 

Treatment Modality N (%) 

Immunotherapy Alone 70 (35%) 

Immunotherapy + Chemotherapy 50 (25%) 

Immunotherapy + Radiotherapy 30 (15%) 

Immunotherapy + Targeted Therapy 50 (25%) 

Table 1 shows the age, gender distribution and tumor stage of the patients, and Table 2 lists the 
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distribution of patients with different combined treatment regimens. It can be seen that the vast 

majority of patients received combined treatment regimens, and the age distribution was relatively 

wide. This laid the foundation for subsequent survival analysis. 

5.2 Survival analysis results and model evaluation 

In order to analyze the effects of different tumor immunotherapy combinations on patient survival, 

the Kaplan-Meier method was first used to generate survival curves. The data set includes 200 

patients, of whom 70 received single immunotherapy and 130 received different combination therapy 

regimens. To further verify the effect of each treatment regimen, we performed a Cox proportional 

hazard model analysis to quantify the effect of each treatment regimen on survival time. Figure 1 

shows the Kaplan-Meier survival curves of different treatment regimens, indicating that combined 

therapy has a significant advantage over single immunotherapy in prolonging survival time. 

 

Figure 1: Kaplan-Meier survival curves of different treatment regimens 

As can be seen from Figure 1, the survival rate of single immunotherapy decreased rapidly, while 

the survival rate of combined therapy was relatively stable, especially the survival time of combined 

immunotherapy and targeted therapy was the longest. This shows that combined therapy can 

significantly improve the survival rate of patients. 

In further analysis, we used the Cox proportional hazard model to evaluate the effect of each 

treatment regimen on survival time, and combined with LASSO regression to screen out biomarkers 

significantly associated with survival. Through LASSO regression, we effectively reduced the 

number of features in the model and avoided overfitting. The key features that were finally retained 

included certain gene expression levels and clinical characteristics.  

Figure 2 illustrates how the LASSO regression model penalizes the regression coefficients as λ 

increases, progressively shrinking the coefficients of less important features towards zero. The 

inclusion of error bars emphasizes the consistency of model performance across different folds during 

cross-validation. The optimal λ, shown by the vertical line, represents the best balance between model 

complexity and predictive accuracy, chosen to reduce the model’s overfitting risk while maintaining 

important predictive features. 
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Figure 2: Lambda vs. Mean Squared Error for LASSO Regression with Cross-Validation 

Table 3 shows the regression coefficients and their significance levels of the Cox proportional 

hazard model. 

Table 3: Results of Cox proportional hazards model 

Variables Coefficient (β) Std. Error p-value 

Immunotherapy 

Alone (ref) 
- - - 

Immunotherapy + 

Chemotherapy 
-0.42 0.13 <0.001 

Immunotherapy + 

Radiotherapy 
-0.31 0.15 0.004 

Immunotherapy + 

Targeted Therapy 
-0.58 0.12 <0.001 

Age (per year 

increase) 
0.02 0.01 0.03 

Cancer Stage 

(Stage IV vs Stage 

III) 

0.78 0.22 <0.001 

The Cox model results in Table 3 show that all combined treatments significantly reduced the risk 

of death in patients, especially immune combined targeted therapy, with a risk reduction coefficient 

of -0.58, which was significantly better than other options. Patient age and tumor stage also 

significantly affected survival time, and the later the stage, the higher the risk. 

5.3 Comparative analysis of combined treatment effects 

To better understand the long-term effects of each treatment regimen, we drew the cumulative risk 

curves of each. The survival curves of different treatment groups were compared using the log-rank 

test. The test results showed that the survival of the combined treatment group was significantly better 

than that of the single immunotherapy group. Figure 3 shows the cumulative risk curves of each 

treatment regimen, illustrating the impact of different treatment regimens on survival time. 
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Figure 3: Cumulative Hazard Curves for Different Treatment Modalities 

As can be seen from Figure 3, the cumulative risk of single immunotherapy increases the fastest, 

indicating that its patients have a shorter survival time; while the cumulative risk of combined targeted 

therapy increases the slowest, indicating that this regimen effectively prolongs survival time. The risk 

curves of immunotherapy combined with chemotherapy and radiotherapy are between the two, 

indicating that their effects are inferior to targeted therapy but better than single immunotherapy. 

6. Conclusion 

By performing survival analysis on the clinical data and gene expression data of 200 cancer 

patients, this study systematically evaluated the effects of different immunotherapy combinations on 

patient survival time. The results showed that immunotherapy combined with other treatments (such 

as chemotherapy, radiotherapy and targeted therapy) significantly prolonged the survival of patients, 

especially the effect of immunotherapy combined with targeted therapy was the most significant. The 

Kaplan-Meier survival curve showed that the survival rate of the immunotherapy combined with 

targeted therapy group remained at a high level for a long time, while the survival rate of the single 

immunotherapy group decreased rapidly. The analysis results of the Cox proportional hazard model 

further showed that combined targeted therapy significantly reduced the risk of death in patients, and 

the risk reduction was greater than that of other treatment combinations. In addition, the biomarkers 

significantly associated with survival time screened by LASSO regression further proved that the 

effect of immunotherapy combined therapy was closely related to the molecular characteristics of 

patients. 

In summary, immunotherapy combination can significantly improve the survival rate of cancer 

patients, especially in combined targeted therapy. This study further explored the heterogeneity of 

tumor samples through cluster analysis, revealing differences in the response of different tumor 

subtypes to treatment regimens. This provides an important scientific basis for individualized 

treatment. Studies have shown that optimized immunotherapy combination strategies can effectively 

prolong patient survival with advanced tumors and reduce cancer recurrence, providing strong 

support for future clinical practice. 
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