
CNN-GRU-XGBoost stock price prediction model under 

hyperparameter-based optimisation  

Yunyi Liu1,a 

1Hangzhou Dianzi University, Hangzhou, China 
a232150028@hdu.edu.cn   

Keywords: Stock price prediction, convolutional neural network, XGBoost, Bayesian 

search, random search 

Abstract: This paper addresses the limitations of existing stock price prediction methods, 

which often lack explanatory power and struggle with complex hyperparameter 

combinations. We propose a hyperparameter tuning approach based on the CNN-GRU-

XGBoost model. By employing Bayesian tuning for the CNN-GRU and random search for 

XGBoost, we identify the optimal hyperparameters. The CNN extracts local features from 

the data, while the GRU captures long-term dependencies. The combined features are then 

input into the XGBoost model for accurate stock predictions. Testing on five years of Hang 

Seng Index data demonstrates significant improvements in prediction accuracy, reduced 

noise, and enhanced model interpretability compared to traditional single models. 

1. Introduction  

In the early days of stock price forecasting, traditional statistical models like ARMA, 

ARCH/GARCH, VAR, ARIMA, and Kalman Filtering were used to analyse historical price data, 

focusing on market trends and volatility. [1] These models typically assume linear market behaviour, 

which can limit their performance with non-linear and high-dimensional data. Advanced machine 

learning algorithms like SVMs, decision trees, random forests, and gradient boosting have been 

developed to better handle complex data relationships. 

Researchers have advanced in using complex machine learning algorithms, including SVMs, 

decision trees, and gradient boosters, for their ability to manage nonlinear data and offer flexible 

modelling. The finance sector saw a rise in machine learning applications from the mid-2000s, 

thanks to big data and cloud computing. Kyoung-jae Kim notably used SVMs for financial 

forecasting. [2]. 

In recent years, deep learning models, especially deep neural networks, have gained traction in 

equities. These models trace back to Rosenblatt's 1958 perceptron model [3]. Hornik et al. 

demonstrated in 1989 that multilayer perceptrons can approximate smooth measurable functions, 

advancing deep learning [4]. Modern models usually have input, hidden, and output layers, varying 

mainly in the hidden layer. The CNN began with the LeNet model for digit recognition.[5] AlexNet, 

which won the 2012 ImageNet competition, further popularized deep learning in computer vision 

and finance [6]. 

Recurrent Neural Networks (RNNs), introduced by Hopfield in 1982, are designed for time 

Financial Engineering and Risk Management (2024) 
Clausius Scientific Press, Canada

DOI: 10.23977/ferm.2024.070519 
ISSN 2523-2576 Vol. 7 Num. 5

151



series data but can suffer from gradient issues. The LSTM model, developed by Hochreiter and 

Schmidhuber in 1997, overcomes this with a gated structure, excelling in NLP and time series 

analysis. LSTMs have seen a resurgence in finance since 2014, following their success in machine 

translation. [7] Feng, Yuxu, and Li, Yumei demonstrated that LSTMs provide more accurate 

predictions for the CSI 300 index than other models. [8] 

In 2014, Cho et al. introduced the GRU, a streamlined variant of LSTM, well-suited for 

capturing time-scale dependencies in sequence data modelling. [9] The GRU model, simpler than 

LSTM and ideal for larger networks, was enhanced by Li-Qiong Gu et al. with an attention 

mechanism to improve temporal feature capture. This attention-based GRU model surpasses LSTM 

in simplicity and accuracy, particularly by highlighting key time points, showcasing the GRU’s 

superior attention mechanism.[10] Umang Gupta, Vandana Bhattacharjee, and colleagues have 

developed a GRU-based data augmentation technique for the StockNet model, targeting the Hang 

Seng index’s overall stock price, and tested it in the Indian market.[11] We introduce the CNN-

GRU-XGBoost model, a new prediction model that captures the nonlinear dynamics, complex 

interactions, and volatility in stock price data, considering the time series continuity and data 

evolutionary direction for precise forecasting. 

The CNN-GRU model excels in extracting spatial and temporal features from data for stock 

price predictions, with CNN reducing noise and GRU capturing temporal aspects. Despite potential 

feature oversight and noise, XGBoost is used to learn complex feature interactions and prevent 

overfitting. Hyper-parameter tuning employs Bayesian and random searches for the CNN-GRU and 

XGBoost components, respectively, for optimal predictions. 

2. Medel specification 

2.1. Modelling design 

 

Figure 1: Structure of CNN-GRU-XGBoost model 

This flowchart outlines my model, which takes raw stock data, processes it through CNN’s 

convolution and pooling layers, then feeds the extracted features into GRU for extensive feature 

extraction. Finally, the data is input into the XGBoost model for the final prediction, as depicted in 

Figure 1. 

2.2. CNN Layer 

The model initiates with a CNN layer, which effectively captures local features for recognizing 

stock market patterns like short-term technical indicator fluctuations. CNN’s parameter sharing 

lessens complexity and overfitting risks, vital for the noisy, nonlinear stock market. The network’s 

152



translation invariance in feature extraction improves robustness by identifying consistent patterns 

across different time windows. 

2.3. GRU Layer 

The second part of the process involves the GRU layer. Firstly, GRUs capture long-term 

dependencies in the stock market, such as the effects of macroeconomic factors on stock prices, 

which is valuable for investors. Secondly, GRUs excel in handling time series data, identifying key 

patterns like seasonality and cyclicality essential for stock price forecasting. Lastly, the gating unit 

in GRUs controls information flow and forgetting, helping filter noise and retain relevant data for 

predictions. 

2.4. XGBoost Layer 

XGBoost evaluates feature importance, revealing key stock price influencers. Its ability to model 

complex nonlinear data through multi-layer decision trees is vital for stock price analysis. Moreover, 

XGBoost resilience to outliers and missing data is significant in the financial sector. 

2.5. Hyperparametric design of each part of the models 

The models employed in this study include LSTM, CNN-LSTM, CNN-GRU, and XGBoost, 

each with a set of parameters. For the LSTM model, epochs are set within the range of 50 to 100, 

with units set within the range of 50 to 150, and a batch size ranging from 16 to 64, activation 

functions including relu, tanh, and sigmoid, and optimizers such as Adam, SGD, and RMSprop. The 

CNN-LSTM model shares similar epochs and units but adds filters ranging from 16 to 128, kernel 

sizes ranging from 3 to 10, pool sizes ranging from 2 to 5, and the same activation functions and 

optimizers. The CNN-GRU model follows the same structure as CNN-LSTM. For the XGBoost 

model, parameters include 50 to 200 estimators, a max depth of ranging from 3 to 10, learning rates 

of 0.001, 0.01, 0.1, 0.2, or 0.3, subsample rates of 0.6 to 1.0, colsample by tree values of 0.6 to 1.0, 

gamma values of 0, 1, or 5, and minimum child weights of 1, 5, or 10. 

2.6. Overall steps of the model 

 

Figure 2: Step-by-step diagram of the CNN-GRU-XGBoost model 

Step 1: Input historical stock data, including opening price, closing price, and turnover rate. 

Step 2: Normalize the stock features to a range between (0, 1). 

153



Step 3: Initialize the CNN model to extract features from the standardized stock data. 

Step 4: Feed the output data into the GRU layer to capture long-term dependencies in the time 

series features. 

Step 5: Perform Bayesian search for hyperparameters, iterating 15 times to find the optimal MSE 

combination and extract feature vectors. 

Step 6: Input the feature vectors into the XGBoost model and use random search to determine 

the optimal R² for its hyperparameters. 

Step 7: Train the CNN-GRU-XGBoost model with the optimal hyperparameters and output the 

prediction results. The overall process is illustrated in Figure 2. 

3. Empirical Analysis 

3.1. Data preprocessing 

The data employed in this article is the Hang Seng Index from 4 February 2019 to 2 February 

2024, inclusive of the approximate open, close, turnover rate and other K-line data. Figure 3 below 

shows the k-line data of the Hang Seng Index for the past 5 years. 

 

Figure 3: Hang Seng Index k-line data 

The dataset was split into training (80%) and test (20%) sets, then normalized using the min-max 

method to scale variables between 0 and 1, enhancing data comparability, speeding up network 

convergence, and boosting model prediction accuracy. 

             𝑋normalized =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                                                 (1) 

Where  𝑋normalized  is the normalised data and X is the original data. 

Before building the model, time series data must be converted into a supervised learning format. 

This paper applies a sliding window approach with a width of 5 to predict the next day’s closing 

price, creating samples by backward shifting the data by one unit at a time. The input T and 

predicted T+1 data from the sliding window serve as inputs, as depicted in Figure 4. 

 

Figure 4: Structure of the sliding window 

3.2. Bayesian optimisation and random search 

Bayesian optimisation was conducted to find the minimum MSE, using a consistent random seed 

for reproducibility. Each optimiser performed 15 iterations, starting with five exploratory points and 

followed by ten hyper-parameter tuning iterations. The random state was set to 70 for consistent 

date previous close open high low average price rise and fall percentage change turnover volume turnover rate close
2019-02-04 27,930.7400 27,985.4200 28,005.1500 27,847.4300 8.6596 59.4700 0.2129 47,460,563.0000 41,099,179,000.0000 0.5387 27,990.2100
2019-02-08 27,990.2100 27,708.1300 28,008.8200 27,534.2000 8.2291 -43.8900 -0.1568 98,765,189.0000 81,274,787,000.0000 1.1211 27,946.3200
2019-02-11 27,946.3200 27,927.4500 28,143.8400 27,847.8500 8.5808 197.5200 0.7068 102,721,151.0000 88,143,433,000.0000 1.1660 28,143.8400
2019-02-12 28,143.8400 28,093.3100 28,219.5900 27,983.4800 7.9795 27.4900 0.0977 120,294,799.0000 95,988,911,000.0000 1.3655 28,171.3300
2019-02-13 28,171.3300 28,184.8700 28,533.3600 28,160.4600 8.5020 326.2600 1.1581 139,555,520.0000 118,649,808,000.0000 1.5841 28,497.5900
2019-02-14 28,497.5900 28,396.4000 28,476.6500 28,275.1800 7.3319 -65.5400 -0.2300 138,652,260.0000 101,657,941,000.0000 1.5739 28,432.0500
2019-02-15 28,432.0500 28,241.4400 28,256.6900 27,845.8700 8.3353 -531.2100 -1.8683 122,712,898.0000 102,284,612,000.0000 1.3929 27,900.8400
2019-02-18 27,900.8400 28,186.7500 28,412.0800 28,186.7500 7.0382 446.1700 1.5991 135,066,900.0000 95,063,362,000.0000 1.5332 28,347.0100

154



experiment results, as shown in Figure 5. 

 

Figure 5: Process diagram for Bayesian optimisation of hyperparameters 

The random searches were designed to identify the hyperparameter combination that yielded the 

largest 𝑅2 . Each random search consisted of 10 iterations, during which 10 different 

hyperparameter combinations were randomly sampled from a given hyperparameter space. In terms 

of cross-validation, the XGBoost model searches used 5-fold cross-validation. This approach 

ensures that the performance of each model is evaluated on multiple data divisions, thereby 

providing evidence of the generalisation performance of the hyperparameter choices across 

different datasets. The random seed used in this process was set to 70. Figure 6 illustrates the 

random search process. 

 

Figure 6: Random search optimisation hyperparameter process diagram 

After the above search for hyperparameters. The finalised combination of hyperparameters is 

shown below: The optimal parameters for the models used in this study include LSTM, CNN-

LSTM, CNN-GRU, and XGBoost. The LSTM model is configured with 85 epochs, 76 units, a 

batch size of 16, a tanh activation function, and the Adam optimizer. The CNN-LSTM model has 

79 epochs, 93 units, a batch size of 57, 117 filters, a kernel size of 5, a pool size of 4, a tanh 

activation function, and utilizes the Adam optimizer. For the CNN-GRU model, the configuration 

includes 89 epochs, 102 units, a batch size of 16, 91 filters, a kernel size of 5, a pool size of 3, a 

ReLU activation function, and the Adam optimizer. Lastly, the XGBoost model is set with 164 

estimators, a maximum depth of 4, a learning rate of 0.3, a subsample rate of 0.7, colsample by tree 

value of 0.6, a gamma value of 0, and a minimum child weight of 1. 

155



3.3. Indicators for model evaluation 

The test set’s textual data is used to evaluate the model’s performance, which is also 

benchmarked using XGBoost, LSTM, CNN-LSTM, CNN-GRU, CNN-LSTM-XGBoost, and CNN-

GRU-XGBoost. The classification task employs precision, recall, and F-value as evaluation metrics 

based on the confusion matrix. 

Table 1: Confusion Matrix 

 Practicality 

Rise Fall 

Projection Rise TP FP 

 Fall FN TN 

Table 1 shows the confusion matrix, detailing samples correctly predicted as up (TP) or down 

(TN) and those incorrectly predicted (FP and FN). Precision measures the proportion of true 

positive predictions among all predicted ups, while recall measures true positives among actual ups. 

The F-value combines precision and recall into an average. Precision is the ratio of correctly 

classified samples to total samples. The formula is as follows: 

                                                 (2) 

                                                    (3) 

                                  (4) 

                                  (5) 

In the meantime, the Mean Absolute Error, Root Mean Squared Error and Goodness of Fit 𝑅2 

were selected as the evaluation indexes of the models, and the prediction effect of the models was 

comprehensively analysed. Figure 7 shows the results of the confusion matrix of each model. 

 

Figure 7: Confusion matrix plot for each model 

156



4. Results and discussion 

The optimal combination of hyperparameters for the model was identified through 

experimentation on the processed data. The confusion matrix was classified to assess the prediction 

results. The four metrics of precision, recall, F-measure, and accuracy were computed, and metrics 

were recorded for each model. The results of the experiments are presented in Tables 2 and 3. 

Table 2: Comparison of the performance of the models 

Models Precision Recall F - measure Accuracy 

XGBoost 0.56 0.5138 0.5359 0.5992 

LSTM 0.6102 0.9908 0.7552 0.7107 

CNN-LSTM 1.0 0.5138 0.6788 0.7810 

CNN-GRU 1.0 0.6698 0.8022 0.8512 

CNN-LSTM-XGBoost 0.8125 0.8349 0.8235 0.8388 

CNN-GRU-XGBoost 0.8512 0.9450 0.8957 0.9008 

Table 3: Comparison of evaluation indicators for each model 

Models Indicators for model evaluation 

𝐌𝐀𝐄 𝐑𝐌𝐒𝐄 𝑹𝟐 

XGBoost 0.0293 0.0015 0.8157 

LSTM 0.0104 0.0127 0.9798 

CNN-LSTM 0.0101 0.0112 0.9842 

CNN-GRU 0.0070 0.0072 0.9925 

CNN-LSTM-XGBoost 0.0059 0.0084 0.9912 

CNN-GRU-XGBoost 0.0040 0.0053 0.9964 

The following presents the prediction effect of each model on the test set, including XGBoost, 

LSTM, CNN-LSTM, CNN-GRU, CNN-LSTM-XGBoost, and CNN-GRU-XGBoost, among others. 

As illustrated in Figure 8, despite the high degree of consistency observed in the prediction curves 

of the various models, an analysis of the metrics reveals that the CNN-GRU-XGBoost model 

continues to exhibit superior performance compared to the other models 

 

Figure 8: Plot of prediction results for each model  

5. Conclusions 

The experimental results show that the CNN-GRU-XGBoost model outperforms five alternative 

157



models, including XGBoost, LSTM, and CNN-LSTM-XGBoost, in prediction efficacy and stability. 

Incorporating a convolutional neural network (CNN) enhances the predictive capacity of the long 

short-term memory (LSTM) model, reducing the mean absolute error (MAE), root mean square 

error (RMSE), and coefficient of determination (R²) from 0.0104, 0.0127, and 0.9798 to 0.0101, 

0.0112, and 0.9842, respectively. The CNN-LSTM model had a lower F-value than LSTM, possibly 

due to data complexity and hyper-parameter ranges. However, replacing LSTM with GRU in the 

CNN-GRU model showed superior performance, with F-value and accuracy improving from 0.6788 

and 0.7810 to 0.8022 and 0.8512. Additionally, MAE, RMSE, and R² values improved to 0.0070, 

0.0072, and 0.9842. When examined in isolation, the XGBoost model's performance and evaluation 

indices were weaker than those of deep learning models. However, combining deep learning with 

XGBoost significantly enhances results. The CNN-LSTM-XGBoost model outperformed both 

CNN-LSTM and XGBoost in F-value and accuracy, indicating effective integration. After 

switching from LSTM to GRU, the CNN-GRU-XGBoost model further improved, with MAE, 

RMSE, and R² values decreasing to optimal levels. The highest F-value and accuracy were 0.8957 

and 0.9008, respectively, while MAE and R² were also the best among all models. Overall, the 

GRU-XGBoost model, following hyperparameter optimization, demonstrates stability and strong 

performance in stock price prediction. 

References   

[1] Bhardwaj., Swanson, N.R. (2006), An Empirical Investigation of the Usefulness of ARFIMA Models for Predicting 

Macroeconomic and Financial Time Series. Journal of Econometrics, 131 (1-2), 539-578; 

[2] Kyoung-jae Kim,(2003) Financial time series forecasting using support vector machines,Neurocomputing,Volume 

55, Issues 1–2,2003, Pages 307-319, ISSN 0925-2312 

[3] Rosenblatt F. (1958) The perceptron: a probabilistic model for information storage and organization in the brain [. 

Psychological Review, 1958, 65:386-408. 

[4] Hornik K, Stinchcombe M, White H. (1989) Multilayer feedforward networks are universalapproximators.Neural 

networks, 1989, 2(5):359-366. 

[5] Lecun, Y., & Bottou, L. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 

86(11), 2278-2324. 

[6] Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). Imagenet classification with deep convolutional neural networks. 

Advances in neural information processing systems, 25(2). 

[7] Hochreiter S, Schmidhuber J. (1997) Long Short-Term Memory[J]. Neural Computation, 19979(8):1735-1780. 

[8] Feng Yuxu, Li Yumei.(2019) Research on the prediction model of CSI 300 index based on LSTM neural network[J]. 

Practice and Understanding of Mathematics, 2019, 49(07):308-315.  

[9] Cho K, Van Merriěnboer B, Gulcehre C, etc.(2014) Learning phrase representations using RNNencoder-decoder 

for statistical machine translation [J. arXiv preprint arXiv:1406.1078, 2014 

[10] Liqiong Gu, Yunjie Wu, Jinhui Feng,(2020) GRU stock prediction model based on Attention mechanism[J]. 

Systems Engineering, 2020, 38(05):134-140.sed on Bayesian optimization," Intelligent Automation & Soft Computing, 

vol. 29, no.3, pp. 855–868, 2021 

[11] Umang Gupta, Vandana Bhattacharjee, Partha Sarathi Bishmu,(2022) StockNet-GRU based stock index 

prediction, Expert Systems with Applications, Volme 207,2022,117986,ISSN 0957-4174, https:/idoi.org/10.1016f. eswa. 

2022.117986.  

158




